Breast cancer cell nuclei classification in histopathology images using deep neural networks

Purpose Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology image...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for computer assisted radiology and surgery Ročník 13; číslo 2; s. 179 - 191
Hlavní autoři: Feng, Yangqin, Zhang, Lei, Yi, Zhang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.02.2018
Springer Nature B.V
Témata:
ISSN:1861-6410, 1861-6429, 1861-6429
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner. Methods The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance. Results Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods. Conclusions We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.
AbstractList Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner. The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance. Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods. We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.
PurposeCell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.MethodsThe proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.ResultsExtensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.ConclusionsWe propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.
Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.PURPOSECell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner.The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.METHODSThe proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance.Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.RESULTSExtensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods.We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.CONCLUSIONSWe propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.
Purpose Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized by its expression in cell nuclei. However, due to the small and variant sizes of cell nuclei, and heavy noise in histopathology images, traditional machine learning methods cannot achieve desirable recognition accuracy. To address this challenge, this paper aims to present a novel deep neural network which performs representation learning and cell nuclei recognition in an end-to-end manner. Methods The proposed model hierarchically maps raw medical images into a latent space in which robustness is achieved by employing a stacked denoising autoencoder. A supervised classifier is further developed to improve the discrimination of the model by maximizing inter-subject separability in the latent space. The proposed method involves a cascade model which jointly learns a set of nonlinear mappings and a classifier from the given raw medical images. Such an on-the-shelf learning strategy makes obtaining discriminative features possible, thus leading to better recognition performance. Results Extensive experiments with benign and malignant breast cancer datasets are conducted to verify the effectiveness of the proposed method. Better performance was obtained when compared with other feature extraction methods, and higher recognition rate was achieved when compared with other seven classification methods. Conclusions We propose an end-to-end DNN model for cell nuclei and non-nuclei classification of histopathology images. It demonstrates that the proposed method can achieve promising performance in cell nuclei classification, and the proposed method is suitable for the cell nuclei classification task.
Author Yi, Zhang
Zhang, Lei
Feng, Yangqin
Author_xml – sequence: 1
  givenname: Yangqin
  surname: Feng
  fullname: Feng, Yangqin
  organization: Machine Intelligence Laboratory, College of Computer Science, Sichuan University
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: leizhang@scu.edu.cn
  organization: Machine Intelligence Laboratory, College of Computer Science, Sichuan University
– sequence: 3
  givenname: Zhang
  surname: Yi
  fullname: Yi, Zhang
