Moth–flame optimization algorithm: variants and applications
This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered one of the promising metaheuristic algorithms and successfully applied in various optimization problems in a wide range of fields, such as pow...
Gespeichert in:
| Veröffentlicht in: | Neural computing & applications Jg. 32; H. 14; S. 9859 - 9884 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.07.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered one of the promising metaheuristic algorithms and successfully applied in various optimization problems in a wide range of fields, such as power and energy systems, economic dispatch, engineering design, image processing and medical applications. This manuscript describes the available literature on MFO, including its variants and hybridization, the growth of MFO publications, MFO application areas, theoretical analysis and comparisons of MFO with other algorithms. Conclusions focus on the current work on MFO, highlight its weaknesses, and suggest possible future research directions. Researchers and practitioners of MFO belonging to different fields, like the domains of optimization, medical, engineering, clustering and data mining, among others will benefit from this study. |
|---|---|
| AbstractList | This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered one of the promising metaheuristic algorithms and successfully applied in various optimization problems in a wide range of fields, such as power and energy systems, economic dispatch, engineering design, image processing and medical applications. This manuscript describes the available literature on MFO, including its variants and hybridization, the growth of MFO publications, MFO application areas, theoretical analysis and comparisons of MFO with other algorithms. Conclusions focus on the current work on MFO, highlight its weaknesses, and suggest possible future research directions. Researchers and practitioners of MFO belonging to different fields, like the domains of optimization, medical, engineering, clustering and data mining, among others will benefit from this study. |
| Author | Abualigah, Laith Khasawneh, Ahmad M. Shehab, Mohammad Al Hamad, Husam Alshinwan, Mohammad Alabool, Hamzeh |
| Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0003-0211-3503 surname: Shehab fullname: Shehab, Mohammad email: moh.shehab12@gmail.com organization: Computer Science Department, Aqaba University of Technology – sequence: 2 givenname: Laith surname: Abualigah fullname: Abualigah, Laith organization: Faculty of Computer Sciences and Informatics, Amman Arab University – sequence: 3 givenname: Husam surname: Al Hamad fullname: Al Hamad, Husam organization: Faculty of Computer Sciences and Informatics, Amman Arab University – sequence: 4 givenname: Hamzeh surname: Alabool fullname: Alabool, Hamzeh organization: Department of Information Technology, College of Computing and Informatics, Saudi Electronic University – sequence: 5 givenname: Mohammad surname: Alshinwan fullname: Alshinwan, Mohammad organization: Faculty of Computer Sciences and Informatics, Amman Arab University – sequence: 6 givenname: Ahmad M. surname: Khasawneh fullname: Khasawneh, Ahmad M. organization: Faculty of Computer Sciences and Informatics, Amman Arab University |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB16O5TjIuBCneoOJG1-E0TdqUuZmkgq58B9_QJ3HsCIILV2dx_u-cn2-CRk3bWISOCT4lGMuziLGgJMekzDEXEufFHhoTzljOsFAjNMYl79cFZwdoEuMGY8wLJcbo4r5N68_3D1dBbbO2S772b5B822RQrdrg07o-z14geGhSzKBZZtB1lTe7TDxE-w6qaI9-5hQ9XV89zm7z-cPN3exynhsmacpLSig10hgwSycdJ4bYBbFMKUeEEUDBSVGAKoW0pZKwUKXjlipSLpl0AGyKToa7XWiftzYmvWm3oelfasqJ4oJJzvuUGlImtDEG67TxaVc0BfCVJlh_29KDLd3b0jtbuuhR-gftgq8hvP4PsQGKfbhZ2fDb6h_qC4tSgBE |
| CitedBy_id | crossref_primary_10_1007_s42235_023_00414_1 crossref_primary_10_1007_s11042_023_15861_5 crossref_primary_10_1038_s41598_024_67197_1 crossref_primary_10_17798_bitlisfen_1584985 crossref_primary_10_1007_s40819_025_01925_7 crossref_primary_10_1016_j_dajour_2023_100360 crossref_primary_10_1016_j_eswa_2022_117058 crossref_primary_10_1016_j_asoc_2024_112462 crossref_primary_10_1016_j_enconman_2024_118934 crossref_primary_10_1007_s10586_020_03075_5 crossref_primary_10_1063_5_0213886 crossref_primary_10_3390_pr9071155 crossref_primary_10_1007_s00521_023_09399_8 crossref_primary_10_1007_s11831_023_10055_6 crossref_primary_10_1007_s10489_021_02980_5 crossref_primary_10_1007_s13369_024_09346_2 crossref_primary_10_1093_jcde_qwad044 crossref_primary_10_1177_01423312251350754 crossref_primary_10_1007_s11831_021_09624_4 crossref_primary_10_1038_s41598_025_02890_3 crossref_primary_10_1016_j_rineng_2025_104415 crossref_primary_10_1016_j_est_2024_114626 crossref_primary_10_1007_s10586_024_04628_8 crossref_primary_10_1038_s41598_022_16498_4 crossref_primary_10_1007_s11760_025_04004_y crossref_primary_10_3233_JIFS_219181 crossref_primary_10_1007_s44174_025_00455_6 crossref_primary_10_3390_math12172737 crossref_primary_10_1007_s11831_021_09673_9 crossref_primary_10_1016_j_advengsoft_2022_103140 crossref_primary_10_1016_j_asoc_2022_108538 crossref_primary_10_52254_1857_0070_2023_4_60_10 crossref_primary_10_3389_fenrg_2023_1170570 crossref_primary_10_3390_math11061438 crossref_primary_10_1007_s00170_022_10512_9 crossref_primary_10_1080_15567036_2022_2025954 crossref_primary_10_1007_s10462_023_10435_1 crossref_primary_10_1007_s40998_025_00830_5 crossref_primary_10_1007_s00500_020_05032_1 crossref_primary_10_1016_j_mlwa_2025_100709 crossref_primary_10_1016_j_energy_2022_126366 crossref_primary_10_3390_app14020923 crossref_primary_10_3390_sym14030455 crossref_primary_10_1007_s00500_020_05070_9 crossref_primary_10_1007_s11227_021_03915_0 crossref_primary_10_1016_j_suscom_2023_100949 crossref_primary_10_3390_healthcare11010113 crossref_primary_10_1063_5_0108340 crossref_primary_10_1002_er_7611 crossref_primary_10_1080_23080477_2023_2208398 crossref_primary_10_1080_02533839_2023_2238759 crossref_primary_10_1016_j_cie_2023_109212 crossref_primary_10_1155_2022_4602064 crossref_primary_10_1007_s00500_023_09070_3 crossref_primary_10_1016_j_knosys_2021_107552 crossref_primary_10_1177_09544062211054001 crossref_primary_10_1007_s12065_024_01004_8 crossref_primary_10_1007_s11042_022_12717_2 crossref_primary_10_1007_s11831_022_09803_x crossref_primary_10_1007_s10845_022_01921_4 crossref_primary_10_3390_fractalfract6010027 crossref_primary_10_1016_j_comnet_2022_109049 crossref_primary_10_3390_biomimetics8030278 crossref_primary_10_1002_dac_4964 crossref_primary_10_1016_j_apm_2025_116423 crossref_primary_10_32604_cmc_2022_030547 crossref_primary_10_1016_j_prime_2025_101099 crossref_primary_10_1016_j_osn_2025_100815 crossref_primary_10_1007_s42235_023_00394_2 crossref_primary_10_1016_j_engappai_2021_104303 crossref_primary_10_1007_s11831_024_10202_7 crossref_primary_10_1016_j_heliyon_2024_e36663 crossref_primary_10_1007_s12665_024_11736_6 crossref_primary_10_1016_j_comnet_2024_110603 crossref_primary_10_1007_s12065_020_00526_1 crossref_primary_10_1007_s11831_022_09872_y crossref_primary_10_1016_j_ins_2021_11_030 crossref_primary_10_1002_jemt_24170 crossref_primary_10_1186_s13638_025_02441_4 crossref_primary_10_1007_s10586_025_05328_7 crossref_primary_10_1007_s13369_020_05217_8 crossref_primary_10_1007_s41060_025_00769_0 crossref_primary_10_32604_cmc_2024_046461 crossref_primary_10_3389_fenrg_2023_1055845 crossref_primary_10_1038_s41598_024_75347_8 crossref_primary_10_1007_s11581_025_06566_w crossref_primary_10_1016_j_future_2023_10_024 crossref_primary_10_3390_app10113827 crossref_primary_10_1016_j_egyr_2023_09_026 crossref_primary_10_1016_j_heliyon_2024_e37293 crossref_primary_10_1007_s10489_020_01947_2 crossref_primary_10_1016_j_eswa_2024_124765 crossref_primary_10_1109_ACCESS_2021_3073261 crossref_primary_10_3390_en16196982 crossref_primary_10_1007_s00521_020_05107_y crossref_primary_10_1109_ACCESS_2023_3259459 crossref_primary_10_1016_j_renene_2024_122238 crossref_primary_10_1016_j_sna_2024_115651 crossref_primary_10_1016_j_tws_2024_112067 crossref_primary_10_1007_s12065_020_00428_2 crossref_primary_10_1016_j_dajour_2025_100614 crossref_primary_10_1007_s11042_020_09403_6 crossref_primary_10_1007_s00521_024_09535_y crossref_primary_10_1051_e3sconf_202561602024 crossref_primary_10_1186_s13638_020_01802_5 crossref_primary_10_47836_pjst_33_3_24 crossref_primary_10_1007_s10489_020_01841_x crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_1007_s10825_023_02018_8 crossref_primary_10_3390_pr11082263 crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_1177_16878132221085125 crossref_primary_10_1016_j_jobe_2023_106432 crossref_primary_10_3390_app12178868 crossref_primary_10_1002_ett_70078 crossref_primary_10_3390_en16010024 crossref_primary_10_1007_s12652_022_03908_8 crossref_primary_10_3390_math9151722 crossref_primary_10_1016_j_autcon_2024_105819 crossref_primary_10_1016_j_ijhydene_2025_04_231 crossref_primary_10_1155_2022_9051058 crossref_primary_10_1007_s00521_021_06379_8 crossref_primary_10_1080_0951192X_2020_1780320 crossref_primary_10_1177_09544089241239309 crossref_primary_10_1039_D4CP04779F crossref_primary_10_1016_j_suscom_2025_101082 crossref_primary_10_1007_s13369_021_05946_4 crossref_primary_10_1093_jcde_qwaf050 crossref_primary_10_1109_TITS_2022_3195605 crossref_primary_10_1007_s00521_021_05703_6 crossref_primary_10_1016_j_eswa_2023_122090 crossref_primary_10_1016_j_ocemod_2024_102391 crossref_primary_10_1038_s41598_025_16539_8 crossref_primary_10_1177_20552076241306272 crossref_primary_10_1016_j_eswa_2022_117562 crossref_primary_10_1016_j_eswa_2023_120905 crossref_primary_10_1155_2021_9925823 crossref_primary_10_1080_15567036_2023_2236081 crossref_primary_10_1016_j_susmat_2022_e00429 crossref_primary_10_1038_s41598_025_02568_w crossref_primary_10_3389_fmed_2023_1330218 crossref_primary_10_1007_s11831_024_10135_1 crossref_primary_10_1007_s11831_022_09817_5 crossref_primary_10_1007_s41939_023_00169_6 crossref_primary_10_1007_s11831_023_10037_8 crossref_primary_10_3389_fnins_2023_1291608 crossref_primary_10_1016_j_asoc_2024_112030 crossref_primary_10_1007_s00521_022_07718_z crossref_primary_10_1002_cpe_7639 crossref_primary_10_1038_s41598_025_02846_7 crossref_primary_10_3390_s20247278 crossref_primary_10_1109_ACCESS_2023_3244067 crossref_primary_10_1016_j_apenergy_2022_119969 crossref_primary_10_1007_s11831_022_09780_1 crossref_primary_10_1016_j_nucengdes_2022_111776 crossref_primary_10_1007_s10586_025_05170_x crossref_primary_10_2174_1574893617666220920102401 crossref_primary_10_3390_pr11051380 crossref_primary_10_1016_j_knosys_2020_106510 crossref_primary_10_1007_s10489_022_03484_6 crossref_primary_10_2166_hydro_2023_039 crossref_primary_10_1186_s43067_024_00146_0 crossref_primary_10_1007_s11666_024_01846_9 crossref_primary_10_1007_s00500_023_08606_x crossref_primary_10_3390_electronics11121919 crossref_primary_10_1109_ACCESS_2022_3145905 crossref_primary_10_1016_j_procs_2024_09_379 crossref_primary_10_1109_ACCESS_2021_3102277 crossref_primary_10_3390_pr11020534 crossref_primary_10_1007_s10489_024_05505_y crossref_primary_10_1155_2023_4577581 crossref_primary_10_3390_biomimetics10060379 crossref_primary_10_3390_s22186826 crossref_primary_10_1007_s10878_024_01179_x crossref_primary_10_1093_jcde_qwae044 crossref_primary_10_1007_s11042_022_12330_3 crossref_primary_10_1007_s11224_024_02411_4 crossref_primary_10_1007_s42044_023_00160_x crossref_primary_10_1007_s00500_023_09473_2 crossref_primary_10_1002_int_22691 crossref_primary_10_1016_j_eswa_2023_122544 crossref_primary_10_1007_s40745_025_00616_w crossref_primary_10_1016_j_oceaneng_2025_122660 crossref_primary_10_3390_su151511510 crossref_primary_10_1155_2021_6622655 crossref_primary_10_3390_app14030995 crossref_primary_10_3390_math12193080 crossref_primary_10_1007_s10489_020_01769_2 crossref_primary_10_1007_s11831_022_09853_1 crossref_primary_10_1016_j_ifacol_2022_08_059 crossref_primary_10_1016_j_est_2024_114320 crossref_primary_10_1016_j_eswa_2022_118439 crossref_primary_10_32604_cmc_2022_020583 crossref_primary_10_1007_s42044_025_00317_w crossref_primary_10_1109_ACCESS_2020_3019445 crossref_primary_10_3390_e23121637 |
| Cites_doi | 10.1109/MEPCON.2016.7836985 10.5539/mas.v13n1p10 10.1109/TENCON.2016.7848076 10.1016/j.epsr.2016.09.025 10.1007/978-981-10-3773-3_7 10.1016/j.jestch.2019.03.005 10.1109/ITCE.2018.8316644 10.1016/j.asoc.2019.03.035 10.1016/j.energy.2018.06.088 10.1016/j.asoc.2019.01.010 10.1177/003754970107600201 10.1016/j.engappai.2017.04.018 10.1016/j.fcij.2018.06.001 10.1016/j.asoc.2017.06.059 10.1007/s41403-018-0034-3 10.1007/s00521-013-1402-2 10.1016/j.apm.2018.07.044 10.1016/j.eswa.2017.11.044 10.1177/0142331217712091 10.3233/JIFS-171001 10.1109/ICSESP.2018.8376686 10.1049/cp.2016.1273 10.1016/B978-0-12-811318-9.00028-4 10.1080/10095020.2017.1399674 10.1504/IJBIC.2019.103606 10.1016/j.aeue.2017.05.010 10.3390/app6010020 10.1109/INDEL.2016.7797803 10.1016/B978-0-08-050684-5.50016-1 10.1109/JCSSE.2016.7748919 10.1007/s10489-016-0810-2 10.1016/j.egypro.2013.07.087 10.1109/CEC.2016.7744378 10.1016/j.biosystems.2017.07.010 10.1007/978-3-540-74089-6_2 10.1007/978-3-642-20859-1 10.1109/ICITECH.2017.8079912 10.3390/e19020052 10.1007/s40998-018-0077-1 10.1016/j.eswa.2017.04.023 10.1007/s00521-016-2794-6 10.3390/sym11070925 10.1016/0360-8352(96)00045-9 10.1109/IntelliSys.2017.8324318 10.1007/s11227-017-2046-2 10.1016/j.enconman.2016.06.052 10.1016/S0031-3203(01)00046-2 10.1007/s11676-017-0555-8 10.4028/www.scientific.net/AEF.28.139 10.1109/JEEIT.2019.8717366 10.1007/s00202-018-0684-x 10.1002/oca.2373 10.1109/MEPCON.2017.8301279 10.1111/j.1540-5915.1977.tb01074.x 10.3233/IDT-170318 10.1016/j.knosys.2015.07.006 10.1016/j.ins.2012.12.043 10.3166/remn.17.103-126 10.3139/120.111024 10.1016/j.aeue.2018.01.017 10.3390/app8112028 10.1016/j.compag.2017.02.026 10.1016/j.asoc.2017.05.057 10.1016/j.patrec.2006.09.003 10.1007/978-3-319-33793-7_21 10.1007/s11721-007-0002-0 10.1007/978-3-319-59427-9_59 10.1109/INISTA.2017.8001138 10.1080/07408170304422 10.1007/978-3-642-00185-7_10 10.1126/science.220.4598.671 10.1057/jors.1993.67 10.1109/TENCON.2016.7848257 10.1109/ICCAIRO.2017.38 10.12989/scs.2017.24.1.129 10.1016/j.yofte.2017.05.018 10.1016/j.engappai.2018.05.003 10.1016/j.swevo.2011.02.001 10.1109/MEPCON.2017.8301340 10.1007/s11042-018-5637-x 10.1007/s11269-018-1992-7 10.1016/j.asoc.2018.10.017 10.1007/s40998-018-0071-7 10.1007/978-981-13-1819-1_48 10.1109/SCEECS.2016.7509293 10.1016/j.neucom.2017.04.060 10.1109/SEST.2018.8495722 10.1016/j.jocs.2017.04.011 10.1007/978-981-10-3770-2_53 10.1109/ACCESS.2018.2868118 10.1007/978-3-319-63315-2_44 10.1080/23311916.2017.1286731 10.3390/electronics7110288 10.1016/j.asoc.2017.02.034 10.1109/MEPCON.2017.8301304 10.1016/j.advengsoft.2017.07.002 10.1111/brv.12036 10.1016/S1672-6529(11)60020-6 10.1007/978-3-030-10674-4 10.1007/s00500-017-2894-y 10.1016/j.compind.2018.03.018 10.1007/s40747-018-0066-z 10.1109/MPS.2017.7974468 10.1109/ICENCO.2015.7416360 10.11591/ijeecs.v1.i3.pp431-445 10.1109/ICIIECS.2017.8276010 10.1007/978-3-319-48490-7_35 10.1109/ICEETS.2016.7583795 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-019-04570-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 9884 |
| ExternalDocumentID | 10_1007_s00521_019_04570_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c372t-92122c7ccacdf7f41c1eb1e388f15c5a2af756a8957e987ab89f4e2819d37faa3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 220 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493504900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 01:28:02 EST 2025 Sat Nov 29 02:59:14 EST 2025 Tue Nov 18 21:28:20 EST 2025 Fri Feb 21 02:35:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Moth–flame optimization Variants of MFO Optimization problems Metaheuristic algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-92122c7ccacdf7f41c1eb1e388f15c5a2af756a8957e987ab89f4e2819d37faa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0211-3503 |
| PQID | 2418453744 |
| PQPubID | 2043988 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2418453744 crossref_citationtrail_10_1007_s00521_019_04570_6 crossref_primary_10_1007_s00521_019_04570_6 springer_journals_10_1007_s00521_019_04570_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Smith T, Villet M (2001) Parasitoids associated with the diamondback moth, plutella xylostella (l.), in the eastern cape, South Africa. In: The management of diamondback moth and other crucifer pests. Proceedings of the fourth international workshop, pp 249–253 BajpaiPKumarMGenetic algorithm-an approach to solve global optimization problemsIndian J Comput Sci Eng201013199206 Shehab M, Khader AT, Al-Betar MA, Abualigah LM (2017b) Hybridizing cuckoo search algorithm with hill climbing for numerical optimization problems. In: 2017 8th international conference on information technology (ICIT). IEEE, pp 36–43 Sulaiman M, Mustaffa Z, Aliman O, Daniyal H, Mohamed M (2016) Application of moth-flame optimization algorithm for solving optimal reactive power dispatch problem 14(2):720–734 BuchHTrivediINJangirPMoth flame optimization to solve optimal power flow with non-parametric statistical evaluation validationCogent Eng201741528542 ShehabMKhaderATLaouchediMAlomariOAHybridizing cuckoo search algorithm with bat algorithm for global numerical optimizationJ Supercomput201875128 AbualigahLMKhaderATHanandehESA combination of objective functions and hybrid krill herd algorithm for text document clustering analysisEng Appl Artif Intell201873111125 MurataTIshibuchiHTanakaHMulti-objective genetic algorithm and its applications to flowshop schedulingComput Ind Eng1996304957968 MekhamerSAbdelazizABadrMAlgabalawyMOptimal multi-criteria design of hybrid power generation systems: a new contributionInt J Comput Appl201512921324 El AzizMAEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256 KaurNRattanMGillSSPerformance optimization of broadwell-y shaped transistor using artificial neural network and moth-flame optimization techniqueMajlesi J Electr Eng20181216169 Upper N, Hemeida AM, Ibrahim A (2017) Moth-flame algorithm and loss sensitivity factor for optimal allocation of shunt capacitor banks in radial distribution systems. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 851–856 Guvenc U, Duman S, Hınıslıoglu Y (2017) Chaotic moth swarm algorithm. In: 2017 IEEE international conference on innovations in intelligent systems and applications (INISTA). IEEE, pp 90–95 Muangkote N, Sunat K, Chiewchanwattana S (2016) Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In: 2016 13th international joint conference on computer science and software engineering (JCSSE). IEEE, pp 1–6 Sayed GI, Soliman M, Hassanien AE (2016b) Bio-inspired swarm techniques for thermogram breast cancer detection. In: Medical imaging in clinical applications, vol 4. Springer, pp 487–506 WangMChenHYangBZhaoXHuLCaiZHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984 EbrahimMBecherifMAbdelazizAYDynamic performance enhancement for wind energy conversion system using moth-flame optimization based blade pitch controllerSustain Energy Technol Assess201827206212 Bhesdadiya R, Trivedi IN, Jangir P, Jangir N (2018) Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences. Springer, pp 61–68 BhadoriaAKambojVKSharmaMBathSA solution to non-convex/convex and dynamic economic load dispatch problem using moth flame optimizerINAE Lett2018326586 CanitoJRamosPMoroSRitaPUnfolding the relations between companies and technologies under the big data umbrellaComput Ind20189918 TrivediINJangirPParmarSAJangirNOptimal power flow with voltage stability improvement and loss reduction in power system using moth-flame optimizerNeural Comput Appl201830618891904 EibenAESmitSKParameter tuning for configuring and analyzing evolutionary algorithmsSwarm Evol Comput2011111931 Yang X, Luo Q, Zhang J, Wu X, Zhou Y (2017b) Moth swarm algorithm for clustering analysis. In: International conference on intelligent computing. Springer, pp 503–514 Blum C, Li X (2008) Swarm intelligence in optimization. In: Swarm intelligence. Springer, pp 43–85 ShahYAHabibHAAadilFKhanMFMaqsoodMNawazTCamonet: moth-flame optimization (MFO) based clustering algorithm for vanetsIEEE Access201864861148624 SinghPPrakashSOptical network unit placement in fiber-wireless (fiwi) access network by moth-flame optimization algorithmOptical Fiber Technol201736403411 MohantyBPerformance analysis of moth flame optimization algorithm for agc systemInt J Model Simul201842115 LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng201182191200 DiabAAZRezkHOptimal sizing and placement of capacitors in radial distribution systems based on grey wolf, dragonfly and moth-flame optimization algorithmsIran J Sci Technol Trans Electr Eng20194317796 Sayed GI, Hassanien AE, Nassef TM, Pan JS (2016a) Alzheimer’s disease diagnosis based on moth flame optimization. In: International conference on genetic and evolutionary computing. Springer, pp 298–305 MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191 AbualigahLMKhaderATHanandehESA hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering 1Intell Decis Technol2018121314 KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162 ZhouYYangXLingYZhangJMeta-heuristic moth swarm algorithm for multilevel thresholding image segmentationMultimed Tools Appl201877182369923727 HeidariAMoayediAAbbaspourRAEstimating origin-destination matrices using an efficient moth flame-based spatial clustering approachInt Arch Photogram Rem Sens Spatial Inf Sci201742102112 SavsaniVTawhidMANon-dominated sorting moth flame optimization (ns-mfo) for multi-objective problemsEng Appl Artif Intell2017632032 ZhaoHZhaoHGuoSUsing gm (1, 1) optimized by mfo with rolling mechanism to forecast the electricity consumption of inner mongoliaAppl Sci20166120 LiWKWangWLLiLOptimization of water resources utilization by multi-objective moth-flame algorithmWater Resour Manag20183233033316 MeiRNSSulaimanMHMustaffaZDaniyalHOptimal reactive power dispatch solution by loss minimization using moth-flame optimization techniqueAppl Soft Comput201759210222 MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249 Ceylan O, Paudyal S (2017) Optimal capacitor placement and sizing considering load profile variations using moth-flame optimization algorithm. In: 2017 international conference on modern power systems (MPS). IEEE, pp 1–6 Gope S, Dawn S, Goswami AK, Tiwari PK (2016) Moth flame optimization based optimal bidding strategy under transmission congestion in deregulated power market. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 617–621 ZhengJLuCGaoLMulti-objective cellular particle swarm optimization for wellbore trajectory designAppl Soft Comput201977106117 FaustoFCuevasEValdiviaAGonzálezAA global optimization algorithm inspired in the behavior of selfish herdsBiosystems20171603955 SapreSMiniSOptimized relay nodes positioning to achieve full connectivity in wireless sensor networksWirel Pers Commun2018114120 JangirPOptimal power flow using a hybrid particle swarm optimizer with moth flame optimizerGlobal J Res Eng201717524542 Abd el sattar S, Kamel S, Ebeed M (2016) Enhancing security of power systems including SSSC using moth-flame optimization algorithm. In: 2016 eighteenth international middle east power systems conference (MEPCON). IEEE, pp 797–802 HazirEErdinlerESKocKHOptimization of cnc cutting parameters using design of experiment (doe) and desirability functionJ For Res201829514231434 SinghUSinghSNA new optimal feature selection scheme for classification of power quality disturbances based on ant colony frameworkAppl Soft Comput201974216225 DuPWangJYangWNiuTA novel hybrid model for short-term wind power forecastingApplied Soft Computing201939193106 HassanienAEGaberTMokhtarUHefnyHAn improved moth flame optimization algorithm based on rough sets for tomato diseases detectionComput Electron Agric20171368696 Shehab M, Daoud MS, AlMimi HM, Abualigah LM, Khader AT (2019a) Hybridizing cuckoo search algorithm for extracting the ODF maxima in spherical harmonic representation. Int J Bio-Inspired Comput (in press) AbualigahLMQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer GloverFHeuristics for integer programming using surrogate constraintsDecis Sci197781156166 KhalilpourazariSKhalilpourazarySAn efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problemsSoft Comput201923516991722 YousriDAbdelAtyAMSaidLAAboBakrARadwanAGBiological inspired optimization algorithms for cole-impedance parameters identificationAEU-Int J Electron Commun2017787989 ReevesCRImproving the efficiency of tabu search for machine sequencing problemsJ Oper Res Soc19934443753820775.90238 GuoLWangGGWangHWangDAn effective hybrid firefly algorithm with harmony search for global numerical optimizationSci World J2013133044 Said S, Mostafa A, Houssein EH, Hassanien AE, Hefny H (2017) Moth-flame optimization based segmentation for MRI liver images. In: International conference on advanced intelligent systems and informatics. Springer, pp 320–330 Kulturel-KonakSSmithAECoitDWEfficiently solving the redundancy allocation problem using tabu searchIIE Trans2003356515526 TolbaMADiabAAZTulskyVNAbdelazizAYLvci approach for optimal allocation of distributed generations and capacitor banks in distribution grids based on moth-flame optimization algorithmElectr Eng2018100320592084 Jangir N, Pandya MH, Trivedi IN, Bhesdadiya R, Jangir P, Kumar A (2016) Moth-flame optimization algorithm for solving real challenging constrained engineering opti S Sapre (4570_CR96) 2018; 11 F Fausto (4570_CR42) 2017; 160 4570_CR48 C Li (4570_CR68) 2016; 45 AA Elsakaan (4570_CR39) 2018; 28 4570_CR47 S Kulturel-Konak (4570_CR66) 2003; 35 P Singh (4570_CR114) 2017; 36 4570_CR40 M Shehab (4570_CR111) 2018; 75 4570_CR41 B Mohanty (4570_CR82) 2018; 39 YA Shah (4570_CR104) 2018; 6 P Du (4570_CR34) 2019; 39 4570_CR9 RNS Mei (4570_CR74) 2017; 59 A Das (4570_CR30) 2018; 86 H Buch (4570_CR23) 2017; 4 AAZ Diab (4570_CR33) 2019; 43 LM Abualigah (4570_CR7) 2018; 12 S Koziel (4570_CR65) 2011 AAA Mohamed (4570_CR80) 2017; 142 MA El Aziz (4570_CR37) 2017; 83 X Lai (4570_CR67) 2018; 8 CR Reeves (4570_CR90) 1993; 44 M Ebrahim (4570_CR35) 2018; 27 4570_CR102 4570_CR31 ZW Geem (4570_CR44) 2001; 76 WK Li (4570_CR69) 2018; 32 P Bajpai (4570_CR16) 2010; 1 AE Eiben (4570_CR36) 2011; 1 Z Li (4570_CR71) 2016; 16 M Shehab (4570_CR106) 2016; 136 A Dhyani (4570_CR32) 2018; 42 A Heidari (4570_CR53) 2017; 42 K Kamalapathi (4570_CR59) 2018; 7 B Mohanty (4570_CR81) 2018; 4 S Reddy (4570_CR89) 2018; 25 KJ Gaston (4570_CR43) 2013; 88 4570_CR112 J Canito (4570_CR24) 2018; 99 4570_CR113 Y Li (4570_CR70) 2019; 11 GI Sayed (4570_CR101) 2018; 4 Y Liu (4570_CR72) 2011; 8 RNS Mei (4570_CR75) 2018; 10 R Poli (4570_CR88) 2007; 1 4570_CR108 4570_CR109 4570_CR103 D Allam (4570_CR11) 2016; 123 J Holland (4570_CR54) 1975; 3 S Kirkpatrick (4570_CR64) 1983; 220 IN Trivedi (4570_CR122) 2018; 30 F Glover (4570_CR46) 1977; 8 4570_CR57 M Shehab (4570_CR107) 2017; 61 4570_CR121 4570_CR123 4570_CR56 S Khalilpourazari (4570_CR62) 2019; 23 LM Abualigah (4570_CR5) 2017; 60 U Adeec (4570_CR10) 2000; 51 4570_CR50 N Kaur (4570_CR60) 2018; 12 4570_CR119 H Zhang (4570_CR135) 2002; 35 4570_CR116 J Zhang (4570_CR136) 2018; 34 A Bhadoria (4570_CR19) 2018; 3 I Strumberger (4570_CR118) 2018; 3 BS Yıldız (4570_CR132) 2017; 59 H Zhao (4570_CR137) 2016; 6 R Salgotra (4570_CR95) 2018; 95 GM Soliman (4570_CR117) 2016; 5 AA Elsakaan (4570_CR38) 2018; 157 4570_CR134 4570_CR86 4570_CR84 4570_CR130 4570_CR131 J Kennedy (4570_CR61) 2010; 12 4570_CR83 LMQ Abualigah (4570_CR8) 2019 S Mekhamer (4570_CR76) 2015; 129 M Wang (4570_CR125) 2017; 267 4570_CR127 J Zheng (4570_CR138) 2019; 77 4570_CR128 DW Zingg (4570_CR140) 2008; 17 E Hazir (4570_CR52) 2018; 29 W Yang (4570_CR129) 2017; 19 P Jangir (4570_CR58) 2017; 17 B Bentouati (4570_CR18) 2016; 1 MKY Shambour (4570_CR105) 2019; 11 M Anfal (4570_CR14) 2017; 65 MA Tolba (4570_CR120) 2018; 100 T Murata (4570_CR85) 1996; 30 V Savsani (4570_CR100) 2017; 63 R Barham (4570_CR17) 2018; 13 L Huang (4570_CR55) 2019; 41 P Anbarasan (4570_CR13) 2017; 12 A Darwish (4570_CR29) 2018; 3 X Wang (4570_CR126) 2007; 28 4570_CR28 Y Zhou (4570_CR139) 2018; 77 S Amini (4570_CR12) 2018; 21 4570_CR26 L Guo (4570_CR49) 2013; 13 LM Abualigah (4570_CR6) 2018; 73 4570_CR27 4570_CR25 4570_CR22 4570_CR20 4570_CR21 A Milad (4570_CR77) 2013; 2 J Luo (4570_CR73) 2018; 64 A Ouaarab (4570_CR87) 2014; 24 S Mirjalili (4570_CR79) 2017; 114 Q Bai (4570_CR15) 2010; 3 S Khalilpourazari (4570_CR63) 2017; 34 S Gholizadeh (4570_CR45) 2017; 24 4570_CR99 D Yousri (4570_CR133) 2017; 78 4570_CR2 4570_CR97 AE Hassanien (4570_CR51) 2017; 136 4570_CR98 M Shehab (4570_CR110) 2018; 17 4570_CR1 4570_CR93 4570_CR94 4570_CR91 4570_CR92 S Mirjalili (4570_CR78) 2015; 89 LM Abualigah (4570_CR4) 2017; 73 L Wang (4570_CR124) 2013; 232 C Abdelmadjid (4570_CR3) 2013; 36 U Singh (4570_CR115) 2019; 74 |
| References_xml | – reference: GastonKJBennieJDaviesTWHopkinsJThe ecological impacts of nighttime light pollution: a mechanistic appraisalBiol Rev2013884912927 – reference: MohantyBPerformance analysis of moth flame optimization algorithm for agc systemInt J Model Simul201842115 – reference: YıldızBSYıldızARMoth-flame optimization algorithm to determine optimal machining parameters in manufacturing processesMater Test2017595425429 – reference: Yang X, Luo Q, Zhang J, Wu X, Zhou Y (2017b) Moth swarm algorithm for clustering analysis. In: International conference on intelligent computing. Springer, pp 503–514 – reference: EibenAESmitSKParameter tuning for configuring and analyzing evolutionary algorithmsSwarm Evol Comput2011111931 – reference: Sayed GI, Soliman M, Hassanien AE (2016b) Bio-inspired swarm techniques for thermogram breast cancer detection. In: Medical imaging in clinical applications, vol 4. Springer, pp 487–506 – reference: SolimanGMKhorshidMMAbou-El-EnienTHModified moth-flame optimization algorithms for terrorism predictionInt J Appl Innov Eng Manag201654758 – reference: SinghUSinghSNA new optimal feature selection scheme for classification of power quality disturbances based on ant colony frameworkAppl Soft Comput201974216225 – reference: Jain P, Saxena A (2019) An opposition theory enabled moth flame optimizer for strategic bidding in uniform spot energy market. Eng Sci Technol Int J – reference: AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomput2017731147734795 – reference: Mostafa E, Abdel-Nasser M, Mahmoud K (2017) Performance evaluation of metaheuristic optimization methods with mutation operators for combined economic and emission dispatch. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 1004–1009 – reference: DuPWangJYangWNiuTA novel hybrid model for short-term wind power forecastingApplied Soft Computing201939193106 – reference: GholizadehSDavoudiHFattahiFDesign of steel frames by an enhanced moth-flame optimization algorithmSteel Compos Struct2017241129140 – reference: Saikia LC, Saha D (2016) Automatic generation control in competitive market conditions with moth-flame optimization based cascade controller. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 734–738 – reference: AnbarasanPJayabarathiTOptimal reactive power dispatch using moth-flame optimization algorithmInt J Appl Eng Res2017121336903701 – reference: KaurNRattanMGillSSPerformance optimization of broadwell-y shaped transistor using artificial neural network and moth-flame optimization techniqueMajlesi J Electr Eng20181216169 – reference: GuoLWangGGWangHWangDAn effective hybrid firefly algorithm with harmony search for global numerical optimizationSci World J2013133044 – reference: ZhouYYangXLingYZhangJMeta-heuristic moth swarm algorithm for multilevel thresholding image segmentationMultimed Tools Appl201877182369923727 – reference: KhalilpourazariSKhalilpourazarySAn efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problemsSoft Comput201923516991722 – reference: LiYLiXLiuJRuanXAn improved bat algorithm based on lévy flights and adjustment factorsSymmetry2019117925 – reference: DasAMandalDGhoshalSKarRConcentric circular antenna array synthesis for side lobe suppression using moth flame optimizationAEU-Int J Electron Commun201886177184 – reference: Zawbaa HM, Emary E, Parv B, Sharawi M (2016) Feature selection approach based on moth-flame optimization algorithm. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 4612–4617 – reference: GloverFHeuristics for integer programming using surrogate constraintsDecis Sci197781156166 – reference: LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng201182191200 – reference: ElsakaanAAEl-SehiemyRAKaddahSSElsaidMIAn enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissionsEnergy201815710631078 – reference: Gope S, Dawn S, Goswami AK, Tiwari PK (2016) Moth flame optimization based optimal bidding strategy under transmission congestion in deregulated power market. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 617–621 – reference: LuoJChenHXuYHuangHZhaoXAn improved grasshopper optimization algorithm with application to financial stress predictionAppl Math Model201864654668385524307183313 – reference: ReevesCRImproving the efficiency of tabu search for machine sequencing problemsJ Oper Res Soc19934443753820775.90238 – reference: SinghPPrakashSOptical network unit placement in fiber-wireless (fiwi) access network by moth-flame optimization algorithmOptical Fiber Technol201736403411 – reference: ZhangJZhouYLuoQAn improved sine cosine water wave optimization algorithm for global optimizationJ Intell Fuzzy Syst201834421292141 – reference: AdeecUTime complexity of genetic algorithms on exponentially scaled problemsUrbana20005161801 – reference: BarhamRShariehASleitAMoth flame optimization based on golden section search and its application for link prediction problemMod Appl Sci20181311027 – reference: Ceylan O, Paudyal S (2017) Optimal capacitor placement and sizing considering load profile variations using moth-flame optimization algorithm. In: 2017 international conference on modern power systems (MPS). IEEE, pp 1–6 – reference: Ceylan O (2016) Harmonic elimination of multilevel inverters by moth-flame optimization algorithm. In: 2016 international symposium on industrial electronics (INDEL). IEEE, pp 1–5 – reference: Sahu A, Hota SK (2018) Performance comparison of 2-DOF PID controller based on moth-flame optimization technique for load frequency control of diverse energy source interconnected power system. In: 2018 technologies for smart-city energy security and power (ICSESP). IEEE, pp 1–6 – reference: SavsaniVTawhidMANon-dominated sorting moth flame optimization (ns-mfo) for multi-objective problemsEng Appl Artif Intell2017632032 – reference: Smith T, Villet M (2001) Parasitoids associated with the diamondback moth, plutella xylostella (l.), in the eastern cape, South Africa. In: The management of diamondback moth and other crucifer pests. Proceedings of the fourth international workshop, pp 249–253 – reference: Chauhan SS, Kotecha P (2016) Single level production planning in petrochemical industries using moth-flame optimization. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 263–266 – reference: HazirEErdinlerESKocKHOptimization of cnc cutting parameters using design of experiment (doe) and desirability functionJ For Res201829514231434 – reference: MeiRNSSulaimanMHMustaffaZDaniyalHOptimal reactive power dispatch solution by loss minimization using moth-flame optimization techniqueAppl Soft Comput201759210222 – reference: MurataTIshibuchiHTanakaHMulti-objective genetic algorithm and its applications to flowshop schedulingComput Ind Eng1996304957968 – reference: KamalapathiKPriyadarshiNPadmanabanSHolm-NielsenJAzamFUmayalCRamachandaramurthyVA hybrid moth-flame fuzzy logic controller based integrated cuk converter fed brushless dc motor for power factor correctionElectronics2018711288 – reference: Jangir N, Pandya MH, Trivedi IN, Bhesdadiya R, Jangir P, Kumar A (2016) Moth-flame optimization algorithm for solving real challenging constrained engineering optimization problems. In: 2016 IEEE students’ conference on electrical, electronics and computer science (SCEECS). IEEE, pp 1–5 – reference: BaiQAnalysis of particle swarm optimization algorithmComput Inf Sci201031180 – reference: ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEur J Comput Mech/Revue Eur Méc Numér2008171–21031261292.76062 – reference: BajpaiPKumarMGenetic algorithm-an approach to solve global optimization problemsIndian J Comput Sci Eng201013199206 – reference: ShehabMKhaderATAl-BetarMNew selection schemes for particle swarm optimizationIEEJ Trans Electron Inf Syst20161361217061711 – reference: ShahYAHabibHAAadilFKhanMFMaqsoodMNawazTCamonet: moth-flame optimization (MFO) based clustering algorithm for vanetsIEEE Access201864861148624 – reference: JangirPOptimal power flow using a hybrid particle swarm optimizer with moth flame optimizerGlobal J Res Eng201717524542 – reference: Abd el sattar S, Kamel S, Ebeed M (2016) Enhancing security of power systems including SSSC using moth-flame optimization algorithm. In: 2016 eighteenth international middle east power systems conference (MEPCON). IEEE, pp 797–802 – reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation20017626068 – reference: Sayed GI, Hassanien AE, Nassef TM, Pan JS (2016a) Alzheimer’s disease diagnosis based on moth flame optimization. In: International conference on genetic and evolutionary computing. Springer, pp 298–305 – reference: Bhesdadiya R, Trivedi IN, Jangir P, Kumar A, Jangir N, Totlani R (2017) A novel hybrid approach particle swarm optimizer with moth-flame optimizer algorithm. In: Advances in computer and computational sciences. Springer, pp 569–577 – reference: DarwishABio-inspired computing: algorithms review, deep analysis, and the scope of applicationsFuture Comput Inform J2018322312463751622 – reference: MohantyBAcharyuluBHotaPMoth-flame optimization algorithm optimized dual-mode controller for multiarea hybrid sources AGC systemOpt Control Appl Methods201839272073437969611393.90131 – reference: Trivedi I, Kumar A, Ranpariya AH, Jangir P (2016) Economic load dispatch problem with ramp rate limits and prohibited operating zones solve using Levy flight moth-flame optimizer. In: 2016 international conference on energy efficient technologies for sustainability (ICEETS). IEEE, pp 442–447 – reference: ZhaoHZhaoHGuoSUsing gm (1, 1) optimized by mfo with rolling mechanism to forecast the electricity consumption of inner mongoliaAppl Sci20166120 – reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm intell2007113357 – reference: BentouatiBChaibLChettihSOptimal power flow using the moth flam optimizer: a case study of the algerian power systemIndones J Electr Eng Comput Sci201613431445 – reference: FaustoFCuevasEValdiviaAGonzálezAA global optimization algorithm inspired in the behavior of selfish herdsBiosystems20171603955 – reference: HassanienAEGaberTMokhtarUHefnyHAn improved moth flame optimization algorithm based on rough sets for tomato diseases detectionComput Electron Agric20171368696 – reference: Blum C, Li X (2008) Swarm intelligence in optimization. In: Swarm intelligence. Springer, pp 43–85 – reference: Shehab M, Khader AT, Al-Betar MA, Abualigah LM (2017b) Hybridizing cuckoo search algorithm with hill climbing for numerical optimization problems. In: 2017 8th international conference on information technology (ICIT). IEEE, pp 36–43 – reference: ZhengJLuCGaoLMulti-objective cellular particle swarm optimization for wellbore trajectory designAppl Soft Comput201977106117 – reference: Ewees AA, Sahlol AT, Amasha MA (2017) A bio-inspired moth-flame optimization algorithm for Arabic handwritten letter recognition. In: 2017 international conference on control, artificial intelligence, robotics & optimization (ICCAIRO). IEEE, pp 154–159 – reference: Yamany W, Fawzy M, Tharwat A, Hassanien AE (2015) Moth-flame optimization for training multi-layer perceptrons. In: 2015 11th international computer engineering conference (ICENCO). IEEE, pp 267–272 – reference: Acharyulu B, Mohanty B, Hota P (2019) Comparative performance analysis of pid controller with filter for automatic generation control with moth-flame optimization algorithm. In: Applications of artificial intelligence techniques in engineering. Springer, pp 509–518 – reference: AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput201760423435 – reference: ShambourMKYAdaptive multi-crossover evolutionary algorithm for real-world optimisation problemsInt J Reason-Based Intell Syst2019111110 – reference: StrumbergerISaracMMarkovicDBacaninNMoth search algorithm for drone placement problemInt J Comput201837580 – reference: Sarma A, Bhutani A, Goel L (2017) Hybridization of moth flame optimization and gravitational search algorithm and its application to detection of food quality. In: 2017 intelligent systems conference (IntelliSys). IEEE, pp 52–60 – reference: Dhiman R (2018) Moth-flame optimization technique for optimal coordination of directional overcurrent relay system. Ph.D. thesis – reference: KennedyJParticle swarm optimizationEncycl Mach Learn201012760766 – reference: Bhesdadiya R, Trivedi IN, Jangir P, Jangir N (2018) Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences. Springer, pp 61–68 – reference: YangWWangJWangRResearch and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecastingEntropy201719252 – reference: AnfalMAbdelhafidHOptimal placement of PMUS in Algerian network using a hybrid particle swarm-moth flame optimizer (PSO-MFO)Electroteh Electron Autom2017653191196 – reference: AbualigahLMKhaderATHanandehESA hybrid strategy for krill herd algorithm with harmony search algorithm to improve the data clustering 1Intell Decis Technol2018121314 – reference: TrivediINJangirPParmarSAJangirNOptimal power flow with voltage stability improvement and loss reduction in power system using moth-flame optimizerNeural Comput Appl201830618891904 – reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191 – reference: KozielSYangXSComputational optimization, methods and algorithms,2011BerlinSpringer1217.90006 – reference: DhyaniAPandaMKJhaBMoth-flame optimization-based fuzzy-pid controller for optimal control of active magnetic bearing systemIran J Sci Technol Trans Electr Eng2018424451463 – reference: ReddySPanwarLKPanigrahiBKKumarRSolution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): a flame selection based computational techniqueJ Comput Sci2018252983173786225 – reference: SayedGIHassanienAEA hybrid SA-MFO algorithm for function optimization and engineering design problemsComplex Intell Syst201843195212 – reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249 – reference: WangLYangRXuYNiuQPardalosPMFeiMAn improved adaptive binary harmony search algorithmInf Sci201323258873036641 – reference: Said S, Mostafa A, Houssein EH, Hassanien AE, Hefny H (2017) Moth-flame optimization based segmentation for MRI liver images. In: International conference on advanced intelligent systems and informatics. Springer, pp 320–330 – reference: Shehab M, Khader AT, Laouchedi M (2017c) Modified cuckoo search algorithm for solving global optimization problems. In: International conference of reliable information and communication technology. Springer, pp 561–570 – reference: HuangLYangBZhangXYinLYuTFangZOptimal power tracking of doubly fed induction generator-based wind turbine using swarm moth-flame optimizerTrans Inst Meas Control201941614911503 – reference: MekhamerSAbdelazizABadrMAlgabalawyMOptimal multi-criteria design of hybrid power generation systems: a new contributionInt J Comput Appl201512921324 – reference: WangMChenHYangBZhaoXHuLCaiZHuangHTongCToward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnosesNeurocomputing20172676984 – reference: SapreSMiniSOptimized relay nodes positioning to achieve full connectivity in wireless sensor networksWirel Pers Commun2018114120 – reference: Abdel-mawgoud H, Kamel S, Ebeed M, Youssef AR (2017) Optimal allocation of renewable dg sources in distribution networks considering load growth. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 1236–1241 – reference: YousriDAbdelAtyAMSaidLAAboBakrARadwanAGBiological inspired optimization algorithms for cole-impedance parameters identificationAEU-Int J Electron Commun2017787989 – reference: AbualigahLMKhaderATHanandehESA combination of objective functions and hybrid krill herd algorithm for text document clustering analysisEng Appl Artif Intell201873111125 – reference: EbrahimMBecherifMAbdelazizAYDynamic performance enhancement for wind energy conversion system using moth-flame optimization based blade pitch controllerSustain Energy Technol Assess201827206212 – reference: WangXYangJTengXXiaWJensenRFeature selection based on rough sets and particle swarm optimizationPattern Recogn Lett2007284459471 – reference: Shehab M, Daoud MS, AlMimi HM, Abualigah LM, Khader AT (2019a) Hybridizing cuckoo search algorithm for extracting the ODF maxima in spherical harmonic representation. Int J Bio-Inspired Comput (in press) – reference: MeiRNSSulaimanMHDaniyalHMustaffaZApplication of moth-flame optimizer and ant lion optimizer to solve optimal reactive power dispatch problemsJ Telecommun Electron Comput Eng2018101–2105110 – reference: BuchHTrivediINJangirPMoth flame optimization to solve optimal power flow with non-parametric statistical evaluation validationCogent Eng201741528542 – reference: SalgotraRSinghUSahaSNew cuckoo search algorithms with enhanced exploration and exploitation propertiesExpert Syst Appl201895384420 – reference: AbdelmadjidCMohamedSABoussadBCfd analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressorEnergy Procedia201336746755 – reference: TolbaMADiabAAZTulskyVNAbdelazizAYLvci approach for optimal allocation of distributed generations and capacitor banks in distribution grids based on moth-flame optimization algorithmElectr Eng2018100320592084 – reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162 – reference: Saurav S, Gupta VK, Mishra SK (2017) Moth-flame optimization based algorithm for facts devices allocation in a power system. In: 2017 international conference on innovations in information, embedded and communication systems (ICIIECS). IEEE, pp 1–7 – reference: Sulaiman M, Mustaffa Z, Aliman O, Daniyal H, Mohamed M (2016) Application of moth-flame optimization algorithm for solving optimal reactive power dispatch problem 14(2):720–734 – reference: BhadoriaAKambojVKSharmaMBathSA solution to non-convex/convex and dynamic economic load dispatch problem using moth flame optimizerINAE Lett2018326586 – reference: Kulturel-KonakSSmithAECoitDWEfficiently solving the redundancy allocation problem using tabu searchIIE Trans2003356515526 – reference: KhalilpourazariSPasandidehSHRMulti-item eoq model with nonlinear unit holding cost and partial backordering: moth-flame optimization algorithmJ Ind Prod Eng20173414251 – reference: AllamDYousriDEteibaMParameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithmEnergy Convers Manag2016123535548 – reference: OuaarabAAhiodBYangXSDiscrete cuckoo search algorithm for the travelling salesman problemNeural Comput Appl2014247–816591669 – reference: Wright AH (1991) Genetic algorithms for real parameter optimization. In: Foundations of genetic algorithms, vol 1. Elsevier, pp 205–218 – reference: Muangkote N, Sunat K, Chiewchanwattana S (2016) Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In: 2016 13th international joint conference on computer science and software engineering (JCSSE). IEEE, pp 1–6 – reference: AbualigahLMQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer – reference: MiladAHarmony search algorithm: strengths and weaknessesJ Comput Eng Inf Technol20132117 – reference: Nanda SJ et al (2016) Multi-objective moth flame optimization. In: 2016 international conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 2470–2476 – reference: Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214 – reference: ShehabMKhaderATAl-BetarMAA survey on applications and variants of the cuckoo search algorithmAppl Soft Comput20176110411059 – reference: LiCLiSLiuYA least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecastingAppl Intell201645411661178 – reference: Guvenc U, Duman S, Hınıslıoglu Y (2017) Chaotic moth swarm algorithm. In: 2017 IEEE international conference on innovations in intelligent systems and applications (INISTA). IEEE, pp 90–95 – reference: HeidariAMoayediAAbbaspourRAEstimating origin-destination matrices using an efficient moth flame-based spatial clustering approachInt Arch Photogram Rem Sens Spatial Inf Sci201742102112 – reference: LaiXQiaoDZhengYZhouLA fuzzy state-of-charge estimation algorithm combining ampere-hour and an extended kalman filter for li-ion batteries based on multi-model global identificationAppl Sci20188112028 – reference: Shehab M, Khader AT, Alia MA (2019b) Enhancing cuckoo search algorithm by using reinforcement learning for constrained engineering optimization problems. In: 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT). IEEE, pp 812–816 – reference: Faris H, Aljarah I, Mirjalili S (2017) Evolving radial basis function networks using moth–flame optimizer. In: Handbook of neural computation, vol 28. Elsevier, pp 537–550 – reference: Gope S, Dawn S, Goswami AK, Tiwari PK (2016) Profit maximization with integration of wind farm in contingency constraint deregulated power market using moth flame optimization algorithm. In: 2016 IEEE region 10 conference (TENCON). IEEE, pp 1462–1466 – reference: Upper N, Hemeida AM, Ibrahim A (2017) Moth-flame algorithm and loss sensitivity factor for optimal allocation of shunt capacitor banks in radial distribution systems. In: 2017 nineteenth international middle east power systems conference (MEPCON). IEEE, pp 851–856 – reference: LiWKWangWLLiLOptimization of water resources utilization by multi-objective moth-flame algorithmWater Resour Manag20183233033316 – reference: DiabAAZRezkHOptimal sizing and placement of capacitors in radial distribution systems based on grey wolf, dragonfly and moth-flame optimization algorithmsIran J Sci Technol Trans Electr Eng20194317796 – reference: ZhangHSunGFeature selection using tabu search methodPattern Recogn20023537017110999.68231 – reference: AminiSHomayouniSSafariADarvishsefatAAObject-based classification of hyperspectral data using random forest algorithmGeo-spatial Inf Sci2018212127138 – reference: ShehabMKhaderALaouchediMA hybrid method based on cuckoo search algorithm for global optimization problemsJ Inf Commun Technol2018173469491 – reference: CanitoJRamosPMoroSRitaPUnfolding the relations between companies and technologies under the big data umbrellaComput Ind20189918 – reference: Ceylan H, Ceylan H (2009) Harmony search algorithm for transport energy demand modeling. In: Music-inspired harmony search algorithm. Springer, pp 163–172 – reference: ElsakaanAAEl-SehiemyRAAKaddahSSElsaidMIEconomic power dispatch with emission constraint and valve point loading effect using moth flame optimization algorithmAdv Eng Forum Trans Tech Publ201828139149 – reference: Saleh AA, Mohamed AAA, Hemeida AM, Ibrahim AA (2018) Comparison of different optimization techniques for optimal allocation of multiple distribution generation. In: 2018 international conference on innovative trends in computer engineering (ITCE). IEEE, pp 317–323 – reference: Abdel-mawgoud H, Kamel S, Tostado M, Yu J, Jurado F (2018) Optimal installation of multiple dg using chaotic moth-flame algorithm and real power loss sensitivity factor in distribution system. In: 2018 international conference on smart energy systems and technologies (SEST), IEEE. pp 1–5 – reference: LiZZhouYZhangSSongJLévy-flight moth-flame algorithm for function optimization and engineering design problemsMath Probl Eng201616123 – reference: ShehabMKhaderATLaouchediMAlomariOAHybridizing cuckoo search algorithm with bat algorithm for global numerical optimizationJ Supercomput201875128 – reference: HollandJAdaptation in natural and artificial systems: an introductory analysis with application to biologyControl Artif Intell19753115 – reference: MohamedAAAMohamedYSEl-GaafaryAAHemeidaAMOptimal power flow using moth swarm algorithmElectr Power Syst Res2017142190206 – reference: El AzizMAEweesAAHassanienAEWhale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentationExpert Syst Appl201783242256 – ident: 4570_CR92 – ident: 4570_CR98 doi: 10.1109/MEPCON.2016.7836985 – volume: 4 start-page: 1 issue: 2 year: 2018 ident: 4570_CR81 publication-title: Int J Model Simul – volume: 13 start-page: 10 issue: 1 year: 2018 ident: 4570_CR17 publication-title: Mod Appl Sci doi: 10.5539/mas.v13n1p10 – volume: 34 start-page: 42 issue: 1 year: 2017 ident: 4570_CR63 publication-title: J Ind Prod Eng – ident: 4570_CR31 – volume: 1 start-page: 199 issue: 3 year: 2010 ident: 4570_CR16 publication-title: Indian J Comput Sci Eng – ident: 4570_CR47 doi: 10.1109/TENCON.2016.7848076 – volume: 142 start-page: 190 year: 2017 ident: 4570_CR80 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2016.09.025 – ident: 4570_CR28 – volume: 3 start-page: 75 year: 2018 ident: 4570_CR118 publication-title: Int J Comput – ident: 4570_CR21 doi: 10.1007/978-981-10-3773-3_7 – ident: 4570_CR56 doi: 10.1016/j.jestch.2019.03.005 – ident: 4570_CR94 doi: 10.1109/ITCE.2018.8316644 – volume: 39 start-page: 93 issue: 1 year: 2019 ident: 4570_CR34 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.03.035 – volume: 157 start-page: 1063 year: 2018 ident: 4570_CR38 publication-title: Energy doi: 10.1016/j.energy.2018.06.088 – volume: 77 start-page: 106 year: 2019 ident: 4570_CR138 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.01.010 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 4570_CR44 publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 63 start-page: 20 year: 2017 ident: 4570_CR100 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.04.018 – volume: 3 start-page: 231 issue: 2 year: 2018 ident: 4570_CR29 publication-title: Future Comput Inform J doi: 10.1016/j.fcij.2018.06.001 – volume: 11 start-page: 1 issue: 4 year: 2018 ident: 4570_CR96 publication-title: Wirel Pers Commun – volume: 10 start-page: 105 issue: 1–2 year: 2018 ident: 4570_CR75 publication-title: J Telecommun Electron Comput Eng – volume: 60 start-page: 423 year: 2017 ident: 4570_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.059 – volume: 3 start-page: 65 issue: 2 year: 2018 ident: 4570_CR19 publication-title: INAE Lett doi: 10.1007/s41403-018-0034-3 – volume: 24 start-page: 1659 issue: 7–8 year: 2014 ident: 4570_CR87 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1402-2 – volume: 64 start-page: 654 year: 2018 ident: 4570_CR73 publication-title: Appl Math Model doi: 10.1016/j.apm.2018.07.044 – volume: 95 start-page: 384 year: 2018 ident: 4570_CR95 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.11.044 – volume: 41 start-page: 1491 issue: 6 year: 2019 ident: 4570_CR55 publication-title: Trans Inst Meas Control doi: 10.1177/0142331217712091 – volume: 34 start-page: 2129 issue: 4 year: 2018 ident: 4570_CR136 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-171001 – ident: 4570_CR91 doi: 10.1109/ICSESP.2018.8376686 – volume: 16 start-page: 1 year: 2016 ident: 4570_CR71 publication-title: Math Probl Eng – ident: 4570_CR119 doi: 10.1049/cp.2016.1273 – ident: 4570_CR41 doi: 10.1016/B978-0-12-811318-9.00028-4 – volume: 21 start-page: 127 issue: 2 year: 2018 ident: 4570_CR12 publication-title: Geo-spatial Inf Sci doi: 10.1080/10095020.2017.1399674 – volume: 2 start-page: 1 issue: 1 year: 2013 ident: 4570_CR77 publication-title: J Comput Eng Inf Technol – ident: 4570_CR112 doi: 10.1504/IJBIC.2019.103606 – volume: 78 start-page: 79 year: 2017 ident: 4570_CR133 publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2017.05.010 – volume: 6 start-page: 20 issue: 1 year: 2016 ident: 4570_CR137 publication-title: Appl Sci doi: 10.3390/app6010020 – ident: 4570_CR26 doi: 10.1109/INDEL.2016.7797803 – ident: 4570_CR127 doi: 10.1016/B978-0-08-050684-5.50016-1 – ident: 4570_CR84 doi: 10.1109/JCSSE.2016.7748919 – volume: 45 start-page: 1166 issue: 4 year: 2016 ident: 4570_CR68 publication-title: Appl Intell doi: 10.1007/s10489-016-0810-2 – volume: 36 start-page: 746 year: 2013 ident: 4570_CR3 publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.07.087 – ident: 4570_CR134 doi: 10.1109/CEC.2016.7744378 – volume: 160 start-page: 39 year: 2017 ident: 4570_CR42 publication-title: Biosystems doi: 10.1016/j.biosystems.2017.07.010 – ident: 4570_CR22 doi: 10.1007/978-3-540-74089-6_2 – volume: 12 start-page: 760 year: 2010 ident: 4570_CR61 publication-title: Encycl Mach Learn – volume-title: Computational optimization, methods and algorithms, year: 2011 ident: 4570_CR65 doi: 10.1007/978-3-642-20859-1 – ident: 4570_CR108 doi: 10.1109/ICITECH.2017.8079912 – volume: 19 start-page: 52 issue: 2 year: 2017 ident: 4570_CR129 publication-title: Entropy doi: 10.3390/e19020052 – volume: 42 start-page: 451 issue: 4 year: 2018 ident: 4570_CR32 publication-title: Iran J Sci Technol Trans Electr Eng doi: 10.1007/s40998-018-0077-1 – volume: 83 start-page: 242 year: 2017 ident: 4570_CR37 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.023 – volume: 30 start-page: 1889 issue: 6 year: 2018 ident: 4570_CR122 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2794-6 – volume: 11 start-page: 925 issue: 7 year: 2019 ident: 4570_CR70 publication-title: Symmetry doi: 10.3390/sym11070925 – volume: 30 start-page: 957 issue: 4 year: 1996 ident: 4570_CR85 publication-title: Comput Ind Eng doi: 10.1016/0360-8352(96)00045-9 – ident: 4570_CR93 – ident: 4570_CR97 doi: 10.1109/IntelliSys.2017.8324318 – volume: 73 start-page: 4773 issue: 11 year: 2017 ident: 4570_CR4 publication-title: J Supercomput doi: 10.1007/s11227-017-2046-2 – volume: 123 start-page: 535 year: 2016 ident: 4570_CR11 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.06.052 – volume: 3 start-page: 180 issue: 1 year: 2010 ident: 4570_CR15 publication-title: Comput Inf Sci – volume: 35 start-page: 701 issue: 3 year: 2002 ident: 4570_CR135 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00046-2 – volume: 29 start-page: 1423 issue: 5 year: 2018 ident: 4570_CR52 publication-title: J For Res doi: 10.1007/s11676-017-0555-8 – volume: 28 start-page: 139 year: 2018 ident: 4570_CR39 publication-title: Adv Eng Forum Trans Tech Publ doi: 10.4028/www.scientific.net/AEF.28.139 – ident: 4570_CR113 doi: 10.1109/JEEIT.2019.8717366 – volume: 75 start-page: 1 year: 2018 ident: 4570_CR111 publication-title: J Supercomput – volume: 100 start-page: 2059 issue: 3 year: 2018 ident: 4570_CR120 publication-title: Electr Eng doi: 10.1007/s00202-018-0684-x – volume: 5 start-page: 47 year: 2016 ident: 4570_CR117 publication-title: Int J Appl Innov Eng Manag – volume: 39 start-page: 720 issue: 2 year: 2018 ident: 4570_CR82 publication-title: Opt Control Appl Methods doi: 10.1002/oca.2373 – volume: 17 start-page: 469 issue: 3 year: 2018 ident: 4570_CR110 publication-title: J Inf Commun Technol – ident: 4570_CR123 doi: 10.1109/MEPCON.2017.8301279 – volume: 8 start-page: 156 issue: 1 year: 1977 ident: 4570_CR46 publication-title: Decis Sci doi: 10.1111/j.1540-5915.1977.tb01074.x – volume: 12 start-page: 3 issue: 1 year: 2018 ident: 4570_CR7 publication-title: Intell Decis Technol doi: 10.3233/IDT-170318 – volume: 89 start-page: 228 year: 2015 ident: 4570_CR78 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 232 start-page: 58 year: 2013 ident: 4570_CR124 publication-title: Inf Sci doi: 10.1016/j.ins.2012.12.043 – volume: 17 start-page: 103 issue: 1–2 year: 2008 ident: 4570_CR140 publication-title: Eur J Comput Mech/Revue Eur Méc Numér doi: 10.3166/remn.17.103-126 – volume: 136 start-page: 1706 issue: 12 year: 2016 ident: 4570_CR106 publication-title: IEEJ Trans Electron Inf Syst – volume: 59 start-page: 425 issue: 5 year: 2017 ident: 4570_CR132 publication-title: Mater Test doi: 10.3139/120.111024 – volume: 86 start-page: 177 year: 2018 ident: 4570_CR30 publication-title: AEU-Int J Electron Commun doi: 10.1016/j.aeue.2018.01.017 – volume: 8 start-page: 2028 issue: 11 year: 2018 ident: 4570_CR67 publication-title: Appl Sci doi: 10.3390/app8112028 – volume: 136 start-page: 86 year: 2017 ident: 4570_CR51 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.02.026 – volume: 59 start-page: 210 year: 2017 ident: 4570_CR74 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.057 – volume: 28 start-page: 459 issue: 4 year: 2007 ident: 4570_CR126 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2006.09.003 – ident: 4570_CR103 doi: 10.1007/978-3-319-33793-7_21 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 4570_CR88 publication-title: Swarm intell doi: 10.1007/s11721-007-0002-0 – ident: 4570_CR109 doi: 10.1007/978-3-319-59427-9_59 – ident: 4570_CR50 doi: 10.1109/INISTA.2017.8001138 – volume: 35 start-page: 515 issue: 6 year: 2003 ident: 4570_CR66 publication-title: IIE Trans doi: 10.1080/07408170304422 – ident: 4570_CR25 doi: 10.1007/978-3-642-00185-7_10 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 4570_CR64 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 44 start-page: 375 issue: 4 year: 1993 ident: 4570_CR90 publication-title: J Oper Res Soc doi: 10.1057/jors.1993.67 – ident: 4570_CR48 doi: 10.1109/TENCON.2016.7848257 – ident: 4570_CR40 doi: 10.1109/ICCAIRO.2017.38 – volume: 24 start-page: 129 issue: 1 year: 2017 ident: 4570_CR45 publication-title: Steel Compos Struct doi: 10.12989/scs.2017.24.1.129 – volume: 12 start-page: 61 issue: 1 year: 2018 ident: 4570_CR60 publication-title: Majlesi J Electr Eng – volume: 36 start-page: 403 year: 2017 ident: 4570_CR114 publication-title: Optical Fiber Technol doi: 10.1016/j.yofte.2017.05.018 – volume: 13 start-page: 30 year: 2013 ident: 4570_CR49 publication-title: Sci World J – volume: 12 start-page: 3690 issue: 13 year: 2017 ident: 4570_CR13 publication-title: Int J Appl Eng Res – volume: 129 start-page: 13 issue: 2 year: 2015 ident: 4570_CR76 publication-title: Int J Comput Appl – volume: 73 start-page: 111 year: 2018 ident: 4570_CR6 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.05.003 – volume: 1 start-page: 19 issue: 1 year: 2011 ident: 4570_CR36 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.001 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 4570_CR105 publication-title: Int J Reason-Based Intell Syst – ident: 4570_CR1 doi: 10.1109/MEPCON.2017.8301340 – volume: 77 start-page: 23699 issue: 18 year: 2018 ident: 4570_CR139 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-5637-x – volume: 3 start-page: 1 year: 1975 ident: 4570_CR54 publication-title: Control Artif Intell – volume: 32 start-page: 3303 year: 2018 ident: 4570_CR69 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1992-7 – volume: 74 start-page: 216 year: 2019 ident: 4570_CR115 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.10.017 – volume: 65 start-page: 191 issue: 3 year: 2017 ident: 4570_CR14 publication-title: Electroteh Electron Autom – volume: 43 start-page: 77 issue: 1 year: 2019 ident: 4570_CR33 publication-title: Iran J Sci Technol Trans Electr Eng doi: 10.1007/s40998-018-0071-7 – volume: 27 start-page: 206 year: 2018 ident: 4570_CR35 publication-title: Sustain Energy Technol Assess – ident: 4570_CR131 – ident: 4570_CR9 doi: 10.1007/978-981-13-1819-1_48 – ident: 4570_CR57 doi: 10.1109/SCEECS.2016.7509293 – volume: 267 start-page: 69 year: 2017 ident: 4570_CR125 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.060 – ident: 4570_CR2 doi: 10.1109/SEST.2018.8495722 – volume: 25 start-page: 298 year: 2018 ident: 4570_CR89 publication-title: J Comput Sci doi: 10.1016/j.jocs.2017.04.011 – ident: 4570_CR20 doi: 10.1007/978-981-10-3770-2_53 – volume: 6 start-page: 48611 year: 2018 ident: 4570_CR104 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868118 – ident: 4570_CR130 doi: 10.1007/978-3-319-63315-2_44 – volume: 4 start-page: 528 issue: 1 year: 2017 ident: 4570_CR23 publication-title: Cogent Eng doi: 10.1080/23311916.2017.1286731 – volume: 7 start-page: 288 issue: 11 year: 2018 ident: 4570_CR59 publication-title: Electronics doi: 10.3390/electronics7110288 – volume: 61 start-page: 1041 year: 2017 ident: 4570_CR107 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.02.034 – volume: 51 start-page: 61 year: 2000 ident: 4570_CR10 publication-title: Urbana – ident: 4570_CR83 doi: 10.1109/MEPCON.2017.8301304 – volume: 114 start-page: 163 year: 2017 ident: 4570_CR79 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 88 start-page: 912 issue: 4 year: 2013 ident: 4570_CR43 publication-title: Biol Rev doi: 10.1111/brv.12036 – ident: 4570_CR116 – volume: 8 start-page: 191 issue: 2 year: 2011 ident: 4570_CR72 publication-title: J Bionic Eng doi: 10.1016/S1672-6529(11)60020-6 – volume-title: Feature selection and enhanced krill herd algorithm for text document clustering year: 2019 ident: 4570_CR8 doi: 10.1007/978-3-030-10674-4 – volume: 23 start-page: 1699 issue: 5 year: 2019 ident: 4570_CR62 publication-title: Soft Comput doi: 10.1007/s00500-017-2894-y – volume: 99 start-page: 1 year: 2018 ident: 4570_CR24 publication-title: Comput Ind doi: 10.1016/j.compind.2018.03.018 – volume: 4 start-page: 195 issue: 3 year: 2018 ident: 4570_CR101 publication-title: Complex Intell Syst doi: 10.1007/s40747-018-0066-z – volume: 42 start-page: 102 year: 2017 ident: 4570_CR53 publication-title: Int Arch Photogram Rem Sens Spatial Inf Sci – ident: 4570_CR27 doi: 10.1109/MPS.2017.7974468 – ident: 4570_CR128 doi: 10.1109/ICENCO.2015.7416360 – volume: 1 start-page: 431 issue: 3 year: 2016 ident: 4570_CR18 publication-title: Indones J Electr Eng Comput Sci doi: 10.11591/ijeecs.v1.i3.pp431-445 – ident: 4570_CR99 doi: 10.1109/ICIIECS.2017.8276010 – volume: 17 start-page: 524 year: 2017 ident: 4570_CR58 publication-title: Global J Res Eng – ident: 4570_CR102 doi: 10.1007/978-3-319-48490-7_35 – ident: 4570_CR86 – ident: 4570_CR121 doi: 10.1109/ICEETS.2016.7583795 |
| SSID | ssj0004685 |
| Score | 2.612266 |
| SecondaryResourceType | review_article |
| Snippet | This paper thoroughly presents a comprehensive review of the so-called moth–flame optimization (MFO) and analyzes its main characteristics. MFO is considered... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9859 |
| SubjectTerms | Algorithms Artificial Intelligence Clustering Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data mining Data Mining and Knowledge Discovery Design engineering Heuristic methods Image processing Image Processing and Computer Vision Optimization Power dispatch Probability and Statistics in Computer Science Review Article |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg7edMHdzWs9CCIWD1rER_G2ZLOJFvqQdu3Z_-A_9JeYpNm2igp63mRYZiaZmczjA9hnkdbY5gypyGiANc4CLmgWaCHtwDospYMDal2yZpM_PCTXvilsWFa7lylJd1NPmt3sC6YNfe1jPmGG-jwsGHPHLWDDzW1rphvSAXGauMXW9ODYt8p8T-OzOZr6mF_Sos7aNKr_-88VWPbeJTodq8MqzKneGlRL5AbkD_I6nFwZAb2_vmmjDwr1zbXR9f2YSHQe-4N28dQ9RiMTR9syGSR6OZrNdG_AfeP87uwi8EgKgYxZVASJMVCRZEZaMtdM41CG5o5WMec6JJKISGhGqOAJYSrhTGQ80VjZHFseMy1EvAmVXr-ntgBJkkTqiIjMRiKa5sZDy2OqNRGhJIrSGoQlQ1Ppx4xbtItOOhmQ7BiUGgaljkGp2XMw2fM8HrLx6-p6KafUH7hhahwRjknMMK7BYSmX6eefqW3_bfkOLEU24nYFu3WoFIMXtQuLclS0h4M9p4gfrObXpg priority: 102 providerName: Springer Nature |
| Title | Moth–flame optimization algorithm: variants and applications |
| URI | https://link.springer.com/article/10.1007/s00521-019-04570-6 https://www.proquest.com/docview/2418453744 |
| Volume | 32 |
| WOSCitedRecordID | wos000493504900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4UPHgRPyOKpAdvuui2fmweNGogHpQQVEK8LF3XqgkMhMnZ_-A_9JfYlg7QRC5edtnaNHvevm_fvh8PAIfUkxLpmCFhMXGQRLETMBI7knHdsA5xbuiA2re00Qg6nbBpL9xGNq0y14lGUSd9ru_IT5SlCRD2KUIXgzdHs0bp6Kql0FgGRd0lQVM3NPHTXF2koeRUHozO7kG-LZoxpXP6PlQ70jo0gKla60_DNDtt_gqQGrtTL_13xetgzZ444eVERDbAkkg3QSlnc4B2c2-B8zsF2tfHp1QyImBfqZKerdGErPusJs5eemdwrHxrnToDWZrA-ej3Nnis1x6ubxzLruBwn3qZEyqj5XGqEOSJpBK53FV6W_hBIF3MMfOYpJiwIMRUhAFlcRBKJHTcLfGpZMzfAYW0n4pdADkOPXGKWay9E0kSdWpLfCIlZi7HgpAycPNfG3HbelwzYHSjadNkA0ek4IgMHJEaczQdM5g03lj4dSXHILKbcBTNACiD4xzF2eu_Z9tbPNs-WPW0122SdiugkA3fxQFY4ePsdTSsguJVrdFsVY0oqmfrvv0NFlHkgQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NLzUxFD7xInltfL3Ety5YeSdMp53OSBDxEeK6sUDEZnQ6LRLm4g5i5z_4H36UX-K0d8ZFws7CeqZN23PO056envMAzAhqDLMxw1CmoccMS71IhqlnpLIF65hSjg7osCbq9ejoKN7rgOcqF8Y-q6ww0QF11lD2jnwed5qI8UAwtnJ17VnWKBtdrSg0Wmqxox_u0WVrLm2vo3xnKd3c2F_b8kpWAU8FghZejGBNlcCRq8wIw3zlI17pIIqMzxWXVBrBQxnFXGh0yGUaxYZpG2_KAmGkDLDfP9DFGF2wVrTHj9_lYToKUPSY7GsiFpRJOi5Vz96_WsfdhiK4wLX5uBG2T7efArJun9vs-20r1A-95YmarLZMYAA6dD4IfRVbBSnB6x8s76JSvjw-GbQBTRoIlZdlDiqRF6c4keLscpHcSbTIvGgSmWfkfXR_CA5-ZBbD0Jk3cj0CRPGY6gUuU-t9mTDDU2kWhMZw6Suuw3AU_EqUiSpLq1uGj4vkrSi0E3-C4k-c-BNsM_fW5qpVWOTbvycqmSclyDSTtsBH4X-lNe3PX_c29n1v0_B3a3-3ltS26zvj0EPtDYN7oDwBncXNrZ6EbnVXnDdvppz6Ezj5aW16BWPMQHI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIMSF8RSDATlwg2q0zasckBAwgRjTJGDaLUrTBCZt3bSVnfkP_EN-CUnXbgMBEuLcPCrbie3Ynw3AIfW0RjZmSERIHKRR6DBBQkcLaQvWISnTdkDNGq3XWasVNGZQ_Gm2ex6SHGMabJWmOKn0I12ZAN_sa6Z1g-3DPqZmp3mwgGwivfXX75szyMi0KafxYWx-D_Iz2Mz3a3xWTVN780uINNU81eL__3kVrGRWJzwfi8kamFPxOijmHR1gdsA3wNmdYdz765s2cqJgz1wn3QynCUXnqTdoJ8_dUzgy_rVNn4EijuBsBHwTPFavHi6unazDgiN96iVOYBSXJ6nhoow01ciVrrm7lc-YdrHEwhOaYiJYgKkKGBUhCzRSNvYW-VQL4W-BQtyL1TaAEgeeOsEitB6KJpGx3CKfaI2FK7EipATcnLhcZuXHbReMDp8UTk4JxA2BeEogbuYcTeb0x8U3fh1dznnGs4M45MZAYQj7FKESOM55NP3882o7fxt-AJYal1Veu6nf7oJlzzrlaU5vGRSSwYvaA4tylLSHg_1UPj8Ansjjbg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moth%E2%80%93flame+optimization+algorithm%3A+variants+and+applications&rft.jtitle=Neural+computing+%26+applications&rft.au=Shehab%2C+Mohammad&rft.au=Abualigah%2C+Laith&rft.au=Al+Hamad%2C+Husam&rft.au=Alabool%2C+Hamzeh&rft.date=2020-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=14&rft.spage=9859&rft.epage=9884&rft_id=info:doi/10.1007%2Fs00521-019-04570-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_019_04570_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |