Action recognition based on RGB and skeleton data sets: A survey
Action recognition is a major branch of computer vision research. As a widely used technology, action recognition has been applied to human–computer interaction, intelligent pension, and intelligent transportation system. Because of the explosive growth of action recognition related methods, the per...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 512; pp. 287 - 306 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2022
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Action recognition is a major branch of computer vision research. As a widely used technology, action recognition has been applied to human–computer interaction, intelligent pension, and intelligent transportation system. Because of the explosive growth of action recognition related methods, the performance of action recognition on many difficult data sets has improved significantly. In terms of the different data sets used for action recognition, action recognition can mainly be divided into RGB-based action recognition method and skeleton-based action recognition method. The former method can take advantage of the prior knowledge of image recognition. However, it has high requirements for computing power and storage ability, and it is difficult to avoid the influence of irrelevant background and illumination. In contrast, the latter method’s calculation amount and required storage space are reduced significantly. However, it lacks context information that is useful for action recognition. This review provides a comprehensive description of these two methods, covering the milestone algorithms, the state-of-the-art algorithms, the commonly used data sets, evaluation metrics, challenges, and promising future directions. So far as we know, this work is the first survey covering traditional methods of action recognition, RGB-based end-to-end action recognition method, pose estimation, and skeleton-based action recognition in one review. This survey aims to help scholars who study action recognition technology to systematically learn action recognition technology, select data sets, understand current challenges, and choose promising future research directions. |
|---|---|
| AbstractList | Action recognition is a major branch of computer vision research. As a widely used technology, action recognition has been applied to human–computer interaction, intelligent pension, and intelligent transportation system. Because of the explosive growth of action recognition related methods, the performance of action recognition on many difficult data sets has improved significantly. In terms of the different data sets used for action recognition, action recognition can mainly be divided into RGB-based action recognition method and skeleton-based action recognition method. The former method can take advantage of the prior knowledge of image recognition. However, it has high requirements for computing power and storage ability, and it is difficult to avoid the influence of irrelevant background and illumination. In contrast, the latter method’s calculation amount and required storage space are reduced significantly. However, it lacks context information that is useful for action recognition. This review provides a comprehensive description of these two methods, covering the milestone algorithms, the state-of-the-art algorithms, the commonly used data sets, evaluation metrics, challenges, and promising future directions. So far as we know, this work is the first survey covering traditional methods of action recognition, RGB-based end-to-end action recognition method, pose estimation, and skeleton-based action recognition in one review. This survey aims to help scholars who study action recognition technology to systematically learn action recognition technology, select data sets, understand current challenges, and choose promising future research directions. |
| Author | Tian, Zhiqiang Yue, Rujing Du, Shaoyi |
| Author_xml | – sequence: 1 givenname: Rujing surname: Yue fullname: Yue, Rujing organization: School of Software Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China – sequence: 2 givenname: Zhiqiang surname: Tian fullname: Tian, Zhiqiang organization: School of Software Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China – sequence: 3 givenname: Shaoyi surname: Du fullname: Du, Shaoyi organization: Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, Shaanxi, China |
| BookMark | eNqFkMFKAzEQhoNUsK2-gYe8wK6TbHez24NYS61CQZDeQzaZldQ2K0la6NubWk8e9DQ_A9_PzDciA9c7JOSWQc6AVXeb3OFe97ucA-c5NDkIdkGGrBY8q3ldDcgQGl5mvGD8ioxC2AAwwXgzJA8zHW3vqEfdvzv7nVsV0NAU3paPVDlDwwduMaaFUVHRgDFM6YyGvT_g8Zpcdmob8OZnjsn6abGeP2er1-XLfLbKdCF4zGrNKyVAcF4ANi0qrCfaCNa1hUlXd6wqoUBgKBiY2lSqLVVZdoCFVhUXxZhMzrXa9yF47OSntzvlj5KBPEmQG3mWIE8SJDQySUjY9BembVSnL6NXdvsffH-GMf11sOhl0BadRmOTrihNb_8u-ALDG3xQ |
| CitedBy_id | crossref_primary_10_3390_electronics13234733 crossref_primary_10_1016_j_compbiomed_2024_109399 crossref_primary_10_1016_j_neucom_2025_131078 crossref_primary_10_1142_S0218126625504079 crossref_primary_10_1016_j_neucom_2023_03_001 crossref_primary_10_1007_s13042_023_01774_0 crossref_primary_10_1007_s13735_023_00301_9 crossref_primary_10_1016_j_jmsy_2024_08_019 crossref_primary_10_1007_s11760_025_04366_3 crossref_primary_10_1016_j_patrec_2025_01_020 crossref_primary_10_1016_j_aei_2025_103315 crossref_primary_10_1016_j_asoc_2023_111166 crossref_primary_10_1061_JCEMD4_COENG_15830 crossref_primary_10_3390_inventions9040090 crossref_primary_10_1016_j_compbiomed_2023_107420 crossref_primary_10_1016_j_neucom_2025_129697 crossref_primary_10_3390_electronics14071307 crossref_primary_10_1049_ipr2_12703 crossref_primary_10_1111_1749_4877_12985 crossref_primary_10_1016_j_engappai_2025_111996 crossref_primary_10_1109_JBHI_2024_3511601 crossref_primary_10_1007_s11760_024_03613_3 crossref_primary_10_1109_LSP_2024_3525398 crossref_primary_10_1016_j_rcim_2025_103089 crossref_primary_10_1007_s11263_025_02484_6 crossref_primary_10_1038_s41598_025_06839_4 crossref_primary_10_1016_j_neunet_2023_07_051 crossref_primary_10_1016_j_engappai_2024_109569 crossref_primary_10_1007_s11042_023_15334_9 crossref_primary_10_1109_ACCESS_2023_3309420 crossref_primary_10_1007_s00371_024_03424_0 crossref_primary_10_3390_app15158746 crossref_primary_10_2196_51996 crossref_primary_10_1016_j_neucom_2023_126903 crossref_primary_10_1186_s13634_024_01156_w crossref_primary_10_1016_j_neucom_2024_128636 crossref_primary_10_1016_j_imavis_2025_105689 crossref_primary_10_3390_app13042058 crossref_primary_10_3390_s23115179 crossref_primary_10_1016_j_neucom_2024_127482 crossref_primary_10_3390_ani14121774 crossref_primary_10_1016_j_knosys_2024_112453 crossref_primary_10_1016_j_neucom_2023_03_070 crossref_primary_10_1049_ipr2_12754 |
| Cites_doi | 10.1109/TMM.2019.2944745 10.1109/TPAMI.2019.2894422 10.1007/s11042-018-7108-9 10.1117/1.JEI.23.3.033016 10.1609/aaai.v34i07.6759 10.1109/TMM.2019.2960588 10.1007/s11263-022-01594-9 10.3390/su13020970 10.1016/S0019-9958(71)90706-6 10.1016/j.patrec.2017.08.015 10.14358/PERS.76.10.1123 10.1016/j.cviu.2017.10.011 10.1016/j.cviu.2013.01.013 10.1609/aaai.v32i1.11853 10.3390/app9102126 10.3390/s150305197 10.1016/j.jksuci.2019.09.004 10.1109/TPAMI.2017.2712608 10.1109/ACCESS.2020.3049029 10.1609/aaai.v31i1.11212 10.1016/j.patcog.2018.07.028 10.1109/ASAP.2019.00-44 10.1109/TPAMI.2019.2916873 10.1609/aaai.v30i1.10451 10.1109/CVPR.1997.609450 10.1109/TCSVT.2016.2643161 10.1007/11744085_28 10.1038/nbt1206-1565 10.5220/0007555407440748 10.1177/0278364917693927 10.1007/s00371-019-01644-3 10.1007/978-3-319-04114-8_40 10.1016/j.asoc.2019.105820 10.1049/iet-cvi.2016.0355 10.1016/j.gaitpost.2021.04.005 10.1038/nbt1004-1315 10.1109/TMM.2015.2505089 10.1007/s11042-017-5251-3 10.1609/aaai.v32i1.12324 10.3390/s21020452 10.1007/978-1-4471-4730-5_3 10.1109/TCSVT.2016.2576761 10.1109/ICPR.2004.1334462 10.1016/j.cviu.2010.10.002 10.1007/s10489-020-01823-z 10.4018/IJACI.2017100101 10.1109/TIP.2018.2812099 10.1016/j.imavis.2016.06.007 10.1007/978-3-031-19772-7_21 10.1007/s00426-011-0383-y 10.1007/s11760-014-0677-9 10.1109/CVPR52688.2022.01957 10.1007/BFb0053999 10.1016/j.patrec.2018.07.011 10.1609/aaai.v32i1.12333 10.1109/TPAMI.2017.2771306 10.1016/j.cad.2020.102984 10.1109/ACCESS.2020.3023599 10.1609/aaai.v33i01.33018561 10.1109/TII.2019.2910876 10.1016/j.cag.2012.11.004 10.1109/TPAMI.2022.3183112 10.1002/jgt.3190080102 10.1109/TPAMI.2019.2896631 10.1609/aaai.v33i01.33018989 10.1109/JBHI.2019.2904321 10.1016/j.patcog.2015.11.019 10.1007/978-3-319-10578-9_45 10.1109/TNNLS.2020.2978386 10.1186/s13640-020-00501-x 10.1109/ACCESS.2019.2910604 10.1016/j.procs.2018.07.059 10.1080/00401706.1991.10484833 10.1038/scientificamerican0675-76 10.1007/978-1-4899-7641-3_9 10.1007/s00138-010-0298-4 10.1109/TPAMI.2012.59 10.1117/1.JEI.27.4.043050 10.1016/j.procs.2018.05.048 10.1109/CVPR.1992.223161 10.1111/j.1467-9280.1997.tb00442.x 10.3390/s20123499 10.1007/978-1-4615-0377-4_5 10.1109/TIP.2020.3028207 10.1016/j.neucom.2020.05.118 10.1007/s11263-012-0594-8 10.1109/ACCESS.2018.2869751 10.1109/LSENS.2018.2878572 10.1109/TPAMI.2019.2929257 10.1016/j.jmsy.2020.04.007 10.1007/978-3-030-20893-6_23 10.1109/TNN.2008.2005605 10.1609/aaai.v36i1.19957 10.3390/sym12050744 10.1109/CVPR52688.2022.01933 10.1007/978-3-642-15549-9_36 10.1016/j.imavis.2017.01.010 10.1109/TMM.2017.2749159 10.1007/978-3-030-58558-7_31 10.3390/s20174758 10.1109/5.18626 10.1109/CVPR.1998.698711 10.1109/CVPR42600.2020.00059 10.1609/aaai.v33i01.33018303 10.1016/j.cad.2016.05.009 10.1016/j.patcog.2016.05.019 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2022.09.071 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 306 |
| ExternalDocumentID | 10_1016_j_neucom_2022_09_071 S0925231222011596 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c372t-8c26a7072230e9beae84cd71fb3d202f16503e01e710d8d6ab5a55f0e3ca6273 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862479300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:12:59 EST 2025 Tue Nov 18 22:34:40 EST 2025 Fri Feb 23 02:39:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | RGB-based end-to-end action recognition method Skeleton-based cascaded action recognition method Pose estimation Transfer learning Unsupervised learning Self-supervised learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-8c26a7072230e9beae84cd71fb3d202f16503e01e710d8d6ab5a55f0e3ca6273 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2022_09_071 crossref_citationtrail_10_1016_j_neucom_2022_09_071 elsevier_sciencedirect_doi_10_1016_j_neucom_2022_09_071 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cheng, Zhang, He, Chen, Cheng, Lu (b0105) 2020 Xiong, Zhang, Wang, Liu, Gao (b0475) 2020; 56 Ghadiyaram, Tran, Mahajan (b1220) 2019 Liu, Shahroudy, Perez, Wang, Duan, Kot (b1040) 2019; 42 Lima, Fernandes, Barros (b0585) 2017 Eddy (b0255) 2004; 22 Ye, Pu, Zhong, Li, Xie, Tang (b0880) 2020 Kumar Dwivedi, Gupta, Mitra, Ahmed, Jain (b0140) 2019 Papadopoulos, Axenopoulos, Daras (b0415) 2014 Zhu, Zhang, Shen, Song (b0320) 2016; 42 Tran, Wang, Torresani, Ray, LeCun, Paluri (b0570) 2018 C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local svm approach, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, Vol. 3, IEEE, 2004, pp. 32–36. Zhang, Xu, Tao (b0875) 2020 Tsai, Hsu, Wang, Huang (b1135) 2020; 20 Chaquet, Carmona, Fernández-Caballero (b0090) 2013; 117 Juang, Rabiner (b0270) 1991; 33 Maeda, Ewerton, Neumann, Lioutikov, Peters (b0035) 2017; 36 Stroud, Ross, Sun, Deng, Sukthankar (b0545) 2020 Du, Fu, Wang (b0770) 2015 Shen, Wu, Xu (b1080) 2021 Khalid, Yu (b1300) 2018 Sun, Xiao, Liu, Wang (b0130) 2019 Si, Chen, Wang, Wang, Tan (b0750) 2019 Chen, Zhang, Yuan, Li, Deng, Hu (b0890) 2021 Thoker, Doughty, Snoek (b1385) 2021 Papadopoulos, Daras (b1165) 2016; 28 Du, Wang, Wang (b1110) 2015 F. Lv, R. Nevatia, Recognition and segmentation of 3-d human action using hmm and multi-class adaboost, in: European conference on computer vision, Springer, 2006, pp. 359–372. Plesník (b0265) 1984; 8 Weinland, Özuysal, Fua (b0185) 2010 Yang, Tian (b0400) 2012 Yang, Yuan, Li, Du, Xing, Hu, Maybank (b0515) 2019; 85 Wang, Schmid (b0250) 2013 Hara, Kataoka, Satoh (b0535) 2017 Hussein, Torki, Gowayyed, El-Saban (b0380) 2013 S. Takeuchi, S. Tamura, S. Hayamizu, Human action recognition using acceleration information based on hidden markov model, in: Proceedings: APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and Conference, Asia-Pacific Signal and Information Processing Association, 2009 Annual, 2009, pp. 829–832. Qin, Mo, Li, Luo (b0900) 2020; 36 Carreira, Zisserman (b0955) 2017 Gales, Young (b0280) 2007; 1 Song, Zhang, Wang (b0920) 2019 Materzynska, Xiao, Herzig, Xu, Wang, Darrell (b1245) 2020 Cao, Simon, Wei, Sheikh (b0705) 2017 Presti, La Cascia (b0115) 2016; 53 Cui, Zhu, Hua, Yin, Liu (b0815) 2018; 27 Noble (b0175) 2006; 24 Ahad, Tan, Kim, Ishikawa (b0215) 2012; 23 He, Wu, Cheng, Yuan, Jiang (b0600) 2021; 444 Yan, Xiong, Lin (b0835) 2018 Ke, Bennamoun, An, Sohel, Boussaid (b0810) 2018; 27 Gammulle, Denman, Sridharan, Fookes (b0500) 2017 Jaouedi, Boujnah, Bouhlel (b0940) 2020; 32 S. Alfasly, J. Lu, C. Xu, Y. Zou, Learnable irrelevant modality dropout for multimodal action recognition on modality-specific annotated videos, arXiv preprint arXiv:2203.03014 (2022). Nagrani, Sun, Ross, Sukthankar, Schmid, Zisserman (b1285) 2020 Shi, Zhang, Cheng, Lu (b0870) 2019 Zheng, Hong, Zhang, Li, Li (b0635) 2016; 78 Khalid, Gochoo, Jalal, Kim (b0010) 2021; 13 Mishra, Verma, Reddy, Arulkumar, Rai, Mittal (b0145) 2018 Vemulapalli, Arrate, Chellappa (b0385) 2014 Ke, Bennamoun, An, Sohel, Boussaid (b0805) 2017 Zheng, Li, Zhang, Huang, Wang (b0740) 2019 He, Zhang, Ren, Sun (b0670) 2016 Ryoo, Aggarwal (b0340) 2006; Vol. 2 Lu, Yao, Zhao, Sun, Zhang (b0580) 2019; 78 Liu, Shahroudy, Xu, Kot, Wang (b1045) 2017; 40 Wang, Hu, Lai, Zhang, Zheng (b1430) 2019 Li, Liu, Zhang, Ni, Wang, Li (b0480) 2021 T. Lan, T.-C. Chen, S. Savarese, A hierarchical representation for future action prediction, in: European conference on computer vision, Springer, 2014, pp. 689–704. Song, Zhang, Shan, Wang (b0925) 2020 J. Carreira, E. Noland, C. Hillier, A. Zisserman, A short note on the kinetics-700 human action dataset, arXiv preprint arXiv:1907.06987 (2019). Shu, Tang, Qi, Song, Li, Zhang (b1150) 2017 Bates, Ramirez-Amaro, Inamura, Cheng (b0045) 2017 S. Suthaharan, Support vector machine, in: Machine learning models and algorithms for big data classification, Springer, 2016, pp. 207–235. D. He, F. Li, Q. Zhao, X. Long, Y. Fu, S. Wen, Exploiting spatial-temporal modelling and multi-modal fusion for human action recognition, arXiv preprint arXiv:1806.10319 (2018). W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al., The kinetics human action video dataset, arXiv preprint arXiv:1705.06950 (2017). Yang, Liu, Lu, Er, Kot (b1255) 2020 Iqbal, Garbade, Gall (b1265) 2017 Sudha, Sriraghav, Jacob, Manisha (b0050) 2017; 8 Aho, Ullman (b0335) 1971; 19 Tu, Liu, Meng, Liu, Ding (b1190) 2018 Chen, Wu, Konrad, Ishwar (b0455) 2017 Chen, Wang, Peng, Zhang, Yu, Sun (b0660) 2018 Caetano, Brémond, Schwartz (b0780) 2019 Sudhakaran, Escalera, Lanz (b0985) 2020 K. Liu, W. Liu, C. Gan, M. Tan, H. Ma, T-c3d: Temporal convolutional 3d network for real-time action recognition, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 32, 2018. Liu, Akhtar, Mian (b0165) 2020 H. Fan, C. Luo, C. Zeng, M. Ferianc, Z. Que, S. Liu, X. Niu, W. Luk, F-e3d: Fpga-based acceleration of an efficient 3d convolutional neural network for human action recognition, in: 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP), Vol. 2160, IEEE, 2019, pp. 1–8. Pony, Naeh, Mannor (b0155) 2021 Oliver, Horvitz, Garg (b0310) 2002 Kwon, Kim, Kwak, Cho (b0990) 2021 Urgesi, Savonitto, Fabbro, Aglioti (b1410) 2012; 76 Simon, Joo, Matthews, Sheikh (b0710) 2017 Zhao, Xu, Su, Ji (b0325) 2019 Wang, Tong, Ji, Wu (b1000) 2021 Xu, Hospedales, Gong (b1305) 2015 Y. Zhu, Z. Lan, S. Newsam, A. Hauptmann, Hidden two-stream convolutional networks for action recognition, in: Asian conference on computer vision, Springer, 2018, pp. 363–378. Wang, Xiong, Lin, Van Gool (b1210) 2017 Jing, Ye, Yang, Tian (b0575) 2017 Guenterberg, Ghasemzadeh, Loseu, Jafari (b0300) 2009 Cai, Jiang, Han, Jia, Lu (b0210) 2021 Fan, Yu, Ding, Yang, Kankanhalli (b0645) 2020 Leberl, Irschara, Pock, Meixner, Gruber, Scholz, Wiechert (b0630) 2010; 76 Elharrouss, Almaadeed, Al-Maadeed, Bouridane, Beghdadi (b0005) 2021; 51 Kong, Tao, Fu (b1420) 2017 Y. Wang, Y. Xiao, F. Xiong, W. Jiang, Z. Cao, J.T. Zhou, J. Yuan, 3dv: 3d dynamic voxel for action recognition in depth video, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 511–520. Li, Liu, Yongkang, Nishimura, Kankanhalli (b1140) 2020 A. Thatipelli, S. Narayan, S. Khan, R.M. Anwer, F.S. Khan, B. Ghanem, Spatio-temporal relation modeling for few-shot action recognition, arXiv preprint arXiv:2112.05132 (2021). Li, Gavrilyuk, Gavves, Jain, Snoek (b1085) 2018; 166 A. Veenendaal, E. Jones, Z. Gang, E. Daly, S. Vartak, R. Patwardhan, Dynamic probabilistic network based human action recognition, arXiv preprint arXiv:1610.06395 (2016). Dawar, Ostadabbas, Kehtarnavaz (b1195) 2018; 3 Munro, Damen (b1295) 2020 Eum, Yoon, Lee, Park (b0240) 2015; 15 Huynh-The, Hua, Kim (b1200) 2019; 16 Diwadkar, McNamara (b0190) 1997; 8 S. Song, C. Lan, J. Xing, W. Zeng, J. Liu, An end-to-end spatio-temporal attention model for human action recognition from skeleton data, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 31, 2017. Bagautdinov, Alahi, Fleuret, Fua, Savarese (b1145) 2017 Cai, Zhou, Wu, Luo, Li (b0410) 2015; 18 Gao, Oh, Grauman, Torresani (b1100) 2020 Kong, Fu (b0085) 2022; 130 Wang, He, Peng, Shao, Yang, Zhou, Hogg (b0160) 2021 De Boissiere, Noumeir (b1120) 2020; 8 Li, Huang, Wang, Hou, Yang (b0650) 2021 Xia, Gao (b1055) 2021; 9 Fan, Buch, Wang, Cao, Zhu, Niebles, Fei-Fei (b1095) 2020 Yang, Zhang, Cai, Xu (b1060) 2021; 21 Jiang, Wang, Gan, Wu, Yan (b0970) 2019 Li, Dai, Cheng, Chen, Lin, He (b0755) 2017 Arunnehru, Chamundeeswari, Bharathi (b0565) 2018; 133 T. Guo, H. Liu, Z. Chen, M. Liu, T. Wang, R. Ding, Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 762–770. Zhao, Man, Smith, Siddique, Guan (b0495) 2020; 2020 Shao, Zhao, Dai, Lin (b1025) 2020 Cao, Hidalgo, Simon, Wei, Sheikh (b0680) 2019; 43 H. Goto, J. Miura, J. Sugiyama, Human-robot collaborative assembly by on-line human action recognition based on an fsm task model, in: Human-robot interaction 2013 workshop on collaborative manipulation, 2013. Han, Zhang, Zhuo, Huang, Zhang (b0470) 2018; 107 J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, A. Zisserman, A short note about kinetics-600, arXiv preprint arXiv:1808.01340 (2018). M. Monfort, K. Ramakrishnan, A. Andonian, B.A. McNamara, A. Lascelles, B. Pan, Q. Fan, D. Gutfreund, R. Feris, A. Oliva, Multi-moments in time: Learning and interpreting models for multi-action video understanding, arXiv preprint arXiv:1911.00232 (2019). Chen, Chen, Chen, Lee (b0405) 2006 Kumar, Kumar, Seah, Xia, Shao (b1400) 2020 Iosifidis, Tefas, Pitas (b1175) 2012 Li, Hou, Wang, Gao, Xu, Li (b0620) 2021 J. Gao, T. Zhang, C. Xu, I know the relationships: Zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 33, 2019, pp. 8303–8311. Lan, Zhu, Zamir, Savarese (b0330) 2015 Zhu, Shao, Xie, Fang (b0070) 2016; 55 Shahroudy, Liu, Ng, Wang (b1035) 2016 Goyal, Ebrahimi Kahou, Michalski, Materzynska, Westphal, Kim, Haenel, Fruend, Yianilos, Mueller-Freitag (b0980) 2017 K. Soomro, A.R. Zamir, M. Shah, Ucf101: A dataset of 101 human actions classes from videos in the wild, arXiv preprint arXiv:1212.0402 (2012). Zhang, Li, Ogunbona, Wang, Tang (b0100) 2016; 60 Jiang, Rozgic, Adali (b0550) 2017 Kim, Yun, Park, Choi (b1125) 2019 Yeung, Yang, Cheng, Du, Tong (b0125) 2021; 87 Johansson (b0170) 1975; 232 Singh, Kushwaha, Srivastava (b0020) 2019; 78 Liu, Wang, Hu, Duan, Kot (b0735) 2017 Zhang, Lan, Zeng, Xing, Xue, Zheng (b0110) 2020 Zhang, Lan, Xing, Zeng, Xue, Zheng (b0785) 2019; 41 Liu, Akhtar, Mian (b0800) 2019 Ji, Xu, Yang, Yu (b0510) 2012; 35 C.S. Pinhanez, A.F. Bobick, Human action detection using pnf propagation of temporal constraints, in: Proceedings. 1998 IEEE Computer Choi (10.1016/j.neucom.2022.09.071_b1360) 2020 Zhou (10.1016/j.neucom.2022.09.071_b0200) 2021 10.1016/j.neucom.2022.09.071_b0260 Kong (10.1016/j.neucom.2022.09.071_b0085) 2022; 130 Ji (10.1016/j.neucom.2022.09.071_b0510) 2012; 35 Xu (10.1016/j.neucom.2022.09.071_b1305) 2015 Si (10.1016/j.neucom.2022.09.071_b1380) 2020 Khalid (10.1016/j.neucom.2022.09.071_b0010) 2021; 13 Elharrouss (10.1016/j.neucom.2022.09.071_b0005) 2021; 51 Dong (10.1016/j.neucom.2022.09.071_b1075) 2019; 9 Zheng (10.1016/j.neucom.2022.09.071_b0640) 2021; 132 Wu (10.1016/j.neucom.2022.09.071_b1105) 2018 Li (10.1016/j.neucom.2022.09.071_b1350) 2021 Liu (10.1016/j.neucom.2022.09.071_b0165) 2020 Shahroudy (10.1016/j.neucom.2022.09.071_b1035) 2016 Wang (10.1016/j.neucom.2022.09.071_b0590) 2018 Feichtenhofer (10.1016/j.neucom.2022.09.071_b0450) 2019 10.1016/j.neucom.2022.09.071_b1235 Yeung (10.1016/j.neucom.2022.09.071_b0125) 2021; 87 Zheng (10.1016/j.neucom.2022.09.071_b0635) 2016; 78 10.1016/j.neucom.2022.09.071_b0945 10.1016/j.neucom.2022.09.071_b0030 Dawar (10.1016/j.neucom.2022.09.071_b1195) 2018; 3 Herath (10.1016/j.neucom.2022.09.071_b0075) 2017; 60 Lu (10.1016/j.neucom.2022.09.071_b0580) 2019; 78 Eum (10.1016/j.neucom.2022.09.071_b0240) 2015; 15 Wang (10.1016/j.neucom.2022.09.071_b0245) 2013; 103 10.1016/j.neucom.2022.09.071_b0150 10.1016/j.neucom.2022.09.071_b1365 Hwang (10.1016/j.neucom.2022.09.071_b1395) 2021 Mishra (10.1016/j.neucom.2022.09.071_b0145) 2018 10.1016/j.neucom.2022.09.071_b0390 Tran (10.1016/j.neucom.2022.09.071_b0570) 2018 Hsiao (10.1016/j.neucom.2022.09.071_b1270) 2021 Wang (10.1016/j.neucom.2022.09.071_b1430) 2019 Sun (10.1016/j.neucom.2022.09.071_b0095) 2022 Xu (10.1016/j.neucom.2022.09.071_b0460) 2018 Wang (10.1016/j.neucom.2022.09.071_b0250) 2013 10.1016/j.neucom.2022.09.071_b1005 10.1016/j.neucom.2022.09.071_b1010 Sudha (10.1016/j.neucom.2022.09.071_b0050) 2017; 8 Ahsan (10.1016/j.neucom.2022.09.071_b1230) 2019 Cao (10.1016/j.neucom.2022.09.071_b0680) 2019; 43 Simon (10.1016/j.neucom.2022.09.071_b0710) 2017 10.1016/j.neucom.2022.09.071_b0285 10.1016/j.neucom.2022.09.071_b1375 Li (10.1016/j.neucom.2022.09.071_b0755) 2017 Kwon (10.1016/j.neucom.2022.09.071_b0490) 2018; 112 Cheng (10.1016/j.neucom.2022.09.071_b0105) 2020 Guenterberg (10.1016/j.neucom.2022.09.071_b0300) 2009 Wang (10.1016/j.neucom.2022.09.071_b0160) 2021 Wu (10.1016/j.neucom.2022.09.071_b0830) 2020; 32 Hara (10.1016/j.neucom.2022.09.071_b0535) 2017 Vo (10.1016/j.neucom.2022.09.071_b0355) 2014 10.1016/j.neucom.2022.09.071_b1015 He (10.1016/j.neucom.2022.09.071_b0600) 2021; 444 10.1016/j.neucom.2022.09.071_b0965 10.1016/j.neucom.2022.09.071_b0295 Rosani (10.1016/j.neucom.2022.09.071_b0345) 2014; 23 Akkaladevi (10.1016/j.neucom.2022.09.071_b0025) 2015 Caetano (10.1016/j.neucom.2022.09.071_b0780) 2019 Kumar Dwivedi (10.1016/j.neucom.2022.09.071_b0140) 2019 Vemulapalli (10.1016/j.neucom.2022.09.071_b0385) 2014 Chen (10.1016/j.neucom.2022.09.071_b0540) 2019 Hussein (10.1016/j.neucom.2022.09.071_b0380) 2013 10.1016/j.neucom.2022.09.071_b0290 Aho (10.1016/j.neucom.2022.09.071_b0335) 1971; 19 Juang (10.1016/j.neucom.2022.09.071_b0270) 1991; 33 Zhang (10.1016/j.neucom.2022.09.071_b0100) 2016; 60 Fan (10.1016/j.neucom.2022.09.071_b1095) 2020 De Boissiere (10.1016/j.neucom.2022.09.071_b1120) 2020; 8 10.1016/j.neucom.2022.09.071_b0730 Yang (10.1016/j.neucom.2022.09.071_b1355) 2021 Dai (10.1016/j.neucom.2022.09.071_b0425) 2019 Liu (10.1016/j.neucom.2022.09.071_b0655) 2019; 42 10.1016/j.neucom.2022.09.071_b0860 Chen (10.1016/j.neucom.2022.09.071_b0195) 2021 Gales (10.1016/j.neucom.2022.09.071_b0280) 2007; 1 Chaquet (10.1016/j.neucom.2022.09.071_b0090) 2013; 117 10.1016/j.neucom.2022.09.071_b0180 Wang (10.1016/j.neucom.2022.09.071_b0560) 2016; 27 10.1016/j.neucom.2022.09.071_b1390 Cai (10.1016/j.neucom.2022.09.071_b0210) 2021 Girdhar (10.1016/j.neucom.2022.09.071_b0615) 2019 Diwadkar (10.1016/j.neucom.2022.09.071_b0190) 1997; 8 Arunnehru (10.1016/j.neucom.2022.09.071_b0565) 2018; 133 Gammulle (10.1016/j.neucom.2022.09.071_b0500) 2017 Wang (10.1016/j.neucom.2022.09.071_b0720) 2018; 6 Li (10.1016/j.neucom.2022.09.071_b0530) 2017 10.1016/j.neucom.2022.09.071_b0625 10.1016/j.neucom.2022.09.071_b0745 Wei (10.1016/j.neucom.2022.09.071_b0700) 2016 Thoker (10.1016/j.neucom.2022.09.071_b1385) 2021 Yang (10.1016/j.neucom.2022.09.071_b0515) 2019; 85 Weinland (10.1016/j.neucom.2022.09.071_b0185) 2010 10.1016/j.neucom.2022.09.071_b1160 10.1016/j.neucom.2022.09.071_b1280 Perrett (10.1016/j.neucom.2022.09.071_b0610) 2019 Li (10.1016/j.neucom.2022.09.071_b0840) 2019 Shu (10.1016/j.neucom.2022.09.071_b1150) 2017 Rasouli (10.1016/j.neucom.2022.09.071_b1405) 2022 Zheng (10.1016/j.neucom.2022.09.071_b0740) 2019 Liu (10.1016/j.neucom.2022.09.071_b0850) 2020 Tran (10.1016/j.neucom.2022.09.071_b0440) 2017 10.1016/j.neucom.2022.09.071_b0995 Kong (10.1016/j.neucom.2022.09.071_b1420) 2017 Li (10.1016/j.neucom.2022.09.071_b0620) 2021 Stroud (10.1016/j.neucom.2022.09.071_b0545) 2020 Papadopoulos (10.1016/j.neucom.2022.09.071_b1165) 2016; 28 Jiang (10.1016/j.neucom.2022.09.071_b0970) 2019 Feichtenhofer (10.1016/j.neucom.2022.09.071_b0435) 2016 Liu (10.1016/j.neucom.2022.09.071_b0800) 2019 Shen (10.1016/j.neucom.2022.09.071_b1080) 2021 Scarselli (10.1016/j.neucom.2022.09.071_b0825) 2008; 20 Du (10.1016/j.neucom.2022.09.071_b1110) 2015 Wang (10.1016/j.neucom.2022.09.071_b1210) 2017 Mandal (10.1016/j.neucom.2022.09.071_b1310) 2019 10.1016/j.neucom.2022.09.071_b1290 Song (10.1016/j.neucom.2022.09.071_b0920) 2019 Nguyen (10.1016/j.neucom.2022.09.071_b1215) 2018 Johansson (10.1016/j.neucom.2022.09.071_b0170) 1975; 232 Wang (10.1016/j.neucom.2022.09.071_b1070) 2014 Tsai (10.1016/j.neucom.2022.09.071_b1135) 2020; 20 Zhou (10.1016/j.neucom.2022.09.071_b1275) 2020; 84 Liu (10.1016/j.neucom.2022.09.071_b1115) 2019 Eddy (10.1016/j.neucom.2022.09.071_b0255) 2004; 22 Cui (10.1016/j.neucom.2022.09.071_b0725) 2018 Han (10.1016/j.neucom.2022.09.071_b0470) 2018; 107 Leberl (10.1016/j.neucom.2022.09.071_b0630) 2010; 76 Noble (10.1016/j.neucom.2022.09.071_b0175) 2006; 24 10.1016/j.neucom.2022.09.071_b0520 Zhang (10.1016/j.neucom.2022.09.071_b0110) 2020 Xia (10.1016/j.neucom.2022.09.071_b1055) 2021; 9 Luvizon (10.1016/j.neucom.2022.09.071_b1260) 2018 10.1016/j.neucom.2022.09.071_b0525 10.1016/j.neucom.2022.09.071_b1065 Bilen (10.1016/j.neucom.2022.09.071_b1205) 2016 Xiong (10.1016/j.neucom.2022.09.071_b0475) 2020; 56 Yamamoto (10.1016/j.neucom.2022.09.071_b0350) 2006 Chen (10.1016/j.neucom.2022.09.071_b0890) 2021 Zhang (10.1016/j.neucom.2022.09.071_b0875) 2020 10.1016/j.neucom.2022.09.071_b1180 Dai (10.1016/j.neucom.2022.09.071_b0505) 2020; 86 Materzynska (10.1016/j.neucom.2022.09.071_b1245) 2020 Li (10.1016/j.neucom.2022.09.071_b1085) 2018; 166 Kwon (10.1016/j.neucom.2022.09.071_b0990) 2021 Zhou (10.1016/j.neucom.2022.09.071_b1240) 2015 Fan (10.1016/j.neucom.2022.09.071_b0645) 2020 10.1016/j.neucom.2022.09.071_b0895 Liu (10.1016/j.neucom.2022.09.071_b1040) 2019; 42 Chen (10.1016/j.neucom.2022.09.071_b0695) 2020; 12 10.1016/j.neucom.2022.09.071_b0420 Demir (10.1016/j.neucom.2022.09.071_b1090) 2021 Ghadiyaram (10.1016/j.neucom.2022.09.071_b1220) 2019 Zhang (10.1016/j.neucom.2022.09.071_b0760) 2017 Varol (10.1016/j.neucom.2022.09.071_b0950) 2017; 40 Gao (10.1016/j.neucom.2022.09.071_b1100) 2020 Sun (10.1016/j.neucom.2022.09.071_b0130) 2019 Alp (10.1016/j.neucom.2022.09.071_b0230) 2017 Qiao (10.1016/j.neucom.2022.09.071_b0690) 2017 Ke (10.1016/j.neucom.2022.09.071_b0805) 2017 Chen (10.1016/j.neucom.2022.09.071_b1320) 2021 10.1016/j.neucom.2022.09.071_b0305 Kuehne (10.1016/j.neucom.2022.09.071_b0960) 2011 Pony (10.1016/j.neucom.2022.09.071_b0155) 2021 Yang (10.1016/j.neucom.2022.09.071_b1255) 2020 Seemanthini (10.1016/j.neucom.2022.09.071_b0015) 2018; 132 Xiao (10.1016/j.neucom.2022.09.071_b0665) 2018 Shi (10.1016/j.neucom.2022.09.071_b0870) 2019 Jing (10.1016/j.neucom.2022.09.071_b0575) 2017 Koohzadi (10.1016/j.neucom.2022.09.071_b0080) 2017; 11 Chan (10.1016/j.neucom.2022.09.071_b0855) 2020; 20 Cao (10.1016/j.neucom.2022.09.071_b0705) 2017 Smaira (10.1016/j.neucom.2022.09.071_b1020) 2020 Lin (10.1016/j.neucom.2022.09.071_b1370) 2020 Li (10.1016/j.neucom.2022.09.071_b0480) 2021 10.1016/j.neucom.2022.09.071_b0795 10.1016/j.neucom.2022.09.071_b0675 Canton-Ferrer (10.1016/j.neucom.2022.09.071_b1170) 2006 Tekin (10.1016/j.neucom.2022.09.071_b1250) 2019 Si (10.1016/j.neucom.2022.09.071_b0750) 2019 Phang (10.1016/j.neucom.2022.09.071_b1130) 2019 Li (10.1016/j.neucom.2022.09.071_b0975) 2020 Rabiner (10.1016/j.neucom.2022.09.071_b0275) 1989; 77 Xia (10.1016/j.neucom.2022.09.071_b0395) 2012 Singh (10.1016/j.neucom.2022.09.071_b0020) 2019; 78 Duan (10.1016/j.neucom.2022.09.071_b0555) 2020 Shi (10.1016/j.neucom.2022.09.071_b0865) 2020; 29 Zhu (10.1016/j.neucom.2022.09.071_b0320) 2016; 42 Lima (10.1016/j.neucom.2022.09.071_b0585) 2017 10.1016/j.neucom.2022.09.071_b0445 Weinland (10.1016/j.neucom.2022.09.071_b0065) 2011; 115 Kumar (10.1016/j.neucom.2022.09.071_b1400) 2020 10.1016/j.neucom.2022.09.071_b0685 Elkholy (10.1016/j.neucom.2022.09.071_b0060) 2019; 24 Suma (10.1016/j.neucom.2022.09.071_b0055) 2013; 37 Liu (10.1016/j.neucom.2022.09.071_b0735) 2017 10.1016/j.neucom.2022.09.071_b1415 Angelini (10.1016/j.neucom.2022.09.071_b1185) 2019; 22 Zhao (10.1016/j.neucom.2022.09.071_b0495) 2020; 2020 Liu (10.1016/j.neucom.2022.09.071_b0595) 2016; Vol. 1 Huynh-The (10.1016/j.neucom.2022.09.071_b1200) 2019; 16 Duan (10.1016/j.neucom.2022.09.071_b0820) 2022 Kim (10.1016/j.neucom.2022.09.071_b1125) 2019 Li (10.1016/j.neucom.2022.09.071_b0205) 2021 Gu (10.1016/j.neucom.2022.09.071_b0225) 2018 10.1016/j.neucom.2022.09.071_b1425 Su (10.1016/j.neucom.2022.09.071_b1225) 2020 Li (10.1016/j.neucom.2022.09.071_b0650) 2021 Nagrani (10.1016/j.neucom.2022.09.071_b1285) 2020 Sabater (10.1016/j.neucom.2022.09.071_b1340) 2021 Papadopoulos (10.1016/j.neucom.2022.09.071_b0415) 2014 Patwardhan (10.1016/j.neucom.2022.09.071_b0365) 2015 Ryoo (10.1016/j.neucom.2022.09.071_b0340) 2006; Vol. 2 Lee (10.1016/j.neucom.2022.09.071_b0715) 2017 Chen (10.1016/j.neucom.2022.09.071_b0405) 2006 10.1016/j.neucom.2022.09.071_b0220 Bagautdinov (10.1016/j.neucom.2022.09.071_b1145) 2017 Urges |
| References_xml | – volume: 42 start-page: 494 year: 2019 end-page: 501 ident: b0655 article-title: Feature boosting network for 3d pose estimation publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 53 start-page: 130 year: 2016 end-page: 147 ident: b0115 article-title: 3d skeleton-based human action classification: A survey publication-title: Pattern Recognition – start-page: 5137 year: 2018 end-page: 5146 ident: b1260 article-title: 2d/3d pose estimation and action recognition using multitask deep learning, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 232 start-page: 76 year: 1975 end-page: 89 ident: b0170 article-title: Visual motion perception publication-title: Scientific American – volume: 23 year: 2014 ident: b0345 article-title: Human action recognition using a context-free grammar publication-title: Journal of Electronic Imaging – start-page: 12026 year: 2019 end-page: 12035 ident: b0845 article-title: Two-stream adaptive graph convolutional networks for skeleton-based action recognition, in publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – volume: 11 start-page: 623 year: 2017 end-page: 632 ident: b0080 article-title: Survey on deep learning methods in human action recognition publication-title: IET Computer Vision – start-page: 1607 year: 2018 end-page: 1615 ident: b0460 article-title: Fully-coupled two-stream spatiotemporal networks for extremely low resolution action recognition publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – reference: A. Thatipelli, S. Narayan, S. Khan, R.M. Anwer, F.S. Khan, B. Ghanem, Spatio-temporal relation modeling for few-shot action recognition, arXiv preprint arXiv:2112.05132 (2021). – reference: D. He, F. Li, Q. Zhao, X. Long, Y. Fu, S. Wen, Exploiting spatial-temporal modelling and multi-modal fusion for human action recognition, arXiv preprint arXiv:1806.10319 (2018). – start-page: 91 year: 2022 end-page: 97 ident: b1405 article-title: Multi-modal hybrid architecture for pedestrian action prediction publication-title: 2022 IEEE Intelligent Vehicles Symposium (IV) – year: 2018 ident: b0835 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: Thirty-second AAAI conference on artificial intelligence – start-page: 2702 year: 2016 end-page: 2706 ident: b0040 article-title: Multimodal human action recognition in assistive human-robot interaction publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 395 year: 2018 end-page: 400 ident: b0225 article-title: Depth mhi based deep learning model for human action recognition publication-title: 2018 13th World Congress on Intelligent Control and Automation (WCICA) – reference: F. Lv, R. Nevatia, Recognition and segmentation of 3-d human action using hmm and multi-class adaboost, in: European conference on computer vision, Springer, 2006, pp. 359–372. – start-page: 635 year: 2010 end-page: 648 ident: b0185 article-title: Making action recognition robust to occlusions and viewpoint changes, in publication-title: European Conference on Computer Vision, Springer – start-page: 1717 year: 2020 end-page: 1726 ident: b1360 article-title: Unsupervised and semi-supervised domain adaptation for action recognition from drones, in publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – volume: 16 start-page: 3100 year: 2019 end-page: 3111 ident: b1200 article-title: Encoding pose features to images with data augmentation for 3-d action recognition publication-title: IEEE Transactions on Industrial Informatics – reference: K. Liu, W. Liu, C. Gan, M. Tan, H. Ma, T-c3d: Temporal convolutional 3d network for real-time action recognition, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 32, 2018. – year: 2020 ident: b0645 article-title: Pstnet: Point spatio-temporal convolution on point cloud sequences, in – start-page: 171 year: 2006 end-page: 178 ident: b0405 article-title: Human action recognition using star skeleton, in publication-title: Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks – volume: 13 start-page: 970 year: 2021 ident: b0010 article-title: Modeling two-person segmentation and locomotion for stereoscopic action identification: A sustainable video surveillance system publication-title: Sustainability – start-page: 2641 year: 2014 end-page: 2648 ident: b0355 article-title: From stochastic grammar to bayes network: Probabilistic parsing of complex activity, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 12 start-page: 744 year: 2020 ident: b0695 article-title: Fall detection based on key points of human-skeleton using openpose publication-title: Symmetry – year: 2020 ident: b1020 article-title: A short note on the kinetics-700-2020 human action dataset – start-page: 61 year: 2019 end-page: 70 ident: b1125 article-title: Skeleton-based action recognition of people handling objects publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 212 year: 2017 end-page: 216 ident: b0230 article-title: Action recognition using mhi based hu moments with hmms publication-title: IEEE EUROCON 2017–17th International Conference on Smart Technologies – start-page: 4511 year: 2019 end-page: 4520 ident: b1250 article-title: H+ o: Unified egocentric recognition of 3d hand-object poses and interactions, in publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – start-page: 317 year: 2006 end-page: 322 ident: b0350 article-title: Bayesian classification of task-oriented actions based on stochastic context-free grammar, in publication-title: 7th International Conference on Automatic Face and Gesture Recognition (FGR06) – start-page: 2735 year: 2021 end-page: 2744 ident: b0210 article-title: Jolo-gcn: mining joint-centered light-weight information for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 3510 year: 2017 end-page: 3515 ident: b0045 article-title: On-line simultaneous learning and recognition of everyday activities from virtual reality performances publication-title: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 7 start-page: 57267 year: 2019 end-page: 57275 ident: b0485 article-title: A spatiotemporal heterogeneous two-stream network for action recognition publication-title: IEEE Access – start-page: 7668 year: 2021 end-page: 7676 ident: b1395 article-title: Just one moment: Structural vulnerability of deep action recognition against one frame attack publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 3478 year: 2018 end-page: 3482 ident: b1190 article-title: Spatial-temporal data augmentation based on lstm autoencoder network for skeleton-based human action recognition publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – start-page: 99 year: 2017 end-page: 107 ident: b0605 article-title: Football action recognition using hierarchical lstm, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops – year: 2022 ident: b0095 article-title: Human action recognition from various data modalities: A review publication-title: IEEE transactions on pattern analysis and machine intelligence – reference: Z. Ghahramani, Learning dynamic bayesian networks, in: International School on Neural Networks, Initiated by IIASS and EMFCSC, Springer, 1997, pp. 168–197. – volume: 36 start-page: 621 year: 2020 end-page: 631 ident: b0900 article-title: Skeleton-based action recognition by part-aware graph convolutional networks publication-title: The visual computer – volume: 20 start-page: 3499 year: 2020 ident: b0855 article-title: Gas-gcn: Gated action-specific graph convolutional networks for skeleton-based action recognition publication-title: Sensors – volume: 22 start-page: 1315 year: 2004 end-page: 1316 ident: b0255 article-title: What is a hidden markov model? publication-title: Nature biotechnology – reference: M.A. Ahad, Motion history image, in: Motion history images for action recognition and understanding, Springer, 2013, pp. 31–76. – start-page: 601 year: 2017 end-page: 604 ident: b0755 article-title: Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep cnn publication-title: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) – reference: J. Gao, T. Zhang, C. Xu, I know the relationships: Zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 33, 2019, pp. 8303–8311. – reference: Y. Zhu, Z. Lan, S. Newsam, A. Hauptmann, Hidden two-stream convolutional networks for action recognition, in: Asian conference on computer vision, Springer, 2018, pp. 363–378. – start-page: 143 year: 2020 end-page: 152 ident: b0850 article-title: Disentangling and unifying graph convolutions for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – volume: 36 start-page: 1579 year: 2017 end-page: 1594 ident: b0035 article-title: Phase estimation for fast action recognition and trajectory generation in human–robot collaboration publication-title: The International Journal of Robotics Research – volume: 33 start-page: 251 year: 1991 end-page: 272 ident: b0270 article-title: Hidden markov models for speech recognition publication-title: Technometrics – start-page: 617 year: 2017 end-page: 622 ident: b0775 article-title: Investigation of different skeleton features for cnn-based 3d action recognition publication-title: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) – start-page: 12046 year: 2019 end-page: 12055 ident: b1220 article-title: Large-scale weakly-supervised pre-training for video action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3288 year: 2017 end-page: 3297 ident: b0805 article-title: A new representation of skeleton sequences for 3d action recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: J. Carreira, E. Noland, C. Hillier, A. Zisserman, A short note on the kinetics-700 human action dataset, arXiv preprint arXiv:1907.06987 (2019). – start-page: 547 year: 2018 end-page: 552 ident: b0725 article-title: Multi-source learning for skeleton-based action recognition using deep lstm networks publication-title: 2018 24th International Conference on Pattern Recognition (ICPR) – start-page: 6165 year: 2021 end-page: 6175 ident: b0195 article-title: Deep analysis of cnn-based spatio-temporal representations for action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 7733 year: 2019 end-page: 7742 ident: b0325 article-title: Bayesian hierarchical dynamic model for human action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2017 end-page: 6 ident: b0585 article-title: Human action recognition with 3d convolutional neural network publication-title: 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) – reference: W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al., The kinetics human action video dataset, arXiv preprint arXiv:1705.06950 (2017). – start-page: 3551 year: 2013 end-page: 3558 ident: b0250 article-title: Action recognition with improved trajectories, in publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 1227 year: 2019 end-page: 1236 ident: b0750 article-title: An attention enhanced graph convolutional lstm network for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3829 year: 2020 end-page: 3837 ident: b1400 article-title: Finding achilles’ heel: Adversarial attack on multi-modal action recognition publication-title: Proceedings of the 28th ACM International Conference on Multimedia – start-page: 7387 year: 2021 end-page: 7394 ident: b1090 article-title: Tinyvirat: Low-resolution video action recognition publication-title: 2020 25th International Conference on Pattern Recognition (ICPR) – volume: 6 start-page: 50788 year: 2018 end-page: 50800 ident: b0720 article-title: Skeleton feature fusion based on multi-stream lstm for action recognition publication-title: IEEE Access – volume: 115 start-page: 224 year: 2011 end-page: 241 ident: b0065 article-title: A survey of vision-based methods for action representation, segmentation and recognition publication-title: Computer vision and image understanding – start-page: 55 year: 2020 end-page: 63 ident: b0880 article-title: Dynamic gcn: Context-enriched topology learning for skeleton-based action recognition publication-title: Proceedings of the 28th ACM International Conference on Multimedia – volume: 15 start-page: 5197 year: 2015 end-page: 5227 ident: b0240 article-title: Continuous human action recognition using depth-mhi-hog and a spotter model publication-title: Sensors – start-page: 3110 year: 2017 end-page: 3119 ident: b0440 article-title: Two-stream flow-guided convolutional attention networks for action recognition, in publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – start-page: 1625 year: 2020 end-page: 1633 ident: b0925 article-title: Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based action recognition publication-title: Proceedings of the 28th ACM International Conference on Multimedia – year: 2019 ident: b0885 article-title: Spatial residual layer and dense connection block enhanced spatial temporal graph convolutional network for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops – reference: S. Takeuchi, S. Tamura, S. Hayamizu, Human action recognition using acceleration information based on hidden markov model, in: Proceedings: APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and Conference, Asia-Pacific Signal and Information Processing Association, 2009 Annual, 2009, pp. 829–832. – start-page: 508 year: 2020 end-page: 516 ident: b1140 article-title: Weakly-supervised multi-person action recognition in 360<error l=”619” c=”Undefined command ”/> videos publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 7103 year: 2018 end-page: 7112 ident: b0660 article-title: Cascaded pyramid network for multi-person pose estimation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1 year: 2006 end-page: 5 ident: b1170 article-title: Human model and motion based 3d action recognition in multiple view scenarios publication-title: 2006 14th European Signal Processing Conference – start-page: 3154 year: 2017 end-page: 3160 ident: b0535 article-title: Learning spatio-temporal features with 3d residual networks for action recognition, in publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – volume: 42 start-page: 19 year: 2016 end-page: 30 ident: b0320 article-title: Human action recognition using multi-layer codebooks of key poses and atomic motions publication-title: Signal Processing: Image Communication – start-page: 1647 year: 2017 end-page: 1656 ident: b0735 article-title: Global context-aware attention lstm networks for 3d action recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 63 year: 2015 end-page: 67 ident: b1305 article-title: Semantic embedding space for zero-shot action recognition publication-title: 2015 IEEE International Conference on Image Processing (ICIP) – volume: 56 start-page: 605 year: 2020 end-page: 614 ident: b0475 article-title: Transferable two-stream convolutional neural network for human action recognition publication-title: Journal of Manufacturing Systems – reference: K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos, arXiv preprint arXiv:1406.2199 (2014). – volume: 28 start-page: 1807 year: 2016 end-page: 1823 ident: b1165 article-title: Human action recognition using 3d reconstruction data publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 19 start-page: 439 year: 1971 end-page: 475 ident: b0335 article-title: Translations on a context free grammar publication-title: Information and Control – reference: C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local svm approach, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, Vol. 3, IEEE, 2004, pp. 32–36. – volume: 9 start-page: 36475 year: 2021 end-page: 36484 ident: b1055 article-title: Multi-scale mixed dense graph convolution network for skeleton-based action recognition publication-title: IEEE Access – start-page: 8984 year: 2021 end-page: 8993 ident: b0200 article-title: Graph-based high-order relation modeling for long-term action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 37 start-page: 193 year: 2013 end-page: 201 ident: b0055 article-title: Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit publication-title: Computers & Graphics – volume: 8 start-page: 1 year: 1984 end-page: 21 ident: b0265 article-title: On the sum of all distances in a graph or digraph publication-title: Journal of Graph Theory – start-page: 14 year: 2012 end-page: 19 ident: b0400 article-title: Eigenjoints-based action recognition using naive-bayes-nearest-neighbor publication-title: 2012 IEEE computer society conference on computer vision and pattern recognition workshops – start-page: 1112 year: 2020 end-page: 1121 ident: b0110 article-title: Semantics-guided neural networks for efficient skeleton-based human action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2019 end-page: 5 ident: b0920 article-title: Richly activated graph convolutional network for action recognition with incomplete skeletons publication-title: 2019 IEEE International Conference on Image Processing (ICIP) – volume: 55 start-page: 42 year: 2016 end-page: 52 ident: b0070 article-title: From handcrafted to learned representations for human action recognition: A survey publication-title: Image and Vision Computing – start-page: 175 year: 2019 end-page: 180 ident: b1130 article-title: Real-time multi-camera multi-person action recognition using pose estimation, in publication-title: Proceedings of the 3rd International Conference on Machine Learning and Soft Computing – reference: A. Antonucci, R. De Rosa, A. Giusti, Action recognition by imprecise hidden markov models, in: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), The Steering Committee of The World Congress in Computer Science, Computer, 2011, p. 1. – start-page: 4724 year: 2016 end-page: 4732 ident: b0700 article-title: Convolutional pose machines, in publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – reference: M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, A. Weber, Documentation mocap database hdm05 (2007). – reference: Y. Kong, S. Gao, B. Sun, Y. Fu, Action prediction from videos via memorizing hard-to-predict samples, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018. – start-page: 94 year: 2015 end-page: 99 ident: b0025 article-title: Action recognition for human robot interaction in industrial applications publication-title: 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS) – start-page: 6299 year: 2017 end-page: 6308 ident: b0955 article-title: Quo vadis, action recognition? a new model and the kinetics dataset, in publication-title: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: H. Fan, C. Luo, C. Zeng, M. Ferianc, Z. Que, S. Liu, X. Niu, W. Luk, F-e3d: Fpga-based acceleration of an efficient 3d convolutional neural network for human action recognition, in: 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP), Vol. 2160, IEEE, 2019, pp. 1–8. – start-page: 473 year: 2014 end-page: 483 ident: b0415 article-title: Real-time skeleton-tracking-based human action recognition using kinect data, in publication-title: International Conference on Multimedia Modeling, Springer – start-page: 6752 year: 2018 end-page: 6761 ident: b1215 article-title: Weakly supervised action localization by sparse temporal pooling network, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 35 year: 2020 end-page: 51 ident: b1380 article-title: Adversarial self-supervised learning for semi-supervised 3d action recognition, in publication-title: European Conference on Computer Vision, Springer – volume: 51 start-page: 690 year: 2021 end-page: 712 ident: b0005 article-title: A combined multiple action recognition and summarization for surveillance video sequences publication-title: Applied Intelligence – start-page: 14333 year: 2020 end-page: 14342 ident: b0875 article-title: Context aware graph convolution for skeleton-based action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 694 year: 2021 end-page: 701 ident: b1050 article-title: Spatial temporal transformer network for skeleton-based action recognition, in publication-title: International Conference on Pattern Recognition, Springer – volume: 43 start-page: 172 year: 2019 end-page: 186 ident: b0680 article-title: Openpose: realtime multi-person 2d pose estimation using part affinity fields publication-title: IEEE transactions on pattern analysis and machine intelligence – start-page: 177 year: 2017 end-page: 186 ident: b0500 publication-title: Two stream lstm: A deep fusion framework for human action recognition, in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: Vol. 1 start-page: 178 year: 2016 end-page: 181 ident: b0595 article-title: Action recognition based on features fusion and 3d convolutional neural networks publication-title: 2016 9th International Symposium on Computational Intelligence and Design (ISCID) – reference: Y. Wang, Y. Xiao, F. Xiong, W. Jiang, Z. Cao, J.T. Zhou, J. Yuan, 3dv: 3d dynamic voxel for action recognition in depth video, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 511–520. – start-page: 466 year: 2018 end-page: 481 ident: b0665 article-title: Simple baselines for human pose estimation and tracking, in publication-title: Proceedings of the European conference on computer vision (ECCV) – start-page: 6026 year: 2018 end-page: 6035 ident: b1105 article-title: Compressed video action recognition, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: S. Song, C. Lan, J. Xing, W. Zeng, J. Liu, An end-to-end spatio-temporal attention model for human action recognition from skeleton data, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 31, 2017. – start-page: 14656 year: 2021 end-page: 14665 ident: b0160 article-title: Understanding the robustness of skeleton-based action recognition under adversarial attack publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 4552 year: 2015 end-page: 4560 ident: b0330 article-title: Action recognition by hierarchical mid-level action elements, in publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 625 year: 2020 end-page: 634 ident: b0545 article-title: D3d: Distilled 3d networks for video action recognition, in publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 2000 year: 2019 end-page: 2009 ident: b0970 article-title: Stm: Spatiotemporal and motion encoding for action recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 117 start-page: 633 year: 2013 end-page: 659 ident: b0090 article-title: A survey of video datasets for human action and activity recognition publication-title: Computer Vision and Image Understanding – year: 2019 ident: b0140 article-title: Protogan: Towards few shot learning for action recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops – start-page: 4325 year: 2017 end-page: 4334 ident: b1210 article-title: Untrimmednets for weakly supervised action recognition and detection, in publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2018 end-page: 6 ident: b0430 article-title: Improving human action recognition with two-stream 3d convolutional neural network publication-title: 2018 1st International Conference on Multimedia Analysis and Pattern Recognition (MAPR) IEEE – start-page: 1110 year: 2015 end-page: 1118 ident: b1110 article-title: Hierarchical recurrent neural network for skeleton based action recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1655 year: 2021 end-page: 1663 ident: b1385 article-title: Skeleton-contrastive 3d action representation learning, in publication-title: Proceedings of the 29th ACM International Conference on Multimedia – volume: 23 start-page: 255 year: 2012 end-page: 281 ident: b0215 article-title: Motion history image: its variants and applications publication-title: Machine Vision and Applications – reference: S. Alfasly, J. Lu, C. Xu, Y. Zou, Learnable irrelevant modality dropout for multimodal action recognition on modality-specific annotated videos, arXiv preprint arXiv:2203.03014 (2022). – volume: 76 start-page: 542 year: 2012 end-page: 560 ident: b1410 article-title: Long-and short-term plastic modeling of action prediction abilities in volleyball publication-title: Psychological research – start-page: 1290 year: 2012 end-page: 1297 ident: b0375 article-title: Mining actionlet ensemble for action recognition with depth cameras publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – start-page: 16266 year: 2021 end-page: 16275 ident: b0480 article-title: Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – volume: 78 start-page: 17165 year: 2019 end-page: 17196 ident: b0020 article-title: Multi-view recognition system for human activity based on multiple features for video surveillance system publication-title: Multimedia Tools and Applications – reference: Y.-H. Wen, L. Gao, H. Fu, F.-L. Zhang, S. Xia, Graph cnns with motif and variable temporal block for skeleton-based action recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 8989–8996. – volume: 133 start-page: 471 year: 2018 end-page: 477 ident: b0565 article-title: Human action recognition using 3d convolutional neural networks with 3d motion cuboids in surveillance videos publication-title: Procedia computer science – volume: 3 start-page: 1 year: 2018 end-page: 4 ident: b1195 article-title: Data augmentation in deep learning-based fusion of depth and inertial sensing for action recognition publication-title: IEEE Sensors Letters – reference: M. Bishay, G. Zoumpourlis, I. Patras, Tarn: Temporal attentive relation network for few-shot and zero-shot action recognition, arXiv preprint arXiv:1907.09021 (2019). – start-page: 1012 year: 2017 end-page: 1020 ident: b0715 article-title: Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks publication-title: Proceedings of the IEEE international conference on computer vision – volume: 22 start-page: 2481 year: 2019 end-page: 2496 ident: b0765 article-title: 2-d skeleton-based action recognition via two-branch stacked lstm-rnns publication-title: IEEE Transactions on Multimedia – start-page: 1049 year: 2020 end-page: 1059 ident: b1245 article-title: Something-else: Compositional action recognition with spatial-temporal interaction networks publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2019 ident: b0800 article-title: Skepxels: Spatio-temporal image representation of human skeleton joints for action recognition., in publication-title: CVPR workshops – start-page: 258 year: 2019 end-page: 264 ident: b1115 article-title: Action recognition based on 3d skeleton and rgb frame fusion publication-title: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – start-page: 1933 year: 2016 end-page: 1941 ident: b0435 article-title: Convolutional two-stream network fusion for video action recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 5386 year: 2020 end-page: 5395 ident: b0135 article-title: Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 115 year: 2017 end-page: 123 ident: b0550 article-title: Learning spatiotemporal features for infrared action recognition with 3d convolutional neural networks, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 2556 year: 2011 end-page: 2563 ident: b0960 article-title: Hmdb: a large video database for human motion recognition publication-title: 2011 International conference on computer vision – start-page: 10317 year: 2020 end-page: 10326 ident: b1285 article-title: Speech2action: Cross-modal supervision for action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 139 year: 2017 end-page: 147 ident: b0455 article-title: Semi-coupled two-stream fusion convnets for action recognition at extremely low resolutions publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 145 year: 2009 end-page: 158 ident: b0300 article-title: Distributed continuous action recognition using a hidden markov model in body sensor networks publication-title: International Conference on Distributed Computing in Sensor Systems – volume: 27 start-page: 2613 year: 2016 end-page: 2622 ident: b0560 article-title: Temporal pyramid pooling-based convolutional neural network for action recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 42 start-page: 2684 year: 2019 end-page: 2701 ident: b1040 article-title: Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding publication-title: IEEE transactions on pattern analysis and machine intelligence – start-page: 438 year: 2017 end-page: 445 ident: b1265 article-title: Pose for action-action for pose publication-title: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) – start-page: 513 year: 2018 end-page: 528 ident: b1030 article-title: Resound: Towards action recognition without representation bias, in publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – reference: H. Goto, J. Miura, J. Sugiyama, Human-robot collaborative assembly by on-line human action recognition based on an fsm task model, in: Human-robot interaction 2013 workshop on collaborative manipulation, 2013. – start-page: 2649 year: 2014 end-page: 2656 ident: b1070 article-title: Cross-view action modeling, learning and recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 925 year: 2009 end-page: 931 ident: b1155 article-title: Fast realistic multi-action recognition using mined dense spatio-temporal features publication-title: 2009 IEEE 12th international conference on computer vision – year: 2013 ident: b0380 article-title: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations publication-title: Twenty-third international joint conference on artificial intelligence – reference: S.-C. Wang, Artificial neural network, in: Interdisciplinary computing in java programming, Springer, 2003, pp. 81–100. – year: 2021 ident: b0205 article-title: Memory attention networks for skeleton-based action recognition publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 8 start-page: 1 year: 2017 end-page: 18 ident: b0050 article-title: Approaches and applications of virtual reality and gesture recognition: A review publication-title: International Journal of Ambient Computing and Intelligence (IJACI) – volume: 27 start-page: 2842 year: 2018 end-page: 2855 ident: b0810 article-title: Learning clip representations for skeleton-based 3d action recognition publication-title: IEEE Transactions on Image Processing – start-page: 1837 year: 2017 end-page: 1841 ident: b0575 article-title: 3d convolutional neural network with multi-model framework for action recognition publication-title: 2017 IEEE international conference on image processing (ICIP) – start-page: 20 year: 2012 end-page: 27 ident: b0395 article-title: View invariant human action recognition using histograms of 3d joints publication-title: 2012 IEEE computer society conference on computer vision and pattern recognition workshops – start-page: 1102 year: 2020 end-page: 1111 ident: b0985 article-title: Gate-shift networks for video action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: B. Ren, M. Liu, R. Ding, H. Liu, A survey on 3d skeleton-based action recognition using learning method, arXiv preprint arXiv:2002.05907 (2020). – start-page: 3595 year: 2019 end-page: 3603 ident: b0840 article-title: Actional-structural graph convolutional networks for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – reference: H. Zhang, L. Zhang, X. Qi, H. Li, P.H. Torr, P. Koniusz, Few-shot action recognition with permutation-invariant attention, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, Springer, 2020, pp. 525–542. – year: 2004 ident: b0315 article-title: Modeling individual and group actions in meetings: a two-layer hmm framework publication-title: 2004 Conference on Computer Vision and Pattern Recognition Workshop – volume: 27 year: 2018 ident: b0815 article-title: Multisource learning for skeleton-based action recognition using deep lstm and cnn publication-title: Journal of Electronic Imaging – start-page: 10457 year: 2020 end-page: 10467 ident: b1100 article-title: Listen to look: Action recognition by previewing audio, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1010 year: 2016 end-page: 1019 ident: b1035 article-title: Ntu rgb+ d: A large scale dataset for 3d human activity analysis publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 2020 start-page: 1 year: 2020 end-page: 9 ident: b0495 article-title: Improved two-stream module for human action recognition publication-title: EURASIP Journal on Image and Video Processing – reference: B. Li, X. Li, Z. Zhang, F. Wu, Spatio-temporal graph routing for skeleton-based action recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 8561–8568. – volume: Vol. 2 start-page: 1709 year: 2006 end-page: 1718 ident: b0340 publication-title: Recognition of composite human activities through context-free grammar based representation in: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) – volume: 20 start-page: 61 year: 2008 end-page: 80 ident: b0825 article-title: The graph neural network model publication-title: IEEE transactions on neural networks – start-page: 5832 year: 2017 end-page: 5841 ident: b0790 article-title: Learning action recognition model from depth and skeleton videos, in publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 1 start-page: 195 year: 2007 end-page: 304 ident: b0280 article-title: The application of hidden markov models in speech recognition publication-title: Signal Processing – start-page: 588 year: 2014 end-page: 595 ident: b0385 article-title: Human action recognition by representing 3d skeletons as points in a lie group, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 20 start-page: 634 year: 2017 end-page: 644 ident: b0465 article-title: Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length publication-title: IEEE Transactions on Multimedia – start-page: 2777 year: 2021 end-page: 2785 ident: b1340 article-title: One-shot action recognition in challenging therapy scenarios publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2019 end-page: 6 ident: b0540 article-title: An improved two-stream 3d convolutional neural network for human action recognition publication-title: 2019 25th International Conference on Automation and Computing (ICAC) – reference: W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, X. Xie, Co-occurrence feature learning for skeleton based action recognition using regularized deep lstm networks, in: Proceedings of the AAAI conference on artificial intelligence, Vol. 30, 2016. – reference: A. Veenendaal, E. Jones, Z. Gang, E. Daly, S. Vartak, R. Patwardhan, Dynamic probabilistic network based human action recognition, arXiv preprint arXiv:1610.06395 (2016). – start-page: 7852 year: 2019 end-page: 7861 ident: b0610 article-title: Ddlstm: dual-domain lstm for cross-dataset action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 7291 year: 2017 end-page: 7299 ident: b0705 article-title: Realtime multi-person 2d pose estimation using part affinity fields, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 60 start-page: 86 year: 2016 end-page: 105 ident: b0100 article-title: Rgb-d-based action recognition datasets: A survey publication-title: Pattern Recognition – start-page: 3158 year: 2021 end-page: 3162 ident: b1270 article-title: Language-guided multi-modal fusion for video action recognition, in publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – reference: D. Osokin, Real-time 2d multi-person pose estimation on cpu: Lightweight openpose, arXiv preprint arXiv:1811.12004 (2018). – reference: T. Lan, T.-C. Chen, S. Savarese, A hierarchical representation for future action prediction, in: European conference on computer vision, Springer, 2014, pp. 689–704. – start-page: 770 year: 2016 end-page: 778 ident: b0670 article-title: Deep residual learning for image recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1 year: 2017 end-page: 6 ident: b0690 article-title: Real-time human gesture grading based on openpose publication-title: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) – start-page: 1 year: 2018 end-page: 4 ident: b0590 article-title: Enhanced action recognition with visual attribute-augmented 3d convolutional neural network publication-title: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) – start-page: 9631 year: 2020 end-page: 9640 ident: b1225 article-title: Predict & cluster: Unsupervised skeleton based action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: b0275 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE – reference: N. Inkawhich, M. Inkawhich, Y. Chen, H. Li, Adversarial attacks for optical flow-based action recognition classifiers, arXiv preprint arXiv:1811.11875 (2018). – reference: T. Guo, H. Liu, Z. Chen, M. Liu, T. Wang, R. Ding, Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 762–770. – start-page: 13065 year: 2021 end-page: 13075 ident: b0990 article-title: Learning self-similarity in space and time as generalized motion for video action recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 3323 year: 2015 end-page: 3331 ident: b1240 article-title: Interaction part mining: A mid-level approach for fine-grained action recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: M. Monfort, K. Ramakrishnan, A. Andonian, B.A. McNamara, A. Lascelles, B. Pan, Q. Fan, D. Gutfreund, R. Feris, A. Oliva, Multi-moments in time: Learning and interpreting models for multi-action video understanding, arXiv preprint arXiv:1911.00232 (2019). – year: 2015 ident: b0365 article-title: Walking, lifting, standing activity recognition using probabilistic networks publication-title: International Research Journal of Engineering and Technology (IRJET) – volume: 130 start-page: 1366 year: 2022 end-page: 1401 ident: b0085 article-title: Human action recognition and prediction: A survey publication-title: International Journal of Computer Vision – start-page: 2969 year: 2022 end-page: 2978 ident: b0820 article-title: Revisiting skeleton-based action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 103 year: 2018 end-page: 118 ident: b0930 article-title: Skeleton-based action recognition with spatial reasoning and temporal stack learning publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 24 start-page: 280 year: 2019 end-page: 291 ident: b0060 article-title: Efficient and robust skeleton-based quality assessment and abnormality detection in human action performance publication-title: IEEE journal of biomedical and health informatics – volume: 87 start-page: 19 year: 2021 end-page: 26 ident: b0125 article-title: Effects of camera viewing angles on tracking kinematic gait patterns using azure kinect, kinect v2 and orbbec astra pro v2 publication-title: Gait & posture – volume: 76 start-page: 1123 year: 2010 end-page: 1134 ident: b0630 article-title: Point clouds publication-title: Photogrammetric Engineering & Remote Sensing – start-page: 13638 year: 2021 end-page: 13647 ident: b1320 article-title: Elaborative rehearsal for zero-shot action recognition, in publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – reference: J. Yamato, J. Ohya, K. Ishii, Recognizing human action in time-sequential images using hidden markov model., in: CVPR, Vol. 92, 1992, pp. 379–385. – year: 2021 ident: b0620 article-title: Trear: Transformer-based rgb-d egocentric action recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems – reference: N. Zheng, J. Wen, R. Liu, L. Long, J. Dai, Z. Gong, Unsupervised representation learning with long-term dynamics for skeleton based action recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018. – volume: 103 start-page: 60 year: 2013 end-page: 79 ident: b0245 article-title: Dense trajectories and motion boundary descriptors for action recognition publication-title: International journal of computer vision – volume: 40 start-page: 1510 year: 2017 end-page: 1517 ident: b0950 article-title: Long-term temporal convolutions for action recognition publication-title: IEEE transactions on pattern analysis and machine intelligence – reference: W. Li, Z. Wang, B. Yin, Q. Peng, Y. Du, T. Xiao, G. Yu, H. Lu, Y. Wei, J. Sun, Rethinking on multi-stage networks for human pose estimation, arXiv preprint arXiv:1901.00148 (2019). – volume: 78 start-page: 507 year: 2019 end-page: 523 ident: b0580 article-title: Action recognition with multi-scale trajectory-pooled 3d convolutional descriptors publication-title: Multimedia Tools and Applications – volume: 60 start-page: 4 year: 2017 end-page: 21 ident: b0075 article-title: Going deeper into action recognition: A survey publication-title: Image and vision computing – start-page: 769 year: 2020 end-page: 786 ident: b1255 article-title: Collaborative learning of gesture recognition and 3d hand pose estimation with multi-order feature analysis, in publication-title: European Conference on Computer Vision, Springer – year: 2021 ident: b1080 article-title: Fexnet: Foreground extraction network for human action recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 32 start-page: 447 year: 2020 end-page: 453 ident: b0940 article-title: A new hybrid deep learning model for human action recognition publication-title: Journal of King Saud University-Computer and Information Sciences – reference: N. Ikizler-Cinbis, S. Sclaroff, Object, scene and actions: Combining multiple features for human action recognition, in: European conference on computer vision, Springer, 2010, pp. 494–507. – start-page: 179 year: 2019 end-page: 189 ident: b1230 article-title: Video jigsaw: Unsupervised learning of spatiotemporal context for video action recognition publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 13359 year: 2021 end-page: 13368 ident: b0890 article-title: Channel-wise topology refinement graph convolution for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 22 start-page: 1433 year: 2019 end-page: 1446 ident: b1185 article-title: 2d pose-based real-time human action recognition with occlusion-handling publication-title: IEEE Transactions on Multimedia – start-page: 122 year: 2020 end-page: 132 ident: b1295 article-title: Multi-modal domain adaptation for fine-grained action recognition, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 5693 year: 2019 end-page: 5703 ident: b0130 article-title: Deep high-resolution representation learning for human pose estimation, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 85 start-page: 1 year: 2019 end-page: 12 ident: b0515 article-title: Asymmetric 3d convolutional neural networks for action recognition publication-title: Pattern recognition – volume: 40 start-page: 3007 year: 2017 end-page: 3021 ident: b1045 article-title: Skeleton-based action recognition using spatio-temporal lstm network with trust gates publication-title: IEEE transactions on pattern analysis and machine intelligence – reference: M. Brand, N. Oliver, A. Pentland, Coupled hidden markov models for complex action recognition, in: Proceedings of IEEE computer society conference on computer vision and pattern recognition, IEEE, 1997, pp. 994–999. – volume: 8 start-page: 168297 year: 2020 end-page: 168308 ident: b1120 article-title: Infrared and 3d skeleton feature fusion for rgb-d action recognition publication-title: IEEE Access – start-page: 11139 year: 2017 end-page: 11144 ident: b0530 article-title: Using gabor filter in 3d convolutional neural networks for human action recognition publication-title: 2017 36th Chinese Control Conference (CCC) – year: 2021 ident: b0650 article-title: Sequentialpointnet: A strong parallelized point cloud sequence network for 3d action recognition – volume: 132 year: 2021 ident: b0640 article-title: A hardware-adaptive deep feature matching pipeline for real-time 3d reconstruction publication-title: Computer-Aided Design – start-page: 1895 year: 2021 end-page: 1904 ident: b1000 publication-title: Tdn: Temporal difference networks for efficient action recognition, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 13423 year: 2021 end-page: 13433 ident: b1355 article-title: Skeleton cloud colorization for unsupervised 3d action representation learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 20 start-page: 4758 year: 2020 ident: b1135 article-title: Deep learning-based real-time multiple-person action recognition system publication-title: Sensors – volume: 84 year: 2020 ident: b1275 article-title: Human action recognition toward massive-scale sport sceneries based on deep multi-model feature fusion publication-title: Signal Processing: Image Communication – year: 2020 ident: b0165 article-title: Adversarial attack on skeleton-based human action recognition publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, A. Zisserman, A short note about kinetics-600, arXiv preprint arXiv:1808.01340 (2018). – volume: 86 year: 2020 ident: b0505 article-title: Human action recognition using two-stream attention based lstm networks publication-title: Applied soft computing – volume: 444 start-page: 319 year: 2021 end-page: 331 ident: b0600 article-title: Db-lstm: Densely-connected bi-directional lstm for human action recognition publication-title: Neurocomputing – start-page: 826 year: 2019 end-page: 831 ident: b0740 article-title: Relational network for skeleton-based action recognition publication-title: 2019 IEEE International Conference on Multimedia and Expo (ICME) – start-page: 3210 year: 2018 end-page: 3215 ident: b1300 article-title: Multi-modal three-stream network for action recognition publication-title: 2018 24th International Conference on Pattern Recognition (ICPR) – volume: 8 start-page: 302 year: 1997 end-page: 307 ident: b0190 article-title: Viewpoint dependence in scene recognition publication-title: Psychological science – start-page: 5323 year: 2018 end-page: 5332 ident: b0915 article-title: Deep progressive reinforcement learning for skeleton-based action recognition, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1129 year: 2012 end-page: 1133 ident: b1175 article-title: Multi-view human action recognition under occlusion based on fuzzy distances and neural networks publication-title: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO) – start-page: 244 year: 2019 end-page: 253 ident: b0615 article-title: Video action transformer network, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 78 start-page: 107 year: 2016 end-page: 117 ident: b0635 article-title: A multi-frame graph matching algorithm for low-bandwidth rgb-d slam publication-title: Computer-Aided Design – reference: L. Huang, Y. Huang, W. Ouyang, L. Wang, Part-level graph convolutional network for skeleton-based action recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 11045–11052. – start-page: 16 year: 2019 end-page: 23 ident: b0780 article-title: Skeleton image representation for 3d action recognition based on tree structure and reference joints publication-title: 2019 32nd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI) – reference: C.S. Pinhanez, A.F. Bobick, Human action detection using pnf propagation of temporal constraints, in: Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), IEEE, 1998, pp. 898–904. – reference: N. Ma, H. Zhang, X. Li, S. Zhou, Z. Zhang, J. Wen, H. Li, J. Gu, J. Bu, Learning spatial-preserved skeleton representations for few-shot action recognition. – start-page: 372 year: 2018 end-page: 380 ident: b0145 article-title: A generative approach to zero-shot and few-shot action recognition publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – reference: A. Li, M. Thotakuri, D.A. Ross, J. Carreira, A. Vostrikov, A. Zisserman, The ava-kinetics localized human actions video dataset, arXiv preprint arXiv:2005.00214 (2020). – volume: 21 start-page: 452 year: 2021 ident: b1060 article-title: Shallow graph convolutional network for skeleton-based action recognition publication-title: Sensors – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: b0830 article-title: A comprehensive survey on graph neural networks publication-title: IEEE transactions on neural networks and learning systems – start-page: 1 year: 2017 end-page: 8 ident: b1150 article-title: Concurrence-aware long short-term sub-memories for person-person action recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – reference: S. Suthaharan, Support vector machine, in: Machine learning models and algorithms for big data classification, Springer, 2016, pp. 207–235. – start-page: 1 year: 2019 end-page: 8 ident: b0425 article-title: Two-stream convolution neural network with video-stream for action recognition publication-title: 2019 International Joint Conference on Neural Networks (IJCNN) – volume: 41 start-page: 1963 year: 2019 end-page: 1978 ident: b0785 article-title: View adaptive neural networks for high performance skeleton-based human action recognition publication-title: IEEE transactions on pattern analysis and machine intelligence – start-page: 9985 year: 2019 end-page: 9993 ident: b1310 article-title: Out-of-distribution detection for generalized zero-shot action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 2117 year: 2017 end-page: 2126 ident: b0760 article-title: View adaptive recurrent neural networks for high performance human action recognition from skeleton data publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: b0175 article-title: What is a support vector machine? publication-title: Nature biotechnology – start-page: 515 year: 2021 end-page: 524 ident: b0155 article-title: Over-the-air adversarial flickering attacks against video recognition networks publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 112 start-page: 161 year: 2018 end-page: 167 ident: b0490 article-title: First person action recognition via two-stream convnet with long-term fusion pooling publication-title: Pattern Recognition Letters – start-page: 6450 year: 2018 end-page: 6459 ident: b0570 article-title: A closer look at spatiotemporal convolutions for action recognition publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – reference: K. Thakkar, P. Narayanan, Part-based graph convolutional network for action recognition, arXiv preprint arXiv:1809.04983 (2018). – start-page: 579 year: 2015 end-page: 583 ident: b0770 article-title: Skeleton based action recognition with convolutional neural network publication-title: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) – start-page: 670 year: 2020 end-page: 688 ident: b0555 article-title: Omni-sourced webly-supervised learning for video recognition, in publication-title: European Conference on Computer Vision, Springer – start-page: 3556 year: 2019 end-page: 3565 ident: b1430 article-title: Progressive teacher-student learning for early action prediction, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 35 start-page: 221 year: 2012 end-page: 231 ident: b0510 article-title: 3d convolutional neural networks for human action recognition publication-title: IEEE transactions on pattern analysis and machine intelligence – reference: F. Mahdisoltani, G. Berger, W. Gharbieh, D. Fleet, R. Memisevic, Fine-grained video classification and captioning, arXiv preprint arXiv:1804.09235 5 (6) (2018). – volume: 29 start-page: 9532 year: 2020 end-page: 9545 ident: b0865 article-title: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks publication-title: IEEE Transactions on Image Processing – start-page: 1145 year: 2017 end-page: 1153 ident: b0710 article-title: Hand keypoint detection in single images using multiview bootstrapping, in publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – volume: 132 start-page: 1317 year: 2018 end-page: 1326 ident: b0015 article-title: Human detection and tracking using hog for action recognition publication-title: Procedia computer science – volume: 9 start-page: 1897 year: 2015 end-page: 1906 ident: b0235 article-title: Optical flow-motion history image (of-mhi) for action recognition publication-title: Signal, Image and Video Processing – start-page: 183 year: 2020 end-page: 192 ident: b0105 article-title: Skeleton-based action recognition with shift graph convolutional network, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 9 start-page: 2126 year: 2019 ident: b1075 article-title: Human action recognition based on foreground trajectory and motion difference descriptors publication-title: Applied Sciences – start-page: 6202 year: 2019 end-page: 6211 ident: b0450 article-title: Slowfast networks for video recognition, in publication-title: Proceedings of the IEEE/CVF international conference on computer vision – start-page: 505 year: 2020 end-page: 521 ident: b1095 article-title: Rubiksnet: Learnable 3d-shift for efficient video action recognition, in publication-title: European Conference on Computer Vision, Springer – start-page: 5842 year: 2017 end-page: 5850 ident: b0980 article-title: The something something video database for learning and evaluating visual common sense publication-title: Proceedings of the IEEE international conference on computer vision – volume: 166 start-page: 41 year: 2018 end-page: 50 ident: b1085 article-title: Videolstm convolves, attends and flows for action recognition publication-title: Computer Vision and Image Understanding – volume: 107 start-page: 83 year: 2018 end-page: 90 ident: b0470 article-title: Going deeper with two-stream convnets for action recognition in video surveillance publication-title: Pattern Recognition Letters – start-page: 4741 year: 2021 end-page: 4750 ident: b1350 article-title: 3d human action representation learning via cross-view consistency pursuit publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 909 year: 2020 end-page: 918 ident: b0975 article-title: Tea: Temporal excitation and aggregation for action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: H. Liu, J. Tu, M. Liu, Two-stream 3d convolutional neural network for skeleton-based action recognition, arXiv preprint arXiv:1705.08106 (2017). – start-page: 1473 year: 2017 end-page: 1481 ident: b1420 article-title: Deep sequential context networks for action prediction, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 2490 year: 2020 end-page: 2498 ident: b1370 article-title: Ms2l: Multi-task self-supervised learning for skeleton based action recognition publication-title: Proceedings of the 28th ACM International Conference on Multimedia – reference: K. Soomro, A.R. Zamir, M. Shah, Ucf101: A dataset of 101 human actions classes from videos in the wild, arXiv preprint arXiv:1212.0402 (2012). – start-page: 2616 year: 2020 end-page: 2625 ident: b1025 article-title: Finegym: A hierarchical video dataset for fine-grained action understanding, in publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – start-page: 3034 year: 2016 end-page: 3042 ident: b1205 article-title: Dynamic image networks for action recognition, in publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 18 start-page: 141 year: 2015 end-page: 154 ident: b0410 article-title: Effective active skeleton representation for low latency human action recognition publication-title: IEEE Transactions on Multimedia – start-page: 4315 year: 2017 end-page: 4324 ident: b1145 article-title: Social scene understanding: End-to-end multi-person action localization and collective activity recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: Y. Huang, L. Yang, Y. Sato, Compound prototype matching for few-shot action recognition (2022). – start-page: 7912 year: 2019 end-page: 7921 ident: b0870 article-title: Skeleton-based action recognition with directed graph neural networks, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3 year: 2002 end-page: 8 ident: b0310 article-title: Layered representations for human activity recognition, in: Proceedings publication-title: Fourth IEEE International Conference on Multimodal Interfaces – start-page: 3154 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0535 article-title: Learning spatio-temporal features with 3d residual networks for action recognition, in – start-page: 2702 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0040 article-title: Multimodal human action recognition in assistive human-robot interaction – year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0140 article-title: Protogan: Towards few shot learning for action recognition – start-page: 395 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0225 article-title: Depth mhi based deep learning model for human action recognition – start-page: 5842 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0980 article-title: The something something video database for learning and evaluating visual common sense – start-page: 14656 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0160 article-title: Understanding the robustness of skeleton-based action recognition under adversarial attack – start-page: 3034 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b1205 article-title: Dynamic image networks for action recognition, in – start-page: 372 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0145 article-title: A generative approach to zero-shot and few-shot action recognition – start-page: 625 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0545 article-title: D3d: Distilled 3d networks for video action recognition, in – start-page: 2969 year: 2022 ident: 10.1016/j.neucom.2022.09.071_b0820 article-title: Revisiting skeleton-based action recognition, in – volume: 22 start-page: 1433 issue: 6 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1185 article-title: 2d pose-based real-time human action recognition with occlusion-handling publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2019.2944745 – volume: 42 start-page: 494 issue: 2 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0655 article-title: Feature boosting network for 3d pose estimation publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2019.2894422 – start-page: 6026 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1105 article-title: Compressed video action recognition, in – start-page: 3478 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1190 article-title: Spatial-temporal data augmentation based on lstm autoencoder network for skeleton-based human action recognition – year: 2013 ident: 10.1016/j.neucom.2022.09.071_b0380 article-title: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations – volume: 78 start-page: 17165 issue: 12 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0020 article-title: Multi-view recognition system for human activity based on multiple features for video surveillance system publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7108-9 – volume: 23 issue: 3 year: 2014 ident: 10.1016/j.neucom.2022.09.071_b0345 article-title: Human action recognition using a context-free grammar publication-title: Journal of Electronic Imaging doi: 10.1117/1.JEI.23.3.033016 – ident: 10.1016/j.neucom.2022.09.071_b0910 doi: 10.1609/aaai.v34i07.6759 – volume: 22 start-page: 2481 issue: 10 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0765 article-title: 2-d skeleton-based action recognition via two-branch stacked lstm-rnns publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2019.2960588 – start-page: 3595 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0840 article-title: Actional-structural graph convolutional networks for skeleton-based action recognition – volume: 130 start-page: 1366 issue: 5 year: 2022 ident: 10.1016/j.neucom.2022.09.071_b0085 article-title: Human action recognition and prediction: A survey publication-title: International Journal of Computer Vision doi: 10.1007/s11263-022-01594-9 – volume: 13 start-page: 970 issue: 2 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0010 article-title: Modeling two-person segmentation and locomotion for stereoscopic action identification: A sustainable video surveillance system publication-title: Sustainability doi: 10.3390/su13020970 – volume: 19 start-page: 439 issue: 5 year: 1971 ident: 10.1016/j.neucom.2022.09.071_b0335 article-title: Translations on a context free grammar publication-title: Information and Control doi: 10.1016/S0019-9958(71)90706-6 – volume: 107 start-page: 83 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0470 article-title: Going deeper with two-stream convnets for action recognition in video surveillance publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.08.015 – ident: 10.1016/j.neucom.2022.09.071_b1005 – volume: 76 start-page: 1123 issue: 10 year: 2010 ident: 10.1016/j.neucom.2022.09.071_b0630 article-title: Point clouds publication-title: Photogrammetric Engineering & Remote Sensing doi: 10.14358/PERS.76.10.1123 – start-page: 2649 year: 2014 ident: 10.1016/j.neucom.2022.09.071_b1070 article-title: Cross-view action modeling, learning and recognition, in – start-page: 11139 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0530 article-title: Using gabor filter in 3d convolutional neural networks for human action recognition – volume: 166 start-page: 41 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1085 article-title: Videolstm convolves, attends and flows for action recognition publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2017.10.011 – start-page: 7668 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1395 article-title: Just one moment: Structural vulnerability of deep action recognition against one frame attack – volume: 117 start-page: 633 issue: 6 year: 2013 ident: 10.1016/j.neucom.2022.09.071_b0090 article-title: A survey of video datasets for human action and activity recognition publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2013.01.013 – volume: Vol. 2 start-page: 1709 year: 2006 ident: 10.1016/j.neucom.2022.09.071_b0340 – ident: 10.1016/j.neucom.2022.09.071_b1365 doi: 10.1609/aaai.v32i1.11853 – volume: 9 start-page: 2126 issue: 10 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1075 article-title: Human action recognition based on foreground trajectory and motion difference descriptors publication-title: Applied Sciences doi: 10.3390/app9102126 – start-page: 7103 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0660 article-title: Cascaded pyramid network for multi-person pose estimation – start-page: 4724 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0700 article-title: Convolutional pose machines, in – volume: 15 start-page: 5197 issue: 3 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0240 article-title: Continuous human action recognition using depth-mhi-hog and a spotter model publication-title: Sensors doi: 10.3390/s150305197 – volume: 32 start-page: 447 issue: 4 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0940 article-title: A new hybrid deep learning model for human action recognition publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2019.09.004 – volume: 40 start-page: 1510 issue: 6 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0950 article-title: Long-term temporal convolutions for action recognition publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2017.2712608 – ident: 10.1016/j.neucom.2022.09.071_b0905 – volume: 42 start-page: 19 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0320 article-title: Human action recognition using multi-layer codebooks of key poses and atomic motions publication-title: Signal Processing: Image Communication – ident: 10.1016/j.neucom.2022.09.071_b1160 – start-page: 10317 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1285 article-title: Speech2action: Cross-modal supervision for action recognition, in – start-page: 115 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0550 article-title: Learning spatiotemporal features for infrared action recognition with 3d convolutional neural networks, in – start-page: 3158 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1270 article-title: Language-guided multi-modal fusion for video action recognition, in – start-page: 617 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0775 article-title: Investigation of different skeleton features for cnn-based 3d action recognition – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0590 article-title: Enhanced action recognition with visual attribute-augmented 3d convolutional neural network – start-page: 1933 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0435 article-title: Convolutional two-stream network fusion for video action recognition, in – start-page: 4325 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b1210 article-title: Untrimmednets for weakly supervised action recognition and detection, in – volume: 9 start-page: 36475 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1055 article-title: Multi-scale mixed dense graph convolution network for skeleton-based action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3049029 – ident: 10.1016/j.neucom.2022.09.071_b0730 doi: 10.1609/aaai.v31i1.11212 – ident: 10.1016/j.neucom.2022.09.071_b0030 – start-page: 258 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1115 article-title: Action recognition based on 3d skeleton and rgb frame fusion – start-page: 7291 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0705 article-title: Realtime multi-person 2d pose estimation using part affinity fields, in – volume: 85 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0515 article-title: Asymmetric 3d convolutional neural networks for action recognition publication-title: Pattern recognition doi: 10.1016/j.patcog.2018.07.028 – ident: 10.1016/j.neucom.2022.09.071_b0520 doi: 10.1109/ASAP.2019.00-44 – ident: 10.1016/j.neucom.2022.09.071_b1010 – volume: 42 start-page: 2684 issue: 10 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1040 article-title: Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2019.2916873 – ident: 10.1016/j.neucom.2022.09.071_b0745 doi: 10.1609/aaai.v30i1.10451 – start-page: 438 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b1265 article-title: Pose for action-action for pose – ident: 10.1016/j.neucom.2022.09.071_b0965 – start-page: 3110 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0440 article-title: Two-stream flow-guided convolutional attention networks for action recognition, in – start-page: 183 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0105 article-title: Skeleton-based action recognition with shift graph convolutional network, in – ident: 10.1016/j.neucom.2022.09.071_b0305 doi: 10.1109/CVPR.1997.609450 – volume: 28 start-page: 1807 issue: 8 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b1165 article-title: Human action recognition using 3d reconstruction data publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2016.2643161 – start-page: 1012 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0715 article-title: Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks – start-page: 1625 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0925 article-title: Stronger, faster and more explainable: A graph convolutional baseline for skeleton-based action recognition – start-page: 2490 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1370 article-title: Ms2l: Multi-task self-supervised learning for skeleton based action recognition – ident: 10.1016/j.neucom.2022.09.071_b0390 doi: 10.1007/11744085_28 – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.1016/j.neucom.2022.09.071_b0175 article-title: What is a support vector machine? publication-title: Nature biotechnology doi: 10.1038/nbt1206-1565 – ident: 10.1016/j.neucom.2022.09.071_b0685 doi: 10.5220/0007555407440748 – start-page: 6752 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1215 article-title: Weakly supervised action localization by sparse temporal pooling network, in – year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0650 – volume: 36 start-page: 1579 issue: 13–14 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0035 article-title: Phase estimation for fast action recognition and trajectory generation in human–robot collaboration publication-title: The International Journal of Robotics Research doi: 10.1177/0278364917693927 – start-page: 826 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0740 article-title: Relational network for skeleton-based action recognition – volume: 36 start-page: 621 issue: 3 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0900 article-title: Skeleton-based action recognition by part-aware graph convolutional networks publication-title: The visual computer doi: 10.1007/s00371-019-01644-3 – start-page: 547 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0725 article-title: Multi-source learning for skeleton-based action recognition using deep lstm networks – start-page: 694 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1050 article-title: Spatial temporal transformer network for skeleton-based action recognition, in publication-title: International Conference on Pattern Recognition, Springer – start-page: 473 year: 2014 ident: 10.1016/j.neucom.2022.09.071_b0415 article-title: Real-time skeleton-tracking-based human action recognition using kinect data, in publication-title: International Conference on Multimedia Modeling, Springer doi: 10.1007/978-3-319-04114-8_40 – start-page: 2641 year: 2014 ident: 10.1016/j.neucom.2022.09.071_b0355 article-title: From stochastic grammar to bayes network: Probabilistic parsing of complex activity, in – volume: 86 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0505 article-title: Human action recognition using two-stream attention based lstm networks publication-title: Applied soft computing doi: 10.1016/j.asoc.2019.105820 – start-page: 6299 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0955 article-title: Quo vadis, action recognition? a new model and the kinetics dataset, in – volume: 11 start-page: 623 issue: 8 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0080 article-title: Survey on deep learning methods in human action recognition publication-title: IET Computer Vision doi: 10.1049/iet-cvi.2016.0355 – start-page: 3829 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1400 article-title: Finding achilles’ heel: Adversarial attack on multi-modal action recognition – start-page: 909 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0975 article-title: Tea: Temporal excitation and aggregation for action recognition – start-page: 2735 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0210 article-title: Jolo-gcn: mining joint-centered light-weight information for skeleton-based action recognition – start-page: 1655 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1385 article-title: Skeleton-contrastive 3d action representation learning, in – volume: 87 start-page: 19 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0125 article-title: Effects of camera viewing angles on tracking kinematic gait patterns using azure kinect, kinect v2 and orbbec astra pro v2 publication-title: Gait & posture doi: 10.1016/j.gaitpost.2021.04.005 – start-page: 3556 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1430 article-title: Progressive teacher-student learning for early action prediction, in – start-page: 635 year: 2010 ident: 10.1016/j.neucom.2022.09.071_b0185 article-title: Making action recognition robust to occlusions and viewpoint changes, in publication-title: European Conference on Computer Vision, Springer – volume: 22 start-page: 1315 issue: 10 year: 2004 ident: 10.1016/j.neucom.2022.09.071_b0255 article-title: What is a hidden markov model? publication-title: Nature biotechnology doi: 10.1038/nbt1004-1315 – volume: 18 start-page: 141 issue: 2 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0410 article-title: Effective active skeleton representation for low latency human action recognition publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2015.2505089 – volume: 78 start-page: 507 issue: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0580 article-title: Action recognition with multi-scale trajectory-pooled 3d convolutional descriptors publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5251-3 – ident: 10.1016/j.neucom.2022.09.071_b1425 doi: 10.1609/aaai.v32i1.12324 – volume: 21 start-page: 452 issue: 2 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1060 article-title: Shallow graph convolutional network for skeleton-based action recognition publication-title: Sensors doi: 10.3390/s21020452 – ident: 10.1016/j.neucom.2022.09.071_b0220 doi: 10.1007/978-1-4471-4730-5_3 – start-page: 3323 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b1240 article-title: Interaction part mining: A mid-level approach for fine-grained action recognition – start-page: 7733 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0325 article-title: Bayesian hierarchical dynamic model for human action recognition, in – volume: 27 start-page: 2613 issue: 12 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0560 article-title: Temporal pyramid pooling-based convolutional neural network for action recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2016.2576761 – start-page: 2117 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0760 article-title: View adaptive recurrent neural networks for high performance human action recognition from skeleton data – start-page: 10457 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1100 article-title: Listen to look: Action recognition by previewing audio, in – start-page: 769 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1255 article-title: Collaborative learning of gesture recognition and 3d hand pose estimation with multi-order feature analysis, in publication-title: European Conference on Computer Vision, Springer – start-page: 5137 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1260 article-title: 2d/3d pose estimation and action recognition using multitask deep learning, in – ident: 10.1016/j.neucom.2022.09.071_b0420 – start-page: 601 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0755 article-title: Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep cnn – ident: 10.1016/j.neucom.2022.09.071_b0935 doi: 10.1109/ICPR.2004.1334462 – volume: 115 start-page: 224 issue: 2 year: 2011 ident: 10.1016/j.neucom.2022.09.071_b0065 article-title: A survey of vision-based methods for action representation, segmentation and recognition publication-title: Computer vision and image understanding doi: 10.1016/j.cviu.2010.10.002 – volume: 51 start-page: 690 issue: 2 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0005 article-title: A combined multiple action recognition and summarization for surveillance video sequences publication-title: Applied Intelligence doi: 10.1007/s10489-020-01823-z – volume: 8 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0050 article-title: Approaches and applications of virtual reality and gesture recognition: A review publication-title: International Journal of Ambient Computing and Intelligence (IJACI) doi: 10.4018/IJACI.2017100101 – volume: 27 start-page: 2842 issue: 6 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0810 article-title: Learning clip representations for skeleton-based 3d action recognition publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2812099 – volume: 55 start-page: 42 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0070 article-title: From handcrafted to learned representations for human action recognition: A survey publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2016.06.007 – start-page: 177 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0500 – ident: 10.1016/j.neucom.2022.09.071_b0360 – start-page: 7387 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1090 article-title: Tinyvirat: Low-resolution video action recognition – year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0165 article-title: Adversarial attack on skeleton-based human action recognition publication-title: IEEE Transactions on Neural Networks and Learning Systems – ident: 10.1016/j.neucom.2022.09.071_b1325 doi: 10.1007/978-3-031-19772-7_21 – start-page: 1895 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1000 – start-page: 2616 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1025 article-title: Finegym: A hierarchical video dataset for fine-grained action understanding, in – start-page: 94 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0025 article-title: Action recognition for human robot interaction in industrial applications – start-page: 1717 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1360 article-title: Unsupervised and semi-supervised domain adaptation for action recognition from drones, in – start-page: 1112 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0110 article-title: Semantics-guided neural networks for efficient skeleton-based human action recognition – start-page: 588 year: 2014 ident: 10.1016/j.neucom.2022.09.071_b0385 article-title: Human action recognition by representing 3d skeletons as points in a lie group, in – start-page: 5323 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0915 article-title: Deep progressive reinforcement learning for skeleton-based action recognition, in – volume: 76 start-page: 542 issue: 4 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b1410 article-title: Long-and short-term plastic modeling of action prediction abilities in volleyball publication-title: Psychological research doi: 10.1007/s00426-011-0383-y – start-page: 925 year: 2009 ident: 10.1016/j.neucom.2022.09.071_b1155 article-title: Fast realistic multi-action recognition using mined dense spatio-temporal features – volume: 9 start-page: 1897 issue: 8 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0235 article-title: Optical flow-motion history image (of-mhi) for action recognition publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-014-0677-9 – ident: 10.1016/j.neucom.2022.09.071_b0285 – ident: 10.1016/j.neucom.2022.09.071_b0795 – ident: 10.1016/j.neucom.2022.09.071_b1290 doi: 10.1109/CVPR52688.2022.01957 – ident: 10.1016/j.neucom.2022.09.071_b0260 doi: 10.1007/BFb0053999 – volume: 112 start-page: 161 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0490 article-title: First person action recognition via two-stream convnet with long-term fusion pooling publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.07.011 – ident: 10.1016/j.neucom.2022.09.071_b0525 doi: 10.1609/aaai.v32i1.12333 – start-page: 14333 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0875 article-title: Context aware graph convolution for skeleton-based action recognition, in – volume: 40 start-page: 3007 issue: 12 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b1045 article-title: Skeleton-based action recognition using spatio-temporal lstm network with trust gates publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2017.2771306 – start-page: 35 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1380 article-title: Adversarial self-supervised learning for semi-supervised 3d action recognition, in publication-title: European Conference on Computer Vision, Springer – volume: 1 start-page: 195 issue: 3 year: 2007 ident: 10.1016/j.neucom.2022.09.071_b0280 article-title: The application of hidden markov models in speech recognition publication-title: Signal Processing – volume: 132 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0640 article-title: A hardware-adaptive deep feature matching pipeline for real-time 3d reconstruction publication-title: Computer-Aided Design doi: 10.1016/j.cad.2020.102984 – volume: 8 start-page: 168297 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1120 article-title: Infrared and 3d skeleton feature fusion for rgb-d action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023599 – start-page: 670 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0555 article-title: Omni-sourced webly-supervised learning for video recognition, in publication-title: European Conference on Computer Vision, Springer – start-page: 2777 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1340 article-title: One-shot action recognition in challenging therapy scenarios – ident: 10.1016/j.neucom.2022.09.071_b0860 doi: 10.1609/aaai.v33i01.33018561 – volume: 16 start-page: 3100 issue: 5 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1200 article-title: Encoding pose features to images with data augmentation for 3-d action recognition publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2910876 – start-page: 13359 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0890 article-title: Channel-wise topology refinement graph convolution for skeleton-based action recognition – start-page: 3210 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1300 article-title: Multi-modal three-stream network for action recognition – start-page: 1129 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b1175 article-title: Multi-view human action recognition under occlusion based on fuzzy distances and neural networks – start-page: 7852 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0610 article-title: Ddlstm: dual-domain lstm for cross-dataset action recognition, in – start-page: 13065 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0990 article-title: Learning self-similarity in space and time as generalized motion for video action recognition – start-page: 4511 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1250 article-title: H+ o: Unified egocentric recognition of 3d hand-object poses and interactions, in – volume: 37 start-page: 193 issue: 3 year: 2013 ident: 10.1016/j.neucom.2022.09.071_b0055 article-title: Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit publication-title: Computers & Graphics doi: 10.1016/j.cag.2012.11.004 – year: 2022 ident: 10.1016/j.neucom.2022.09.071_b0095 article-title: Human action recognition from various data modalities: A review publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2022.3183112 – volume: 8 start-page: 1 issue: 1 year: 1984 ident: 10.1016/j.neucom.2022.09.071_b0265 article-title: On the sum of all distances in a graph or digraph publication-title: Journal of Graph Theory doi: 10.1002/jgt.3190080102 – start-page: 3510 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0045 article-title: On-line simultaneous learning and recognition of everyday activities from virtual reality performances – start-page: 103 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0930 article-title: Skeleton-based action recognition with spatial reasoning and temporal stack learning – volume: 41 start-page: 1963 issue: 8 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0785 article-title: View adaptive neural networks for high performance skeleton-based human action recognition publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2019.2896631 – ident: 10.1016/j.neucom.2022.09.071_b0895 doi: 10.1609/aaai.v33i01.33018989 – start-page: 171 year: 2006 ident: 10.1016/j.neucom.2022.09.071_b0405 article-title: Human action recognition using star skeleton, in – start-page: 513 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1030 article-title: Resound: Towards action recognition without representation bias, in – year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0645 – start-page: 9985 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1310 article-title: Out-of-distribution detection for generalized zero-shot action recognition – volume: 24 start-page: 280 issue: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0060 article-title: Efficient and robust skeleton-based quality assessment and abnormality detection in human action performance publication-title: IEEE journal of biomedical and health informatics doi: 10.1109/JBHI.2019.2904321 – volume: 53 start-page: 130 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0115 article-title: 3d skeleton-based human action classification: A survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2015.11.019 – start-page: 3551 year: 2013 ident: 10.1016/j.neucom.2022.09.071_b0250 article-title: Action recognition with improved trajectories, in – start-page: 5386 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0135 article-title: Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation – start-page: 9631 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1225 article-title: Predict & cluster: Unsupervised skeleton based action recognition, in – ident: 10.1016/j.neucom.2022.09.071_b1415 doi: 10.1007/978-3-319-10578-9_45 – start-page: 317 year: 2006 ident: 10.1016/j.neucom.2022.09.071_b0350 article-title: Bayesian classification of task-oriented actions based on stochastic context-free grammar, in – start-page: 12026 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0845 article-title: Two-stream adaptive graph convolutional networks for skeleton-based action recognition, in – start-page: 1473 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b1420 article-title: Deep sequential context networks for action prediction, in – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0830 article-title: A comprehensive survey on graph neural networks publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2020.2978386 – start-page: 91 year: 2022 ident: 10.1016/j.neucom.2022.09.071_b1405 article-title: Multi-modal hybrid architecture for pedestrian action prediction – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0540 article-title: An improved two-stream 3d convolutional neural network for human action recognition – start-page: 13423 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1355 article-title: Skeleton cloud colorization for unsupervised 3d action representation learning – start-page: 7912 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0870 article-title: Skeleton-based action recognition with directed graph neural networks, in – ident: 10.1016/j.neucom.2022.09.071_b1330 – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0495 article-title: Improved two-stream module for human action recognition publication-title: EURASIP Journal on Image and Video Processing doi: 10.1186/s13640-020-00501-x – ident: 10.1016/j.neucom.2022.09.071_b0995 – volume: 7 start-page: 57267 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0485 article-title: A spatiotemporal heterogeneous two-stream network for action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2910604 – year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0620 article-title: Trear: Transformer-based rgb-d egocentric action recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems – year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1020 – volume: 133 start-page: 471 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0565 article-title: Human action recognition using 3d convolutional neural networks with 3d motion cuboids in surveillance videos publication-title: Procedia computer science doi: 10.1016/j.procs.2018.07.059 – start-page: 466 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0665 article-title: Simple baselines for human pose estimation and tracking, in – ident: 10.1016/j.neucom.2022.09.071_b0290 – start-page: 2556 year: 2011 ident: 10.1016/j.neucom.2022.09.071_b0960 article-title: Hmdb: a large video database for human motion recognition – start-page: 5693 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0130 article-title: Deep high-resolution representation learning for human pose estimation, in – start-page: 2000 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0970 article-title: Stm: Spatiotemporal and motion encoding for action recognition – start-page: 13638 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1320 article-title: Elaborative rehearsal for zero-shot action recognition, in – volume: 33 start-page: 251 issue: 3 year: 1991 ident: 10.1016/j.neucom.2022.09.071_b0270 article-title: Hidden markov models for speech recognition publication-title: Technometrics doi: 10.1080/00401706.1991.10484833 – start-page: 139 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0455 article-title: Semi-coupled two-stream fusion convnets for action recognition at extremely low resolutions – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0585 article-title: Human action recognition with 3d convolutional neural network – volume: 232 start-page: 76 issue: 6 year: 1975 ident: 10.1016/j.neucom.2022.09.071_b0170 article-title: Visual motion perception publication-title: Scientific American doi: 10.1038/scientificamerican0675-76 – start-page: 3 year: 2002 ident: 10.1016/j.neucom.2022.09.071_b0310 article-title: Layered representations for human activity recognition, in: Proceedings – ident: 10.1016/j.neucom.2022.09.071_b0180 doi: 10.1007/978-1-4899-7641-3_9 – volume: 23 start-page: 255 issue: 2 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b0215 article-title: Motion history image: its variants and applications publication-title: Machine Vision and Applications doi: 10.1007/s00138-010-0298-4 – start-page: 6202 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0450 article-title: Slowfast networks for video recognition, in – start-page: 143 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0850 article-title: Disentangling and unifying graph convolutions for skeleton-based action recognition – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b1150 article-title: Concurrence-aware long short-term sub-memories for person-person action recognition – ident: 10.1016/j.neucom.2022.09.071_b0675 – start-page: 63 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b1305 article-title: Semantic embedding space for zero-shot action recognition – start-page: 179 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1230 article-title: Video jigsaw: Unsupervised learning of spatiotemporal context for video action recognition – volume: 35 start-page: 221 issue: 1 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b0510 article-title: 3d convolutional neural networks for human action recognition publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2012.59 – ident: 10.1016/j.neucom.2022.09.071_b1280 – volume: 27 issue: 4 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0815 article-title: Multisource learning for skeleton-based action recognition using deep lstm and cnn publication-title: Journal of Electronic Imaging doi: 10.1117/1.JEI.27.4.043050 – start-page: 61 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1125 article-title: Skeleton-based action recognition of people handling objects – start-page: 1290 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b0375 article-title: Mining actionlet ensemble for action recognition with depth cameras – year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0800 article-title: Skepxels: Spatio-temporal image representation of human skeleton joints for action recognition., in publication-title: CVPR workshops – year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1080 article-title: Fexnet: Foreground extraction network for human action recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – start-page: 4315 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b1145 article-title: Social scene understanding: End-to-end multi-person action localization and collective activity recognition – volume: 132 start-page: 1317 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0015 article-title: Human detection and tracking using hog for action recognition publication-title: Procedia computer science doi: 10.1016/j.procs.2018.05.048 – start-page: 1049 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1245 article-title: Something-else: Compositional action recognition with spatial-temporal interaction networks – start-page: 4741 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b1350 article-title: 3d human action representation learning via cross-view consistency pursuit – ident: 10.1016/j.neucom.2022.09.071_b0295 doi: 10.1109/CVPR.1992.223161 – volume: 8 start-page: 302 issue: 4 year: 1997 ident: 10.1016/j.neucom.2022.09.071_b0190 article-title: Viewpoint dependence in scene recognition publication-title: Psychological science doi: 10.1111/j.1467-9280.1997.tb00442.x – start-page: 1607 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0460 article-title: Fully-coupled two-stream spatiotemporal networks for extremely low resolution action recognition – start-page: 244 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0615 article-title: Video action transformer network, in – volume: 20 start-page: 3499 issue: 12 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0855 article-title: Gas-gcn: Gated action-specific graph convolutional networks for skeleton-based action recognition publication-title: Sensors doi: 10.3390/s20123499 – start-page: 14 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b0400 article-title: Eigenjoints-based action recognition using naive-bayes-nearest-neighbor – ident: 10.1016/j.neucom.2022.09.071_b1180 doi: 10.1007/978-1-4615-0377-4_5 – volume: 29 start-page: 9532 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0865 article-title: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2020.3028207 – year: 2004 ident: 10.1016/j.neucom.2022.09.071_b0315 article-title: Modeling individual and group actions in meetings: a two-layer hmm framework – volume: 444 start-page: 319 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0600 article-title: Db-lstm: Densely-connected bi-directional lstm for human action recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.118 – volume: 103 start-page: 60 issue: 1 year: 2013 ident: 10.1016/j.neucom.2022.09.071_b0245 article-title: Dense trajectories and motion boundary descriptors for action recognition publication-title: International journal of computer vision doi: 10.1007/s11263-012-0594-8 – ident: 10.1016/j.neucom.2022.09.071_b1065 – ident: 10.1016/j.neucom.2022.09.071_b1015 – start-page: 122 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1295 article-title: Multi-modal domain adaptation for fine-grained action recognition, in – volume: 6 start-page: 50788 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0720 article-title: Skeleton feature fusion based on multi-stream lstm for action recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869751 – start-page: 16266 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0480 article-title: Uav-human: A large benchmark for human behavior understanding with unmanned aerial vehicles – volume: 3 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b1195 article-title: Data augmentation in deep learning-based fusion of depth and inertial sensing for action recognition publication-title: IEEE Sensors Letters doi: 10.1109/LSENS.2018.2878572 – start-page: 20 year: 2012 ident: 10.1016/j.neucom.2022.09.071_b0395 article-title: View invariant human action recognition using histograms of 3d joints – volume: 43 start-page: 172 issue: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0680 article-title: Openpose: realtime multi-person 2d pose estimation using part affinity fields publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2019.2929257 – volume: 56 start-page: 605 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0475 article-title: Transferable two-stream convolutional neural network for human action recognition publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.04.007 – ident: 10.1016/j.neucom.2022.09.071_b0945 – start-page: 8984 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0200 article-title: Graph-based high-order relation modeling for long-term action recognition, in – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0690 article-title: Real-time human gesture grading based on openpose – start-page: 4552 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0330 article-title: Action recognition by hierarchical mid-level action elements, in – start-page: 508 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1140 article-title: Weakly-supervised multi-person action recognition in 360<error l=”619” c=”Undefined command ”/> videos – year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0835 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition – start-page: 515 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0155 article-title: Over-the-air adversarial flickering attacks against video recognition networks – ident: 10.1016/j.neucom.2022.09.071_b0445 doi: 10.1007/978-3-030-20893-6_23 – start-page: 175 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1130 article-title: Real-time multi-camera multi-person action recognition using pose estimation, in – start-page: 99 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0605 article-title: Football action recognition using hierarchical lstm, in – volume: 20 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.neucom.2022.09.071_b0825 article-title: The graph neural network model publication-title: IEEE transactions on neural networks doi: 10.1109/TNN.2008.2005605 – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0920 article-title: Richly activated graph convolutional network for action recognition with incomplete skeletons – ident: 10.1016/j.neucom.2022.09.071_b1375 doi: 10.1609/aaai.v36i1.19957 – ident: 10.1016/j.neucom.2022.09.071_b0120 – start-page: 579 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0770 article-title: Skeleton based action recognition with convolutional neural network – start-page: 12046 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b1220 article-title: Large-scale weakly-supervised pre-training for video action recognition, in – start-page: 1227 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0750 article-title: An attention enhanced graph convolutional lstm network for skeleton-based action recognition – start-page: 16 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0780 article-title: Skeleton image representation for 3d action recognition based on tree structure and reference joints – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0425 article-title: Two-stream convolution neural network with video-stream for action recognition – volume: 12 start-page: 744 issue: 5 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0695 article-title: Fall detection based on key points of human-skeleton using openpose publication-title: Symmetry doi: 10.3390/sym12050744 – start-page: 1 year: 2006 ident: 10.1016/j.neucom.2022.09.071_b1170 article-title: Human model and motion based 3d action recognition in multiple view scenarios – year: 2019 ident: 10.1016/j.neucom.2022.09.071_b0885 article-title: Spatial residual layer and dense connection block enhanced spatial temporal graph convolutional network for skeleton-based action recognition – start-page: 55 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0880 article-title: Dynamic gcn: Context-enriched topology learning for skeleton-based action recognition – ident: 10.1016/j.neucom.2022.09.071_b1335 doi: 10.1109/CVPR52688.2022.01933 – ident: 10.1016/j.neucom.2022.09.071_b1235 doi: 10.1007/978-3-642-15549-9_36 – volume: 60 start-page: 4 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0075 article-title: Going deeper into action recognition: A survey publication-title: Image and vision computing doi: 10.1016/j.imavis.2017.01.010 – start-page: 1010 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b1035 article-title: Ntu rgb+ d: A large scale dataset for 3d human activity analysis – year: 2015 ident: 10.1016/j.neucom.2022.09.071_b0365 article-title: Walking, lifting, standing activity recognition using probabilistic networks publication-title: International Research Journal of Engineering and Technology (IRJET) – start-page: 1110 year: 2015 ident: 10.1016/j.neucom.2022.09.071_b1110 article-title: Hierarchical recurrent neural network for skeleton based action recognition, in – volume: 84 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1275 article-title: Human action recognition toward massive-scale sport sceneries based on deep multi-model feature fusion publication-title: Signal Processing: Image Communication – start-page: 1102 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b0985 article-title: Gate-shift networks for video action recognition, in – volume: 20 start-page: 634 issue: 3 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0465 article-title: Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2017.2749159 – ident: 10.1016/j.neucom.2022.09.071_b0150 doi: 10.1007/978-3-030-58558-7_31 – start-page: 6165 year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0195 article-title: Deep analysis of cnn-based spatio-temporal representations for action recognition – volume: 20 start-page: 4758 issue: 17 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1135 article-title: Deep learning-based real-time multiple-person action recognition system publication-title: Sensors doi: 10.3390/s20174758 – start-page: 6450 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0570 article-title: A closer look at spatiotemporal convolutions for action recognition – start-page: 1647 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0735 article-title: Global context-aware attention lstm networks for 3d action recognition – start-page: 3288 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0805 article-title: A new representation of skeleton sequences for 3d action recognition – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2022.09.071_b0430 article-title: Improving human action recognition with two-stream 3d convolutional neural network – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.neucom.2022.09.071_b0275 article-title: A tutorial on hidden markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.18626 – start-page: 1145 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0710 article-title: Hand keypoint detection in single images using multiview bootstrapping, in – start-page: 505 year: 2020 ident: 10.1016/j.neucom.2022.09.071_b1095 article-title: Rubiksnet: Learnable 3d-shift for efficient video action recognition, in publication-title: European Conference on Computer Vision, Springer – ident: 10.1016/j.neucom.2022.09.071_b0370 doi: 10.1109/CVPR.1998.698711 – ident: 10.1016/j.neucom.2022.09.071_b1390 – start-page: 212 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0230 article-title: Action recognition using mhi based hu moments with hmms – ident: 10.1016/j.neucom.2022.09.071_b0625 doi: 10.1109/CVPR42600.2020.00059 – start-page: 5832 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0790 article-title: Learning action recognition model from depth and skeleton videos, in – start-page: 1837 year: 2017 ident: 10.1016/j.neucom.2022.09.071_b0575 article-title: 3d convolutional neural network with multi-model framework for action recognition – volume: Vol. 1 start-page: 178 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0595 article-title: Action recognition based on features fusion and 3d convolutional neural networks – ident: 10.1016/j.neucom.2022.09.071_b1315 doi: 10.1609/aaai.v33i01.33018303 – volume: 78 start-page: 107 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0635 article-title: A multi-frame graph matching algorithm for low-bandwidth rgb-d slam publication-title: Computer-Aided Design doi: 10.1016/j.cad.2016.05.009 – start-page: 145 year: 2009 ident: 10.1016/j.neucom.2022.09.071_b0300 article-title: Distributed continuous action recognition using a hidden markov model in body sensor networks – start-page: 770 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0670 article-title: Deep residual learning for image recognition, in – ident: 10.1016/j.neucom.2022.09.071_b1345 – volume: 60 start-page: 86 year: 2016 ident: 10.1016/j.neucom.2022.09.071_b0100 article-title: Rgb-d-based action recognition datasets: A survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.05.019 – year: 2021 ident: 10.1016/j.neucom.2022.09.071_b0205 article-title: Memory attention networks for skeleton-based action recognition publication-title: IEEE Transactions on Neural Networks and Learning Systems |
| SSID | ssj0017129 |
| Score | 2.5699618 |
| Snippet | Action recognition is a major branch of computer vision research. As a widely used technology, action recognition has been applied to human–computer... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 287 |
| SubjectTerms | Pose estimation RGB-based end-to-end action recognition method Self-supervised learning Skeleton-based cascaded action recognition method Transfer learning Unsupervised learning |
| Title | Action recognition based on RGB and skeleton data sets: A survey |
| URI | https://dx.doi.org/10.1016/j.neucom.2022.09.071 |
| Volume | 512 |
| WOSCitedRecordID | wos000862479300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKlAOXQllEKSAfuKGgxG5im1MDFGiFKlRGaOASeYs6Q0nLZFKVf8_zkjBlEJvEJbKseMbx-_T8-fktCD1KBVNaCZXomugEEFInSjInEE2FVrYmPtvn-zfs8JBPJuJtjC5pfTkB1jT84kKc_VdRQx8I24XO_oW4hx-FDmiD0OEJYofnHwm-DMW_B88gaLutyrhrgaNXz_xtQfsJdhuXUMM5iD5u7aINEeptNz-_fNHrk3doX_ohGhXKzy63gnFAGowIHzpvFz3qZv1O6D17g3H14_H0CzSH_hedN7key9Ov02WjA5xXs0tGh9VomGBSJHkCfDFoVxsUKmfEh6ova9w8vhJ1Ztxxw_ZLfQKCVc0ejAyzJ43tnJuPm5RPUBsKuPyQM_udm4qbCXH8JhfFFbROWC74CK2X-3uTg-GiiWUkpGOMU--jK70L4Op__Zy9LDGS8Q20EY8SuAwQ2ERrtrmJrvdlOnDU2rfQbkAEXkIE9ojA0ABEYEAE7hGBHSKwQ8RTXOKAh9to_HJv_Px1EgtnJJoyski4JoVkKQPql1qhrLR8RxuW1Yoa-Jg6A1pObZpZoJeGm0KqXOZ5nVqqZQF89g4aNaeNvYuwMVlRWMEoN8Dl-I6iMitSKxWcgm1K1Rai_XpUOiaVd7VNTqree3BWhVWs3CpWqahgFbdQMow6C0lVfvM-65e6isQwEL4K0PHLkff-eeQ2uvYd-PfRaDHv7AN0VZ8vpu38YYTRN033hpY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Action+recognition+based+on+RGB+and+skeleton+data+sets%3A+A+survey&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yue%2C+Rujing&rft.au=Tian%2C+Zhiqiang&rft.au=Du%2C+Shaoyi&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=512&rft.spage=287&rft.epage=306&rft_id=info:doi/10.1016%2Fj.neucom.2022.09.071&rft.externalDocID=S0925231222011596 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |