Breast cancer cell nuclei classification in histopathology images using deep neural networks
Purpose Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology image...
Uloženo v:
| Vydáno v: | International journal for computer assisted radiology and surgery Ročník 13; číslo 2; s. 179 - 191 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1861-6410, 1861-6429, 1861-6429 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.
Methods
The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.
Results
Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.
Conclusions
We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task. |
|---|---|
| AbstractList | Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.
The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.
Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.
We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task. PurposeCell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.MethodsThe proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.ResultsExtensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.ConclusionsWe propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task. Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.PURPOSECell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.METHODSThe proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.RESULTSExtensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.CONCLUSIONSWe propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task. Purpose Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner. Methods The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance. Results Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods. Conclusions We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task. |
| Author | Yi, Zhang Zhang, Lei Feng, Yangqin |
| Author_xml | – sequence: 1 givenname: Yangqin surname: Feng fullname: Feng, Yangqin organization: Machine Intelligence Laboratory, College of Computer Science, Sichuan University – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei email: leizhang@scu.edu.cn organization: Machine Intelligence Laboratory, College of Computer Science, Sichuan University – sequence: 3 givenname: Zhang surname: Yi fullname: Yi, Zhang organization: Machine Intelligence Laboratory, College of Computer Science, Sichuan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28861708$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtrVTEUhYNU7PMHOJGAEydH8zp5DLXYBxScdCiE3Jyd29Rzk2uSQ-m_N9dbixR0lA351tqPdYwOUk6A0FtKPlJC1KdK6Sj0QKgaqJR8MK_QEdWSDlIwc_BcU3KIjmu9J0SMio9v0CHT_UcRfYS-fyngasPeJQ8Fe5hnnBY_Q8R-drXGEL1rMSccE76LteWta3d5zutHHDduDRUvNaY1ngC2OMFSXDeA9pDLj3qKXgc3Vzh7ek_Q7cXX2_Or4ebb5fX555vBc8XaoGEkSgm-Ymwag9GcBWH4iggTRBidDNIx5gSfTFDOECE9h-AoTFJp4RQ_QR_2ttuSfy5Qm93EutvEJchLtdRwSUfNqO7o-xfofV5K6sN1aod1S9qpd0_UstrAZLelr1oe7Z-zdYDuAV9yrQXCM0KJ3UVj99HYHo3dRWNN16gXGh_b79O24uL8XyXbK2vvktZQ_hr6n6JfKr2iCA |
| CitedBy_id | crossref_primary_10_1111_neup_12880 crossref_primary_10_1016_j_asoc_2021_107886 crossref_primary_10_1016_j_bspc_2023_104570 crossref_primary_10_3390_cancers13236116 crossref_primary_10_1007_s11042_023_16351_4 crossref_primary_10_1016_j_ajoms_2022_12_002 crossref_primary_10_1109_TMI_2024_3388328 crossref_primary_10_1002_mp_13421 crossref_primary_10_1016_j_imavis_2025_105708 crossref_primary_10_3389_fonc_2024_1281922 crossref_primary_10_3390_e26010034 crossref_primary_10_1016_j_eswa_2022_117238 crossref_primary_10_1007_s11042_022_13412_y crossref_primary_10_1007_s00521_020_04710_3 crossref_primary_10_1016_j_rineng_2025_105047 crossref_primary_10_1088_2516_1091_ad525b crossref_primary_10_1109_ACCESS_2022_3159700 crossref_primary_10_1109_ACCESS_2024_3431998 crossref_primary_10_1007_s10462_019_09716_5 crossref_primary_10_1007_s40031_022_00745_3 crossref_primary_10_3390_mi13122197 crossref_primary_10_3389_fonc_2020_564725 crossref_primary_10_3390_bioengineering12040364 crossref_primary_10_3390_ph17010022 crossref_primary_10_1016_j_bbe_2021_08_011 crossref_primary_10_1007_s11831_020_09470_w crossref_primary_10_1016_j_eswa_2020_114103 crossref_primary_10_15864_ajse_1304 crossref_primary_10_1016_j_jpi_2023_100315 crossref_primary_10_1007_s11042_020_08692_1 crossref_primary_10_1088_2057_1976_ace631 crossref_primary_10_1109_TMI_2021_3078370 crossref_primary_10_1109_ACCESS_2020_3021343 crossref_primary_10_5582_bst_2018_01264 crossref_primary_10_1080_13682199_2023_2204038 crossref_primary_10_3390_cancers11121937 crossref_primary_10_3390_ijerph191811597 crossref_primary_10_1145_3648359 |
| Cites_doi | 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TBME.2010.2041232 10.1109/TCBB.2014.2377729 10.1109/CVPR.2015.7298594 10.1109/ISBI.2009.5193186 10.1109/TPAMI.2012.277 10.1109/TBME.2006.870201 10.1145/1273496.1273556 10.1109/CVPR.2007.383157 10.1109/TMI.2015.2458702 10.1109/IPTA.2014.7001976 10.1023/A:1010933404324 10.1162/neco.2006.18.7.1527 10.1186/1746-1596-8-1 10.1109/TCBB.2016.2535233 10.1109/ISBI.2014.6868041 10.1214/aoms/1177729694 10.1109/TMI.2009.2012704 10.7551/mitpress/4175.001.0001 10.1023/B:VISI.0000029664.99615.94 10.1109/ISBI.2008.4540988 10.1016/j.patcog.2008.08.027 10.1109/AFGR.1998.670990 10.1109/TIT.1975.1055373 10.1109/CCPR.2010.5659313 10.1609/aaai.v29i1.9788 10.1109/ICIP.2008.4712130 10.1145/1390156.1390294 |
| ContentType | Journal Article |
| Copyright | CARS 2017 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: CARS 2017 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1007/s11548-017-1663-9 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1861-6429 |
| EndPage | 191 |
| ExternalDocumentID | 28861708 10_1007_s11548_017_1663_9 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61332002 – fundername: Foundation for Youth Science and Technology Innovation Research Team of Sichuan Province grantid: 2016TD0018 – fundername: Fok Ying Tung Education Foundation grantid: 151068 |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 7X7 88E 8FI 8FJ AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION FYUFA HCIFZ HMCUK M1P PHGZM PHGZT PJZUB PPXIY PQGLB PSQYO UKHRP CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c372t-8e507743b22d5f9832f493b049f4f5a6f6a22a43d9f7a9046c3efa1ed6784a73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-6410 1861-6429 |
| IngestDate | Thu Sep 04 18:56:28 EDT 2025 Tue Oct 07 06:52:30 EDT 2025 Thu Apr 03 07:08:29 EDT 2025 Tue Nov 18 21:19:08 EST 2025 Sat Nov 29 07:46:04 EST 2025 Fri Feb 21 02:42:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Medical image processing Representation learning Denoising autoencoder Deep neural network Cell nuclei classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-8e507743b22d5f9832f493b049f4f5a6f6a22a43d9f7a9046c3efa1ed6784a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 28861708 |
| PQID | 1993616781 |
| PQPubID | 2043910 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1936158218 proquest_journals_1993616781 pubmed_primary_28861708 crossref_primary_10_1007_s11548_017_1663_9 crossref_citationtrail_10_1007_s11548_017_1663_9 springer_journals_10_1007_s11548_017_1663_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
| PublicationTitle | International journal for computer assisted radiology and surgery |
| PublicationTitleAbbrev | Int J CARS |
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | McLachlanGDiscriminant analysis and statistical pattern recognition2004HobokenWiley HuangPWLeeCHAutomatic classification for pathological prostate images based on fractal analysisIEEE Trans Med Imag20092871037105010.1109/TMI.2009.2012704 BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324 FatakdawalaHXuJBasavanhallyABhanotGGanesanSFeldmanMTomaszewskiJEMadabhushiAExpectation maximization-driven geodesic active contour with overlap resolution (emagacor): application to lymphocyte segmentation on breast cancer histopathologyIEEE Trans Biomed Eng20105771676168910.1109/TBME.2010.204123220172780 CireanDCGiustiAGambardellaLMSchmidhuberJMitosis detection in breast cancer histology images with deep neural networks2013BerlinSpringer411418 Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1):1–38 ChenXZhouXWongSTAutomated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopyIEEE Trans Biomed Eng200653476276610.1109/TBME.2006.87020116602586 Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI, pp 3827–3833 SertelOKongJShimadaHCatalyurekUSaltzJHGurcanMNComputer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal developmentPattern recognition2009426109311031:STN:280:DC%2BC2srmtVSgsg%3D%3D10.1016/j.patcog.2008.08.027201613242678741 Ranzato MA, Huang FJ, Boureau YL, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE conference on computer vision and pattern recognition (CVPR’07). IEEE, pp 1–8 Gelasca E.D, Byun J, Obara B, Manjunath B (2008) Evaluation and benchmark for biological image segmentation. In: 15th IEEE International Conference on Image Processing (ICIP 2008). IEEE, pp 1816–1819 ShinHCOrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans Pattern Anal Mach Intell20133581930194310.1109/TPAMI.2012.27723787345 PengXZhaoBYanRTangHYiZBag of events: an efficient probability-based feature extraction method for aer image sensorsIEEE Trans Neural Netw Learn Syst201699113 OjansivuVLinderNRahtuEPietikinenMLundinMJoensuuHLundinJAutomated classification of breast cancer morphology in histopathological imagesDiagn Pathol20138114 SchlkopfBSmolaAMllerKRKernel principal component analysis1997BerlinSpringer583588 HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput20061871527155410.1162/neco.2006.18.7.152716764513 Shlens J (2014) A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100 LiangMLiZChenTZengJIntegrative data analysis of multi-platform cancer data with a multimodal deep learning approachIEEE/ACM Trans Comput Biol Bioinf20151249289371:CAS:528:DC%2BC2sXlvFGlsrc%3D10.1109/TCBB.2014.2377729 Zhang Z, Lyons M, Schuster M, Akamatsu S (1998) Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: 1998 proceedings third IEEE international conference on automatic face and gesture recognition. IEEE, pp 454–459 VapnikVNVapnikVStatistical learning theory1998New YorkWiley Xu J, Xiang L, Hang R, Wu J (2014) Stacked sparse autoencoder (ssae) based framework for nuclei patch classification on breast cancer histopathology. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, pp 999–1002 Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning. ACM, pp 473–480 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9 Hatipoglu N, Bilgin G (2014) Classification of histopathological images using convolutional neural network. In: 2014 4th international conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6 Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: 5th IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2008). IEEE, pp 284–287 VincentPLarochelleHLajoieIBengioYManzagolPAStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res20101133713408 GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksAistats20109249256 XuJXiangLLiuQGilmoreHWuJTangJMadabhushiAStacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology imagesIEEE Trans Med Imag201635111913010.1109/TMI.2015.2458702 Basavanhally A, Xu J, Madabhushi A, Ganesan S (2009) Computer-aided prognosis of er+ breast cancer histopathology and correlating survival outcome with oncotype dx assay. In: IEEE international symposium on Biomedical imaging: from nano to macro (ISBI’09). IEEE pp 851–854 KowalMComputer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy2014BerlinSpringer213224 LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker H, Guyon I, Muller U, Sackinger E (1995) Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, vol 60. pp 53–60 Poultney C, Chopra S, Cun Y.L (2007) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, pp 1137–1144 FukunagaKHostetlerLDK-nearest-neighbor bayes-risk estimationIEEE Trans Inf Theory197521328529310.1109/TIT.1975.1055373 Vincent P, Larochelle H, Bengio Y, Manzagol P.A Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. ACM, pp 1096–1103 KullbackSLeiblerRAOn information and sufficiencyAnna Math Stat1951221798610.1214/aoms/1177729694 Schmah T, Hinton G.E, Small S.L, Strother S, Zemel R.S (2009) Generative versus discriminative training of RBMS for classification of fmri images. In: Advances in neural information processing systems. pp 1409–1416 LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94 Pang B, Zhang Y, Chen Q, Gao Z, Peng Q, You X Cell nucleus segmentation in color histopathological imagery using convolutional networks. In: 2010 Chinese conference on pattern recognition (CCPR). IEEE, pp 1–5 Shin M, Jang D, Nam H, Lee K.H., Lee D (2016) Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Biol Bioinf 99:1. doi:10.1109/TCBB.2016.2535233 ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press GE Hinton (1663_CR11) 2006; 18 S Kullback (1663_CR14) 1951; 22 1663_CR10 1663_CR32 1663_CR5 1663_CR36 1663_CR8 1663_CR33 1663_CR34 PW Huang (1663_CR12) 2009; 28 DG Lowe (1663_CR18) 2004; 60 1663_CR1 O Sertel (1663_CR30) 2009; 42 DC Cirean (1663_CR4) 2013 V Ojansivu (1663_CR21) 2013; 8 X Glorot (1663_CR9) 2010; 9 P Vincent (1663_CR37) 2010; 11 G McLachlan (1663_CR19) 2004 1663_CR15 1663_CR16 1663_CR38 B Schlkopf (1663_CR27) 1997 1663_CR20 X Chen (1663_CR3) 2006; 53 1663_CR40 1663_CR25 1663_CR22 X Peng (1663_CR24) 2016; 99 1663_CR23 HC Shin (1663_CR31) 2013; 35 VN Vapnik (1663_CR35) 1998 J Xu (1663_CR39) 2016; 35 M Kowal (1663_CR13) 2014 B Scholkopf (1663_CR29) 2001 L Breiman (1663_CR2) 2001; 45 M Liang (1663_CR17) 2015; 12 1663_CR28 1663_CR26 H Fatakdawala (1663_CR6) 2010; 57 K Fukunaga (1663_CR7) 1975; 21 |
| References_xml | – reference: FukunagaKHostetlerLDK-nearest-neighbor bayes-risk estimationIEEE Trans Inf Theory197521328529310.1109/TIT.1975.1055373 – reference: KowalMComputer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy2014BerlinSpringer213224 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning. ACM, pp 473–480 – reference: ChenXZhouXWongSTAutomated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopyIEEE Trans Biomed Eng200653476276610.1109/TBME.2006.87020116602586 – reference: Poultney C, Chopra S, Cun Y.L (2007) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, pp 1137–1144 – reference: Gelasca E.D, Byun J, Obara B, Manjunath B (2008) Evaluation and benchmark for biological image segmentation. In: 15th IEEE International Conference on Image Processing (ICIP 2008). IEEE, pp 1816–1819 – reference: ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press – reference: OjansivuVLinderNRahtuEPietikinenMLundinMJoensuuHLundinJAutomated classification of breast cancer morphology in histopathological imagesDiagn Pathol20138114 – reference: VincentPLarochelleHLajoieIBengioYManzagolPAStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res20101133713408 – reference: Basavanhally A, Xu J, Madabhushi A, Ganesan S (2009) Computer-aided prognosis of er+ breast cancer histopathology and correlating survival outcome with oncotype dx assay. In: IEEE international symposium on Biomedical imaging: from nano to macro (ISBI’09). IEEE pp 851–854 – reference: Shlens J (2014) A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100 – reference: Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: 5th IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2008). IEEE, pp 284–287 – reference: PengXZhaoBYanRTangHYiZBag of events: an efficient probability-based feature extraction method for aer image sensorsIEEE Trans Neural Netw Learn Syst201699113 – reference: Pang B, Zhang Y, Chen Q, Gao Z, Peng Q, You X Cell nucleus segmentation in color histopathological imagery using convolutional networks. In: 2010 Chinese conference on pattern recognition (CCPR). IEEE, pp 1–5 – reference: HuangPWLeeCHAutomatic classification for pathological prostate images based on fractal analysisIEEE Trans Med Imag20092871037105010.1109/TMI.2009.2012704 – reference: Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1):1–38 – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9 – reference: Xu J, Xiang L, Hang R, Wu J (2014) Stacked sparse autoencoder (ssae) based framework for nuclei patch classification on breast cancer histopathology. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, pp 999–1002 – reference: Hatipoglu N, Bilgin G (2014) Classification of histopathological images using convolutional neural network. In: 2014 4th international conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6 – reference: ShinHCOrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans Pattern Anal Mach Intell20133581930194310.1109/TPAMI.2012.27723787345 – reference: Zhang Z, Lyons M, Schuster M, Akamatsu S (1998) Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: 1998 proceedings third IEEE international conference on automatic face and gesture recognition. IEEE, pp 454–459 – reference: Shin M, Jang D, Nam H, Lee K.H., Lee D (2016) Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Biol Bioinf 99:1. doi:10.1109/TCBB.2016.2535233 – reference: HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput20061871527155410.1162/neco.2006.18.7.152716764513 – reference: Schmah T, Hinton G.E, Small S.L, Strother S, Zemel R.S (2009) Generative versus discriminative training of RBMS for classification of fmri images. In: Advances in neural information processing systems. pp 1409–1416 – reference: LiangMLiZChenTZengJIntegrative data analysis of multi-platform cancer data with a multimodal deep learning approachIEEE/ACM Trans Comput Biol Bioinf20151249289371:CAS:528:DC%2BC2sXlvFGlsrc%3D10.1109/TCBB.2014.2377729 – reference: CireanDCGiustiAGambardellaLMSchmidhuberJMitosis detection in breast cancer histology images with deep neural networks2013BerlinSpringer411418 – reference: XuJXiangLLiuQGilmoreHWuJTangJMadabhushiAStacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology imagesIEEE Trans Med Imag201635111913010.1109/TMI.2015.2458702 – reference: VapnikVNVapnikVStatistical learning theory1998New YorkWiley – reference: FatakdawalaHXuJBasavanhallyABhanotGGanesanSFeldmanMTomaszewskiJEMadabhushiAExpectation maximization-driven geodesic active contour with overlap resolution (emagacor): application to lymphocyte segmentation on breast cancer histopathologyIEEE Trans Biomed Eng20105771676168910.1109/TBME.2010.204123220172780 – reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324 – reference: Ranzato MA, Huang FJ, Boureau YL, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE conference on computer vision and pattern recognition (CVPR’07). IEEE, pp 1–8 – reference: KullbackSLeiblerRAOn information and sufficiencyAnna Math Stat1951221798610.1214/aoms/1177729694 – reference: SertelOKongJShimadaHCatalyurekUSaltzJHGurcanMNComputer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal developmentPattern recognition2009426109311031:STN:280:DC%2BC2srmtVSgsg%3D%3D10.1016/j.patcog.2008.08.027201613242678741 – reference: LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker H, Guyon I, Muller U, Sackinger E (1995) Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, vol 60. pp 53–60 – reference: Vincent P, Larochelle H, Bengio Y, Manzagol P.A Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. ACM, pp 1096–1103 – reference: SchlkopfBSmolaAMllerKRKernel principal component analysis1997BerlinSpringer583588 – reference: GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksAistats20109249256 – reference: McLachlanGDiscriminant analysis and statistical pattern recognition2004HobokenWiley – reference: Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI, pp 3827–3833 – ident: 1663_CR5 doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 57 start-page: 1676 issue: 7 year: 2010 ident: 1663_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2041232 – volume: 12 start-page: 928 issue: 4 year: 2015 ident: 1663_CR17 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2014.2377729 – ident: 1663_CR34 doi: 10.1109/CVPR.2015.7298594 – ident: 1663_CR1 doi: 10.1109/ISBI.2009.5193186 – volume: 35 start-page: 1930 issue: 8 year: 2013 ident: 1663_CR31 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.277 – volume: 53 start-page: 762 issue: 4 year: 2006 ident: 1663_CR3 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.870201 – ident: 1663_CR15 doi: 10.1145/1273496.1273556 – ident: 1663_CR26 doi: 10.1109/CVPR.2007.383157 – volume: 35 start-page: 119 issue: 1 year: 2016 ident: 1663_CR39 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2015.2458702 – volume: 9 start-page: 249 year: 2010 ident: 1663_CR9 publication-title: Aistats – ident: 1663_CR10 doi: 10.1109/IPTA.2014.7001976 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1663_CR2 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 1663_CR11 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 8 start-page: 1 issue: 1 year: 2013 ident: 1663_CR21 publication-title: Diagn Pathol doi: 10.1186/1746-1596-8-1 – volume: 99 start-page: 1 year: 2016 ident: 1663_CR24 publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 213 volume-title: Computer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy year: 2014 ident: 1663_CR13 – ident: 1663_CR25 – ident: 1663_CR33 – ident: 1663_CR32 doi: 10.1109/TCBB.2016.2535233 – volume: 11 start-page: 3371 year: 2010 ident: 1663_CR37 publication-title: J Mach Learn Res – ident: 1663_CR38 doi: 10.1109/ISBI.2014.6868041 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 1663_CR14 publication-title: Anna Math Stat doi: 10.1214/aoms/1177729694 – volume-title: Statistical learning theory year: 1998 ident: 1663_CR35 – volume: 28 start-page: 1037 issue: 7 year: 2009 ident: 1663_CR12 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2009.2012704 – ident: 1663_CR16 – start-page: 411 volume-title: Mitosis detection in breast cancer histology images with deep neural networks year: 2013 ident: 1663_CR4 – volume-title: Discriminant analysis and statistical pattern recognition year: 2004 ident: 1663_CR19 – start-page: 583 volume-title: Kernel principal component analysis year: 1997 ident: 1663_CR27 – volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond year: 2001 ident: 1663_CR29 doi: 10.7551/mitpress/4175.001.0001 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 1663_CR18 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 1663_CR20 doi: 10.1109/ISBI.2008.4540988 – volume: 42 start-page: 1093 issue: 6 year: 2009 ident: 1663_CR30 publication-title: Pattern recognition doi: 10.1016/j.patcog.2008.08.027 – ident: 1663_CR40 doi: 10.1109/AFGR.1998.670990 – volume: 21 start-page: 285 issue: 3 year: 1975 ident: 1663_CR7 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1975.1055373 – ident: 1663_CR22 doi: 10.1109/CCPR.2010.5659313 – ident: 1663_CR23 doi: 10.1609/aaai.v29i1.9788 – ident: 1663_CR8 doi: 10.1109/ICIP.2008.4712130 – ident: 1663_CR36 doi: 10.1145/1390156.1390294 – ident: 1663_CR28 |
| SSID | ssj0045735 |
| Score | 2.3131433 |
| SecondaryResourceType | review_article |
| Snippet | Purpose
Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be... Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized... PurposeCell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 179 |
| SubjectTerms | Algorithms Artificial neural networks Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - pathology Cancer Cell Nucleus - classification Cell Nucleus - pathology Classification Classifiers Computer Imaging Computer Science Diagnosis, Computer-Assisted Feature extraction Feature recognition Female Health Informatics Histopathology Humans Image classification Image Processing, Computer-Assisted Imaging Machine Learning Medical imaging Medicine Medicine & Public Health Methods Neural networks Neural Networks, Computer Noise reduction Nuclei (cytology) Object recognition Pattern Recognition and Graphics Radiology Reproducibility of Results Review Article Software Surgery Vision |
| Title | Breast cancer cell nuclei classification in histopathology images using deep neural networks |
| URI | https://link.springer.com/article/10.1007/s11548-017-1663-9 https://www.ncbi.nlm.nih.gov/pubmed/28861708 https://www.proquest.com/docview/1993616781 https://www.proquest.com/docview/1936158218 |
| Volume | 13 |
| WOSCitedRecordID | wos000424344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bShwx9OCliC9aL63bWongkxIwk8xM8mhLxQcVUZF9KAxncpEFnZWd1e83Zy6rxbZQn3Mmc8i5JucGsFei0wZz5NIdeq5sKjlKzLgoVRa8tsY1Vfw3p_n5uR4OzUVXx1332e59SLLR1C_FbuRdc9KqIppJbuZhMVo7TdJ4eXXTq1-V5s1UTaEzwTMlZqHMP23xuzF642G-iY42Rud49V3ofoSVzsdkRy1TrMGcr9ZhtZ_fwDpxXoelsy6wvgG_vlNy-pRZYoIJo-d8VlGr4xGz5F9TQlFDQzaqWNOjmEYZN0_ybHQfdVLNKIP-ljnvHxg1yYwIVG2Keb0J18c_r3-c8G7wArcyT6Zc--glRteiTBKXBhOFPigjy3iZCCqkmIUMkwSVdCbkaOIN20ofUHgXLZ_CXH6ChWpc-S1gmFqUqZNWo6Ka3VKErHToqQ-d0ogDOOwJUNiuKTnNxrgrXtop0zkW8RwLOsfCDGB_9slD25HjX8DbPVWLTjjrgnIWMxFxFQPYnS1HsaLDxcqPHwkmglARsR7A55YbZn9LtKY29nHloCf9q83_hsqX_4L-CsvRNdNtfvg2LEwnj_4bfLBP01E92YH5fKh3Gr5_BmAK-0c |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rTxQxcKInUb-IPNRT0JL4SdKEbru77UchEgzHxciF8MFkM9sHuQQWcnvn77ezj0MCmujnznYnnWc7L4CPJTptMEcu3Z7nyqaSo8SMi1JlwWtrXFPFfzbKx2N9fm6-dXXcdZ_t3ockG019W-xG3jUnrSqimeTmMTxR0WBRHt_307Ne_ao0b6ZqCp0JnimxDGU-tMVdY3TPw7wXHW2MzuHqf6H7El50Pib73DLFGjzy1Tqs9vMbWCfO6_D0pAusb8CPfUpOnzNLTDBj9JzPKmp1PGWW_GtKKGpoyKYVa3oU0yjj5kmeTa-iTqoZZdBfMOf9DaMmmRGBqk0xrzdhcvhlcnDEu8EL3Mo8mXPto5cYXYsySVwaTBT6oIws42UiqJBiFjJMElTSmZCjiTdsK31A4V20fApz-QoG1XXl3wDD1KJMnbQaFdXsliJkpUNPfeiURhzCXk-AwnZNyWk2xmVx206ZzrGI51jQORZmCJ-Wn9y0HTn-BrzVU7XohLMuKGcxExFXMYSd5XIUKzpcrPz1gmAiCBUR6yG8brlh-bdEa2pjH1d2e9L_tvmfUHn7T9Af4NnR5GRUjL6Oj9_B8-im6TZXfAsG89nCb8OK_Tmf1rP3Dff_AkOq_UM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8IGuKLKAKeINbEJ03D7ba72z4ieIEAl0skhAeTzWw_zCWyd7ld_Pvt7MeBOTUxPne227Tz1c7MbwDeF2iVxgy5sEPHpUkER4EpjwqZeqeMtk0V__VFNh6rmxs96fqcVn22ex-SbGsaCKWprA_n1h_eF76Rp81Jw0bBZHK9Bo8l9Qyi6_qX614VyyRrOmxGKo14Ggj6sObvpvjVMK14myuR0sYAjTb_e-nP4Vnne7KjlllewCNXbsFm39eBdWK-BRuXXcD9JXz9REnrNTPEHAtGz_ysJAjkKTPkd1OiUXO2bFqyBruYWhw3T_Vseht0VcUos_4bs87NGYFnhgWUbep5tQ1Xo89Xx6e8a8jAjcjimisXvMfgchRxbBOvgzLwUosiXDK89AmmPsU4Rims9hnqcPM2wnmMnA0WUWImdmC9nJXuFTBMDIrECqNQUi1vEfm0sOgIn04qxAEM-8PITQdWTj0zvuf3MMu0j3nYx5z2MdcD-LD8ZN4idfyNeL8_4bwT2iqnXMY0CmuNBvBuORzEjTYXSze7I5pAQsXFagC7LWcs_xYrRfD2YeRjzwYPJv_TUl7_E_Vb2JicjPKLs_H5HjwN3ptqU8j3Yb1e3Lk38MT8qKfV4qARhJ-0RgY2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+cell+nuclei+classification+in+histopathology+images+using+deep+neural+networks&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Feng%2C+Yangqin&rft.au=Zhang%2C+Lei&rft.au=Zhang%2C+Yi&rft.date=2018-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=2&rft.spage=179&rft.epage=191&rft_id=info:doi/10.1007%2Fs11548-017-1663-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |