Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy Constraints

Federated learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit its popularity, it has been observed that FL yields suboptimal results if the local clients' data distributions diverge. To addre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 32; číslo 8; s. 3710 - 3722
Hlavní autoři: Sattler, Felix, Muller, Klaus-Robert, Samek, Wojciech
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Federated learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit its popularity, it has been observed that FL yields suboptimal results if the local clients' data distributions diverge. To address this issue, we present clustered FL (CFL), a novel federated multitask learning (FMTL) framework, which exploits geometric properties of the FL loss surface to group the client population into clusters with jointly trainable data distributions. In contrast to existing FMTL approaches, CFL does not require any modifications to the FL communication protocol to be made, is applicable to general nonconvex objectives (in particular, deep neural networks), does not require the number of clusters to be known a priori , and comes with strong mathematical guarantees on the clustering quality. CFL is flexible enough to handle client populations that vary over time and can be implemented in a privacy-preserving way. As clustering is only performed after FL has converged to a stationary point, CFL can be viewed as a postprocessing method that will always achieve greater or equal performance than conventional FL by allowing clients to arrive at more specialized models. We verify our theoretical analysis in experiments with deep convolutional and recurrent neural networks on commonly used FL data sets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3015958