  organization: Machine Intelligence Laboratory, College of Computer Science, Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28861708$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrVTEUhYNU7PMHOJGAEydH8zp5DLXYBxScdCiE3Jyd29Rzk2uSQ-m_N9dbixR0lA351tqPdYwOUk6A0FtKPlJC1KdK6Sj0QKgaqJR8MK_QEdWSDlIwc_BcU3KIjmu9J0SMio9v0CHT_UcRfYS-fyngasPeJQ8Fe5hnnBY_Q8R-drXGEL1rMSccE76LteWta3d5zutHHDduDRUvNaY1ngC2OMFSXDeA9pDLj3qKXgc3Vzh7ek_Q7cXX2_Or4ebb5fX555vBc8XaoGEkSgm-Ymwag9GcBWH4iggTRBidDNIx5gSfTFDOECE9h-AoTFJp4RQ_QR_2ttuSfy5Qm93EutvEJchLtdRwSUfNqO7o-xfofV5K6sN1aod1S9qpd0_UstrAZLelr1oe7Z-zdYDuAV9yrQXCM0KJ3UVj99HYHo3dRWNN16gXGh_b79O24uL8XyXbK2vvktZQ_hr6n6JfKr2iCA
CitedBy_id crossref_primary_10_1111_neup_12880
crossref_primary_10_1016_j_asoc_2021_107886
crossref_primary_10_1016_j_bspc_2023_104570
crossref_primary_10_3390_cancers13236116
crossref_primary_10_1007_s11042_023_16351_4
crossref_primary_10_1016_j_ajoms_2022_12_002
crossref_primary_10_1109_TMI_2024_3388328
crossref_primary_10_1002_mp_13421
crossref_primary_10_1016_j_imavis_2025_105708
crossref_primary_10_3389_fonc_2024_1281922
crossref_primary_10_3390_e26010034
crossref_primary_10_1016_j_eswa_2022_117238
crossref_primary_10_1007_s11042_022_13412_y
crossref_primary_10_1007_s00521_020_04710_3
crossref_primary_10_1016_j_rineng_2025_105047
crossref_primary_10_1088_2516_1091_ad525b
crossref_primary_10_1109_ACCESS_2022_3159700
crossref_primary_10_1109_ACCESS_2024_3431998
crossref_primary_10_1007_s10462_019_09716_5
crossref_primary_10_1007_s40031_022_00745_3
crossref_primary_10_3390_mi13122197
crossref_primary_10_3389_fonc_2020_564725
crossref_primary_10_3390_bioengineering12040364
crossref_primary_10_3390_ph17010022
crossref_primary_10_1016_j_bbe_2021_08_011
crossref_primary_10_1007_s11831_020_09470_w
crossref_primary_10_1016_j_eswa_2020_114103
crossref_primary_10_15864_ajse_1304
crossref_primary_10_1016_j_jpi_2023_100315
crossref_primary_10_1007_s11042_020_08692_1
crossref_primary_10_1088_2057_1976_ace631
crossref_primary_10_1109_TMI_2021_3078370
crossref_primary_10_1109_ACCESS_2020_3021343
crossref_primary_10_5582_bst_2018_01264
crossref_primary_10_1080_13682199_2023_2204038
crossref_primary_10_3390_cancers11121937
crossref_primary_10_3390_ijerph191811597
crossref_primary_10_1145_3648359
Cites_doi 10.1111/j.2517-6161.1977.tb01600.x
10.1109/TBME.2010.2041232
10.1109/TCBB.2014.2377729
10.1109/CVPR.2015.7298594
10.1109/ISBI.2009.5193186
10.1109/TPAMI.2012.277
10.1109/TBME.2006.870201
10.1145/1273496.1273556
10.1109/CVPR.2007.383157
10.1109/TMI.2015.2458702
10.1109/IPTA.2014.7001976
10.1023/A:1010933404324
10.1162/neco.2006.18.7.1527
10.1186/1746-1596-8-1
10.1109/TCBB.2016.2535233
10.1109/ISBI.2014.6868041
10.1214/aoms/1177729694
10.1109/TMI.2009.2012704
10.7551/mitpress/4175.001.0001
10.1023/B:VISI.0000029664.99615.94
10.1109/ISBI.2008.4540988
10.1016/j.patcog.2008.08.027
10.1109/AFGR.1998.670990
10.1109/TIT.1975.1055373
10.1109/CCPR.2010.5659313
10.1609/aaai.v29i1.9788
10.1109/ICIP.2008.4712130
10.1145/1390156.1390294
ContentType Journal Article
Copyright CARS 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: CARS 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-017-1663-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 191
ExternalDocumentID 28861708
10_1007_s11548_017_1663_9
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61332002
– fundername: Foundation for Youth Science and Technology Innovation Research Team of Sichuan Province
  grantid: 2016TD0018
– fundername: Fok Ying Tung Education Foundation
  grantid: 151068
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
7X7
88E
8FI
8FJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c372t-8e507743b22d5f9832f493b049f4f5a6f6a22a43d9f7a9046c3efa1ed6784a73
IEDL.DBID RSV
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-6410
1861-6429
IngestDate Thu Sep 04 18:56:28 EDT 2025
Tue Oct 07 06:52:30 EDT 2025
Thu Apr 03 07:08:29 EDT 2025
Tue Nov 18 21:19:08 EST 2025
Sat Nov 29 07:46:04 EST 2025
Fri Feb 21 02:42:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Medical image processing
Representation learning
Denoising autoencoder
Deep neural network
Cell nuclei classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-8e507743b22d5f9832f493b049f4f5a6f6a22a43d9f7a9046c3efa1ed6784a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28861708
PQID 1993616781
PQPubID 2043910
PageCount 13
ParticipantIDs proquest_miscellaneous_1936158218
proquest_journals_1993616781
pubmed_primary_28861708
crossref_primary_10_1007_s11548_017_1663_9
crossref_citationtrail_10_1007_s11548_017_1663_9
springer_journals_10_1007_s11548_017_1663_9
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References McLachlanGDiscriminant analysis and statistical pattern recognition2004HobokenWiley
HuangPWLeeCHAutomatic classification for pathological prostate images based on fractal analysisIEEE Trans Med Imag20092871037105010.1109/TMI.2009.2012704
BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
FatakdawalaHXuJBasavanhallyABhanotGGanesanSFeldmanMTomaszewskiJEMadabhushiAExpectation maximization-driven geodesic active contour with overlap resolution (emagacor): application to lymphocyte segmentation on breast cancer histopathologyIEEE Trans Biomed Eng20105771676168910.1109/TBME.2010.204123220172780
CireanDCGiustiAGambardellaLMSchmidhuberJMitosis detection in breast cancer histology images with deep neural networks2013BerlinSpringer411418
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1):1–38
ChenXZhouXWongSTAutomated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopyIEEE Trans Biomed Eng200653476276610.1109/TBME.2006.87020116602586
Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI, pp 3827–3833
SertelOKongJShimadaHCatalyurekUSaltzJHGurcanMNComputer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal developmentPattern recognition2009426109311031:STN:280:DC%2BC2srmtVSgsg%3D%3D10.1016/j.patcog.2008.08.027201613242678741
Ranzato MA, Huang FJ, Boureau YL, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE conference on computer vision and pattern recognition (CVPR’07). IEEE, pp 1–8
Gelasca E.D, Byun J, Obara B, Manjunath B (2008) Evaluation and benchmark for biological image segmentation. In: 15th IEEE International Conference on Image Processing (ICIP 2008). IEEE, pp 1816–1819
ShinHCOrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans Pattern Anal Mach Intell20133581930194310.1109/TPAMI.2012.27723787345
PengXZhaoBYanRTangHYiZBag of events: an efficient probability-based feature extraction method for aer image sensorsIEEE Trans Neural Netw Learn Syst201699113
OjansivuVLinderNRahtuEPietikinenMLundinMJoensuuHLundinJAutomated classification of breast cancer morphology in histopathological imagesDiagn Pathol20138114
SchlkopfBSmolaAMllerKRKernel principal component analysis1997BerlinSpringer583588
HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput20061871527155410.1162/neco.2006.18.7.152716764513
Shlens J (2014) A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100
LiangMLiZChenTZengJIntegrative data analysis of multi-platform cancer data with a multimodal deep learning approachIEEE/ACM Trans Comput Biol Bioinf20151249289371:CAS:528:DC%2BC2sXlvFGlsrc%3D10.1109/TCBB.2014.2377729
Zhang Z, Lyons M, Schuster M, Akamatsu S (1998) Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: 1998 proceedings third IEEE international conference on automatic face and gesture recognition. IEEE, pp 454–459
VapnikVNVapnikVStatistical learning theory1998New YorkWiley
Xu J, Xiang L, Hang R, Wu J (2014) Stacked sparse autoencoder (ssae) based framework for nuclei patch classification on breast cancer histopathology. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, pp 999–1002
Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning. ACM, pp 473–480
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9
Hatipoglu N, Bilgin G (2014) Classification of histopathological images using convolutional neural network. In: 2014 4th international conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6
Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: 5th IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2008). IEEE, pp 284–287
VincentPLarochelleHLajoieIBengioYManzagolPAStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res20101133713408
GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksAistats20109249256
XuJXiangLLiuQGilmoreHWuJTangJMadabhushiAStacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology imagesIEEE Trans Med Imag201635111913010.1109/TMI.2015.2458702
Basavanhally A, Xu J, Madabhushi A, Ganesan S (2009) Computer-aided prognosis of er+ breast cancer histopathology and correlating survival outcome with oncotype dx assay. In: IEEE international symposium on Biomedical imaging: from nano to macro (ISBI’09). IEEE pp 851–854
KowalMComputer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy2014BerlinSpringer213224
LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker H, Guyon I, Muller U, Sackinger E (1995) Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, vol 60. pp 53–60
Poultney C, Chopra S, Cun Y.L (2007) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, pp 1137–1144
FukunagaKHostetlerLDK-nearest-neighbor bayes-risk estimationIEEE Trans Inf Theory197521328529310.1109/TIT.1975.1055373
Vincent P, Larochelle H, Bengio Y, Manzagol P.A Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. ACM, pp 1096–1103
KullbackSLeiblerRAOn information and sufficiencyAnna Math Stat1951221798610.1214/aoms/1177729694
Schmah T, Hinton G.E, Small S.L, Strother S, Zemel R.S (2009) Generative versus discriminative training of RBMS for classification of fmri images. In: Advances in neural information processing systems. pp 1409–1416
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
Pang B, Zhang Y, Chen Q, Gao Z, Peng Q, You X Cell nucleus segmentation in color histopathological imagery using convolutional networks. In: 2010 Chinese conference on pattern recognition (CCPR). IEEE, pp 1–5
Shin M, Jang D, Nam H, Lee K.H., Lee D (2016) Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Biol Bioinf 99:1. doi:10.1109/TCBB.2016.2535233
ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press
GE Hinton (1663_CR11) 2006; 18
S Kullback (1663_CR14) 1951; 22
1663_CR10
1663_CR32
1663_CR5
1663_CR36
1663_CR8
1663_CR33
1663_CR34
PW Huang (1663_CR12) 2009; 28
DG Lowe (1663_CR18) 2004; 60
1663_CR1
O Sertel (1663_CR30) 2009; 42
DC Cirean (1663_CR4) 2013
V Ojansivu (1663_CR21) 2013; 8
X Glorot (1663_CR9) 2010; 9
P Vincent (1663_CR37) 2010; 11
G McLachlan (1663_CR19) 2004
1663_CR15
1663_CR16
1663_CR38
B Schlkopf (1663_CR27) 1997
1663_CR20
X Chen (1663_CR3) 2006; 53
1663_CR40
1663_CR25
1663_CR22
X Peng (1663_CR24) 2016; 99
1663_CR23
HC Shin (1663_CR31) 2013; 35
VN Vapnik (1663_CR35) 1998
J Xu (1663_CR39) 2016; 35
M Kowal (1663_CR13) 2014
B Scholkopf (1663_CR29) 2001
L Breiman (1663_CR2) 2001; 45
M Liang (1663_CR17) 2015; 12
1663_CR28
1663_CR26
H Fatakdawala (1663_CR6) 2010; 57
K Fukunaga (1663_CR7) 1975; 21
References_xml – reference: FukunagaKHostetlerLDK-nearest-neighbor bayes-risk estimationIEEE Trans Inf Theory197521328529310.1109/TIT.1975.1055373
– reference: KowalMComputer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy2014BerlinSpringer213224
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on Machine learning. ACM, pp 473–480
– reference: ChenXZhouXWongSTAutomated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopyIEEE Trans Biomed Eng200653476276610.1109/TBME.2006.87020116602586
– reference: Poultney C, Chopra S, Cun Y.L (2007) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, pp 1137–1144
– reference: Gelasca E.D, Byun J, Obara B, Manjunath B (2008) Evaluation and benchmark for biological image segmentation. In: 15th IEEE International Conference on Image Processing (ICIP 2008). IEEE, pp 1816–1819
– reference: ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press
– reference: OjansivuVLinderNRahtuEPietikinenMLundinMJoensuuHLundinJAutomated classification of breast cancer morphology in histopathological imagesDiagn Pathol20138114
– reference: VincentPLarochelleHLajoieIBengioYManzagolPAStacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterionJ Mach Learn Res20101133713408
– reference: Basavanhally A, Xu J, Madabhushi A, Ganesan S (2009) Computer-aided prognosis of er+ breast cancer histopathology and correlating survival outcome with oncotype dx assay. In: IEEE international symposium on Biomedical imaging: from nano to macro (ISBI’09). IEEE pp 851–854
– reference: Shlens J (2014) A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100
– reference: Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: 5th IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2008). IEEE, pp 284–287
– reference: PengXZhaoBYanRTangHYiZBag of events: an efficient probability-based feature extraction method for aer image sensorsIEEE Trans Neural Netw Learn Syst201699113
– reference: Pang B, Zhang Y, Chen Q, Gao Z, Peng Q, You X Cell nucleus segmentation in color histopathological imagery using convolutional networks. In: 2010 Chinese conference on pattern recognition (CCPR). IEEE, pp 1–5
– reference: HuangPWLeeCHAutomatic classification for pathological prostate images based on fractal analysisIEEE Trans Med Imag20092871037105010.1109/TMI.2009.2012704
– reference: Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1):1–38
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9
– reference: Xu J, Xiang L, Hang R, Wu J (2014) Stacked sparse autoencoder (ssae) based framework for nuclei patch classification on breast cancer histopathology. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE, pp 999–1002
– reference: Hatipoglu N, Bilgin G (2014) Classification of histopathological images using convolutional neural network. In: 2014 4th international conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6
– reference: ShinHCOrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans Pattern Anal Mach Intell20133581930194310.1109/TPAMI.2012.27723787345
– reference: Zhang Z, Lyons M, Schuster M, Akamatsu S (1998) Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: 1998 proceedings third IEEE international conference on automatic face and gesture recognition. IEEE, pp 454–459
– reference: Shin M, Jang D, Nam H, Lee K.H., Lee D (2016) Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Biol Bioinf 99:1. doi:10.1109/TCBB.2016.2535233
– reference: HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Comput20061871527155410.1162/neco.2006.18.7.152716764513
– reference: Schmah T, Hinton G.E, Small S.L, Strother S, Zemel R.S (2009) Generative versus discriminative training of RBMS for classification of fmri images. In: Advances in neural information processing systems. pp 1409–1416
– reference: LiangMLiZChenTZengJIntegrative data analysis of multi-platform cancer data with a multimodal deep learning approachIEEE/ACM Trans Comput Biol Bioinf20151249289371:CAS:528:DC%2BC2sXlvFGlsrc%3D10.1109/TCBB.2014.2377729
– reference: CireanDCGiustiAGambardellaLMSchmidhuberJMitosis detection in breast cancer histology images with deep neural networks2013BerlinSpringer411418
– reference: XuJXiangLLiuQGilmoreHWuJTangJMadabhushiAStacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology imagesIEEE Trans Med Imag201635111913010.1109/TMI.2015.2458702
– reference: VapnikVNVapnikVStatistical learning theory1998New YorkWiley
– reference: FatakdawalaHXuJBasavanhallyABhanotGGanesanSFeldmanMTomaszewskiJEMadabhushiAExpectation maximization-driven geodesic active contour with overlap resolution (emagacor): application to lymphocyte segmentation on breast cancer histopathologyIEEE Trans Biomed Eng20105771676168910.1109/TBME.2010.204123220172780
– reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
– reference: Ranzato MA, Huang FJ, Boureau YL, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE conference on computer vision and pattern recognition (CVPR’07). IEEE, pp 1–8
– reference: KullbackSLeiblerRAOn information and sufficiencyAnna Math Stat1951221798610.1214/aoms/1177729694
– reference: SertelOKongJShimadaHCatalyurekUSaltzJHGurcanMNComputer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal developmentPattern recognition2009426109311031:STN:280:DC%2BC2srmtVSgsg%3D%3D10.1016/j.patcog.2008.08.027201613242678741
– reference: LeCun Y, Jackel L, Bottou L, Brunot A, Cortes C, Denker J, Drucker H, Guyon I, Muller U, Sackinger E (1995) Comparison of learning algorithms for handwritten digit recognition. In: International conference on artificial neural networks, vol 60. pp 53–60
– reference: Vincent P, Larochelle H, Bengio Y, Manzagol P.A Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. ACM, pp 1096–1103
– reference: SchlkopfBSmolaAMllerKRKernel principal component analysis1997BerlinSpringer583588
– reference: GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksAistats20109249256
– reference: McLachlanGDiscriminant analysis and statistical pattern recognition2004HobokenWiley
– reference: Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI, pp 3827–3833
– ident: 1663_CR5
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 57
  start-page: 1676
  issue: 7
  year: 2010
  ident: 1663_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2041232
– volume: 12
  start-page: 928
  issue: 4
  year: 2015
  ident: 1663_CR17
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2014.2377729
– ident: 1663_CR34
  doi: 10.1109/CVPR.2015.7298594
– ident: 1663_CR1
  doi: 10.1109/ISBI.2009.5193186
– volume: 35
  start-page: 1930
  issue: 8
  year: 2013
  ident: 1663_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.277
– volume: 53
  start-page: 762
  issue: 4
  year: 2006
  ident: 1663_CR3
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.870201
– ident: 1663_CR15
  doi: 10.1145/1273496.1273556
– ident: 1663_CR26
  doi: 10.1109/CVPR.2007.383157
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 1663_CR39
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2015.2458702
– volume: 9
  start-page: 249
  year: 2010
  ident: 1663_CR9
  publication-title: Aistats
– ident: 1663_CR10
  doi: 10.1109/IPTA.2014.7001976
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1663_CR2
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 1663_CR11
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 8
  start-page: 1
  issue: 1
  year: 2013
  ident: 1663_CR21
  publication-title: Diagn Pathol
  doi: 10.1186/1746-1596-8-1
– volume: 99
  start-page: 1
  year: 2016
  ident: 1663_CR24
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 213
  volume-title: Computer-aided diagnosis for breast tumor classification using microscopic images of fine needle biopsy
  year: 2014
  ident: 1663_CR13
– ident: 1663_CR25
– ident: 1663_CR33
– ident: 1663_CR32
  doi: 10.1109/TCBB.2016.2535233
– volume: 11
  start-page: 3371
  year: 2010
  ident: 1663_CR37
  publication-title: J Mach Learn Res
– ident: 1663_CR38
  doi: 10.1109/ISBI.2014.6868041
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 1663_CR14
  publication-title: Anna Math Stat
  doi: 10.1214/aoms/1177729694
– volume-title: Statistical learning theory
  year: 1998
  ident: 1663_CR35
– volume: 28
  start-page: 1037
  issue: 7
  year: 2009
  ident: 1663_CR12
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2009.2012704
– ident: 1663_CR16
– start-page: 411
  volume-title: Mitosis detection in breast cancer histology images with deep neural networks
  year: 2013
  ident: 1663_CR4
– volume-title: Discriminant analysis and statistical pattern recognition
  year: 2004
  ident: 1663_CR19
– start-page: 583
  volume-title: Kernel principal component analysis
  year: 1997
  ident: 1663_CR27
– volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
  year: 2001
  ident: 1663_CR29
  doi: 10.7551/mitpress/4175.001.0001
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 1663_CR18
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 1663_CR20
  doi: 10.1109/ISBI.2008.4540988
– volume: 42
  start-page: 1093
  issue: 6
  year: 2009
  ident: 1663_CR30
  publication-title: Pattern recognition
  doi: 10.1016/j.patcog.2008.08.027
– ident: 1663_CR40
  doi: 10.1109/AFGR.1998.670990
– volume: 21
  start-page: 285
  issue: 3
  year: 1975
  ident: 1663_CR7
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1975.1055373
– ident: 1663_CR22
  doi: 10.1109/CCPR.2010.5659313
– ident: 1663_CR23
  doi: 10.1609/aaai.v29i1.9788
– ident: 1663_CR8
  doi: 10.1109/ICIP.2008.4712130
– ident: 1663_CR36
  doi: 10.1145/1390156.1390294
– ident: 1663_CR28
SSID ssj0045735
Score 2.3131433
SecondaryResourceType review_article
Snippet Purpose Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be...
Cell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be characterized...
PurposeCell nuclei classification in breast cancer histopathology images plays an important role in effective diagnose since breast cancer can often be...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms Algorithms
Artificial neural networks
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - pathology
Cancer
Cell Nucleus - classification
Cell Nucleus - pathology
Classification
Classifiers
Computer Imaging
Computer Science
Diagnosis, Computer-Assisted
Feature extraction
Feature recognition
Female
Health Informatics
Histopathology
Humans
Image classification
Image Processing, Computer-Assisted
Imaging
Machine Learning
Medical imaging
Medicine
Medicine & Public Health
Methods
Neural networks
Neural Networks, Computer
Noise reduction
Nuclei (cytology)
Object recognition
Pattern Recognition and Graphics
Radiology
Reproducibility of Results
Review Article
Software
Surgery
Vision
Title Breast cancer cell nuclei classification in histopathology images using deep neural networks
URI https://link.springer.com/article/10.1007/s11548-017-1663-9
https://www.ncbi.nlm.nih.gov/pubmed/28861708
https://www.proquest.com/docview/1993616781
https://www.proquest.com/docview/1936158218
Volume 13
WOSCitedRecordID wos000424344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bShwx9OCliC9aL63bWongkxIwk8xM8mhLxQcVUZF9KAxncpEFnZWd1e83Zy6rxbZQn3Mmc8i5JucGsFei0wZz5NIdeq5sKjlKzLgoVRa8tsY1Vfw3p_n5uR4OzUVXx1332e59SLLR1C_FbuRdc9KqIppJbuZhMVo7TdJ4eXXTq1-V5s1UTaEzwTMlZqHMP23xuzF642G-iY42Rud49V3ofoSVzsdkRy1TrMGcr9ZhtZ_fwDpxXoelsy6wvgG_vlNy-pRZYoIJo-d8VlGr4xGz5F9TQlFDQzaqWNOjmEYZN0_ybHQfdVLNKIP-ljnvHxg1yYwIVG2Keb0J18c_r3-c8G7wArcyT6Zc--glRteiTBKXBhOFPigjy3iZCCqkmIUMkwSVdCbkaOIN20ofUHgXLZ_CXH6ChWpc-S1gmFqUqZNWo6Ka3VKErHToqQ-d0ogDOOwJUNiuKTnNxrgrXtop0zkW8RwLOsfCDGB_9slD25HjX8DbPVWLTjjrgnIWMxFxFQPYnS1HsaLDxcqPHwkmglARsR7A55YbZn9LtKY29nHloCf9q83_hsqX_4L-CsvRNdNtfvg2LEwnj_4bfLBP01E92YH5fKh3Gr5_BmAK-0c
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rTxQxcKInUb-IPNRT0JL4SdKEbru77UchEgzHxciF8MFkM9sHuQQWcnvn77ezj0MCmujnznYnnWc7L4CPJTptMEcu3Z7nyqaSo8SMi1JlwWtrXFPFfzbKx2N9fm6-dXXcdZ_t3ockG019W-xG3jUnrSqimeTmMTxR0WBRHt_307Ne_ao0b6ZqCp0JnimxDGU-tMVdY3TPw7wXHW2MzuHqf6H7El50Pib73DLFGjzy1Tqs9vMbWCfO6_D0pAusb8CPfUpOnzNLTDBj9JzPKmp1PGWW_GtKKGpoyKYVa3oU0yjj5kmeTa-iTqoZZdBfMOf9DaMmmRGBqk0xrzdhcvhlcnDEu8EL3Mo8mXPto5cYXYsySVwaTBT6oIws42UiqJBiFjJMElTSmZCjiTdsK31A4V20fApz-QoG1XXl3wDD1KJMnbQaFdXsliJkpUNPfeiURhzCXk-AwnZNyWk2xmVx206ZzrGI51jQORZmCJ-Wn9y0HTn-BrzVU7XohLMuKGcxExFXMYSd5XIUKzpcrPz1gmAiCBUR6yG8brlh-bdEa2pjH1d2e9L_tvmfUHn7T9Af4NnR5GRUjL6Oj9_B8-im6TZXfAsG89nCb8OK_Tmf1rP3Dff_AkOq_UM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8IGuKLKAKeINbEJ03D7ba72z4ieIEAl0skhAeTzWw_zCWyd7ld_Pvt7MeBOTUxPne227Tz1c7MbwDeF2iVxgy5sEPHpUkER4EpjwqZeqeMtk0V__VFNh6rmxs96fqcVn22ex-SbGsaCKWprA_n1h_eF76Rp81Jw0bBZHK9Bo8l9Qyi6_qX614VyyRrOmxGKo14Ggj6sObvpvjVMK14myuR0sYAjTb_e-nP4Vnne7KjlllewCNXbsFm39eBdWK-BRuXXcD9JXz9REnrNTPEHAtGz_ysJAjkKTPkd1OiUXO2bFqyBruYWhw3T_Vseht0VcUos_4bs87NGYFnhgWUbep5tQ1Xo89Xx6e8a8jAjcjimisXvMfgchRxbBOvgzLwUosiXDK89AmmPsU4Rims9hnqcPM2wnmMnA0WUWImdmC9nJXuFTBMDIrECqNQUi1vEfm0sOgIn04qxAEM-8PITQdWTj0zvuf3MMu0j3nYx5z2MdcD-LD8ZN4idfyNeL8_4bwT2iqnXMY0CmuNBvBuORzEjTYXSze7I5pAQsXFagC7LWcs_xYrRfD2YeRjzwYPJv_TUl7_E_Vb2JicjPKLs_H5HjwN3ptqU8j3Yb1e3Lk38MT8qKfV4qARhJ-0RgY2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+cell+nuclei+classification+in+histopathology+images+using+deep+neural+networks&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Feng%2C+Yangqin&rft.au=Zhang%2C+Lei&rft.au=Zhang%2C+Yi&rft.date=2018-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=2&rft.spage=179&rft.epage=191&rft_id=info:doi/10.1007%2Fs11548-017-1663-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon