3D Object Detection for Autonomous Driving: A Survey

•Notice that no recent literature exists to collect the growing knowledge concerning 3D object detection, we fill this gap by starting with several basic concepts, providing a glimpse of evolution of 3D object detection, together with comprehensive comparisons on publicly available datasets being ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 130; S. 108796
Hauptverfasser: Qian, Rui, Lai, Xin, Li, Xirong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2022
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Notice that no recent literature exists to collect the growing knowledge concerning 3D object detection, we fill this gap by starting with several basic concepts, providing a glimpse of evolution of 3D object detection, together with comprehensive comparisons on publicly available datasets being manifested, with pros and cons being judiciously presented.•Witnessing the absence of a universal consensus on taxonomy with respect to 3D object detection, we contribute to the maturity of the taxonomy, which keeps a good continuity of existing efforts as well as adapts new branches for dynamics.•We present a case study on fifteen selected models among surveyed works, with regard to runtime analysis, error analysis, and robustness analysis closely. We argue that what mainly restricts the performance of detection is 3D location error based on our findings. Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of perception stack especially for the sake of path planning, motion prediction, and collision avoidance etc.. Taking a quick glance at the progress we have made, we attribute challenges to visual appearance recovery in the absence of depth information from images, representation learning from partially occluded unstructured point clouds, and semantic alignments over heterogeneous features from cross modalities. Despite existing efforts, 3D object detection for autonomous driving is still in its infancy. Recently, a large body of literature have been investigated to address this 3D vision task. Nevertheless, few investigations have looked into collecting and structuring this growing knowledge. We therefore aim to fill this gap in a comprehensive survey, encompassing all the main concerns including sensors, datasets, performance metrics and the recent state-of-the-art detection methods, together with their pros and cons. Furthermore, we provide quantitative comparisons with the state of the art. A case study on fifteen selected representative methods is presented, involved with runtime analysis, error analysis, and robustness analysis. Finally, we provide concluding remarks after an in-depth analysis of the surveyed works and identify promising directions for future work.
AbstractList •Notice that no recent literature exists to collect the growing knowledge concerning 3D object detection, we fill this gap by starting with several basic concepts, providing a glimpse of evolution of 3D object detection, together with comprehensive comparisons on publicly available datasets being manifested, with pros and cons being judiciously presented.•Witnessing the absence of a universal consensus on taxonomy with respect to 3D object detection, we contribute to the maturity of the taxonomy, which keeps a good continuity of existing efforts as well as adapts new branches for dynamics.•We present a case study on fifteen selected models among surveyed works, with regard to runtime analysis, error analysis, and robustness analysis closely. We argue that what mainly restricts the performance of detection is 3D location error based on our findings. Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of perception stack especially for the sake of path planning, motion prediction, and collision avoidance etc.. Taking a quick glance at the progress we have made, we attribute challenges to visual appearance recovery in the absence of depth information from images, representation learning from partially occluded unstructured point clouds, and semantic alignments over heterogeneous features from cross modalities. Despite existing efforts, 3D object detection for autonomous driving is still in its infancy. Recently, a large body of literature have been investigated to address this 3D vision task. Nevertheless, few investigations have looked into collecting and structuring this growing knowledge. We therefore aim to fill this gap in a comprehensive survey, encompassing all the main concerns including sensors, datasets, performance metrics and the recent state-of-the-art detection methods, together with their pros and cons. Furthermore, we provide quantitative comparisons with the state of the art. A case study on fifteen selected representative methods is presented, involved with runtime analysis, error analysis, and robustness analysis. Finally, we provide concluding remarks after an in-depth analysis of the surveyed works and identify promising directions for future work.
ArticleNumber 108796
Author Li, Xirong
Qian, Rui
Lai, Xin
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0003-0753-7049
  surname: Qian
  fullname: Qian, Rui
  email: rui-qian@ruc.edu.cn
  organization: Key Lab of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100872, China
– sequence: 2
  givenname: Xin
  orcidid: 0000-0003-0758-5219
  surname: Lai
  fullname: Lai, Xin
  email: laixin@ruc.edu.cn
  organization: School of Mathematics, Renmin University of China, Beijing 100872, China
– sequence: 3
  givenname: Xirong
  surname: Li
  fullname: Li, Xirong
  email: xirong@ruc.edu.cn
  organization: Key Lab of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100872, China
BookMark eNqFkE9LwzAYxoNMsJt-Aw_5Ap350zbtDsLYnAqDHdRzSNO3I2VrRpIN9u1NqScPenrgffg98HunaNLbHhB6pGROCS2euvlJBW33c0YYi6dSVMUNSmgpeJrTjE1QQginKWeE36Gp9x0hVMQiQRlf413dgQ54DSGGsT1urcPLc7C9Pdqzx2tnLqbfL_ASf5zdBa736LZVBw8PPzlDX5uXz9Vbut29vq-W21RzwUJaqlZUquQVUWWhc8ZyzkATRnmdg4a8bqEpCDQNq7KKF0JxRWuqBKGVio3gM5SNu9pZ7x208uTMUbmrpEQO5rKTo7kczOVoHrHFL0yboAaz4JQ5_Ac_jzBEsYsBJ7020GtojIvvkY01fw98A2FSd8Y
CitedBy_id crossref_primary_10_1002_best_202200068
crossref_primary_10_1109_ACCESS_2023_3335826
crossref_primary_10_1016_j_iot_2023_100809
crossref_primary_10_1109_TVCG_2023_3331779
crossref_primary_10_1109_TMM_2023_3318317
crossref_primary_10_1016_j_asoc_2024_111253
crossref_primary_10_3390_s22249577
crossref_primary_10_3390_smartcities8030079
crossref_primary_10_1109_TIM_2023_3332935
crossref_primary_10_1007_s11760_024_03273_3
crossref_primary_10_1016_j_imavis_2025_105552
crossref_primary_10_1109_TCSVT_2025_3556711
crossref_primary_10_1051_sands_2024011
crossref_primary_10_3390_rs17081465
crossref_primary_10_3390_s25030772
crossref_primary_10_1109_MITS_2024_3399017
crossref_primary_10_1145_3728910
crossref_primary_10_1007_s42461_025_01306_0
crossref_primary_10_1007_s11263_023_01790_1
crossref_primary_10_1016_j_knosys_2025_114052
crossref_primary_10_3390_s25051581
crossref_primary_10_1016_j_measurement_2024_116621
crossref_primary_10_3390_rs15040885
crossref_primary_10_1109_TPAMI_2023_3346386
crossref_primary_10_3390_wevj15010020
crossref_primary_10_1109_TIV_2023_3343878
crossref_primary_10_3390_rs15061580
crossref_primary_10_1109_TGRS_2024_3450735
crossref_primary_10_3390_rs17183239
crossref_primary_10_1007_s10044_025_01467_0
crossref_primary_10_3390_app14198969
crossref_primary_10_1016_j_patcog_2024_111042
crossref_primary_10_1016_j_compag_2023_108425
crossref_primary_10_1016_j_patrec_2024_01_011
crossref_primary_10_1016_j_patcog_2023_109476
crossref_primary_10_1016_j_patcog_2025_112444
crossref_primary_10_1080_09540091_2024_2316022
crossref_primary_10_1109_TIV_2023_3341223
crossref_primary_10_1007_s11042_023_14997_8
crossref_primary_10_1016_j_patcog_2024_110648
crossref_primary_10_1016_j_geits_2023_100125
crossref_primary_10_1186_s12880_022_00760_2
crossref_primary_10_3390_a18030172
crossref_primary_10_1016_j_patcog_2025_111789
crossref_primary_10_1109_TIV_2024_3415771
crossref_primary_10_3389_fnbot_2025_1537673
crossref_primary_10_3390_rs14081837
crossref_primary_10_1109_JIOT_2022_3231369
crossref_primary_10_1002_aisy_202500003
crossref_primary_10_3390_electronics12030703
crossref_primary_10_3390_s25175497
crossref_primary_10_1016_j_eswa_2025_127050
crossref_primary_10_1016_j_neucom_2024_129037
crossref_primary_10_1109_JSEN_2023_3240295
crossref_primary_10_1109_TAES_2024_3491058
crossref_primary_10_1364_AO_565799
crossref_primary_10_1016_j_dsp_2024_104594
crossref_primary_10_1016_j_aei_2023_101971
crossref_primary_10_1117_1_JEI_33_1_013024
crossref_primary_10_1016_j_trc_2024_104673
crossref_primary_10_1109_TMM_2024_3521698
crossref_primary_10_1109_JSEN_2024_3436834
crossref_primary_10_1109_TIV_2024_3449830
crossref_primary_10_3390_s25123668
crossref_primary_10_1109_LRA_2024_3518075
crossref_primary_10_3390_s25175264
crossref_primary_10_3390_electronics12143092
crossref_primary_10_1007_s00371_023_03228_8
crossref_primary_10_1016_j_patcog_2025_112412
crossref_primary_10_1109_TVCG_2025_3559340
crossref_primary_10_3390_photonics9110820
crossref_primary_10_3390_s24144446
crossref_primary_10_1016_j_displa_2021_102077
crossref_primary_10_1007_s11042_023_15077_7
crossref_primary_10_1016_j_patcog_2023_109569
crossref_primary_10_1109_TIV_2023_3264658
crossref_primary_10_1016_j_eswa_2025_129375
crossref_primary_10_1016_j_compeleceng_2025_110139
crossref_primary_10_1016_j_patcog_2024_110840
crossref_primary_10_1016_j_patcog_2024_110961
crossref_primary_10_1016_j_eswa_2024_123784
crossref_primary_10_3390_fi16040114
crossref_primary_10_1016_j_patcog_2025_112400
crossref_primary_10_1016_j_patcog_2023_109796
crossref_primary_10_1016_j_patcog_2023_109436
crossref_primary_10_1016_j_patcog_2024_111013
crossref_primary_10_1007_s11760_025_04580_z
crossref_primary_10_1016_j_compag_2025_110514
crossref_primary_10_1109_ACCESS_2025_3596785
crossref_primary_10_3389_fpls_2025_1524630
crossref_primary_10_3390_rs16234593
crossref_primary_10_1145_3729420
crossref_primary_10_1109_JSEN_2023_3235830
crossref_primary_10_1016_j_eswa_2023_122716
crossref_primary_10_1016_j_ins_2024_120272
crossref_primary_10_1007_s11042_023_14439_5
crossref_primary_10_1371_journal_pone_0331195
crossref_primary_10_1016_j_engappai_2025_111265
crossref_primary_10_1016_j_imavis_2025_105703
crossref_primary_10_1016_j_actaastro_2024_07_053
crossref_primary_10_1016_j_ipm_2025_104155
crossref_primary_10_1049_cdt2_7934018
crossref_primary_10_1016_j_patcog_2024_110284
crossref_primary_10_1007_s42979_025_03980_9
crossref_primary_10_1049_cvi2_70035
crossref_primary_10_1117_1_JEI_32_5_053015
crossref_primary_10_3390_s24072371
crossref_primary_10_3390_rs16040677
crossref_primary_10_1080_03772063_2025_2453897
crossref_primary_10_1109_TVT_2024_3390414
crossref_primary_10_21062_mft_2023_060
crossref_primary_10_1007_s11227_025_06946_z
crossref_primary_10_1016_j_imavis_2024_105314
crossref_primary_10_1016_j_cag_2025_104398
crossref_primary_10_1007_s40964_024_00603_2
crossref_primary_10_1016_j_measurement_2024_114196
crossref_primary_10_3788_LOP250500
crossref_primary_10_3390_agronomy14061110
crossref_primary_10_12677_airr_2024_132023
crossref_primary_10_1109_JSEN_2025_3544553
crossref_primary_10_1016_j_plaphe_2025_100048
crossref_primary_10_1109_LRA_2023_3244124
crossref_primary_10_1016_j_compag_2025_110016
crossref_primary_10_1016_j_neucom_2024_128436
crossref_primary_10_1016_j_oceaneng_2025_121501
crossref_primary_10_1007_s11760_025_04326_x
crossref_primary_10_1109_TMM_2025_3542993
crossref_primary_10_1007_s00530_025_01948_6
crossref_primary_10_1016_j_patcog_2024_110939
crossref_primary_10_1007_s41870_023_01517_y
crossref_primary_10_1109_TCSVT_2023_3306361
crossref_primary_10_3390_s23136119
crossref_primary_10_1109_ACCESS_2024_3437642
crossref_primary_10_1109_TITS_2024_3439557
crossref_primary_10_1109_ACCESS_2023_3266340
crossref_primary_10_1016_j_eswa_2024_124686
crossref_primary_10_1109_TIV_2024_3424942
crossref_primary_10_1016_j_inffus_2025_103588
crossref_primary_10_1016_j_patcog_2024_110474
crossref_primary_10_3390_s24165105
crossref_primary_10_1109_JSEN_2025_3528986
crossref_primary_10_3389_frobt_2024_1212070
crossref_primary_10_1109_TIV_2022_3213796
crossref_primary_10_1049_cit2_70001
crossref_primary_10_1109_TIV_2024_3444595
crossref_primary_10_3390_electronics14102008
crossref_primary_10_1016_j_inffus_2025_103213
crossref_primary_10_1109_TIP_2025_3541564
crossref_primary_10_1007_s00371_023_03237_7
crossref_primary_10_1007_s11432_023_3888_0
crossref_primary_10_1016_j_patcog_2023_109876
crossref_primary_10_3390_s23239579
crossref_primary_10_32604_cmc_2024_055538
crossref_primary_10_3788_COL202523_051102
crossref_primary_10_3390_wevj16080416
crossref_primary_10_1109_MNET_007_2300023
crossref_primary_10_1007_s10044_025_01498_7
crossref_primary_10_1109_TITS_2023_3321309
crossref_primary_10_1007_s00500_021_06706_0
crossref_primary_10_1016_j_eswa_2024_123497
crossref_primary_10_3390_s23208400
crossref_primary_10_1016_j_inffus_2024_102551
crossref_primary_10_1109_JSEN_2025_3541254
crossref_primary_10_1016_j_jvcir_2025_104555
crossref_primary_10_1109_TGRS_2023_3271020
crossref_primary_10_3390_s24237855
crossref_primary_10_1145_3762640
crossref_primary_10_1016_j_neucom_2024_128102
crossref_primary_10_1016_j_patcog_2025_112350
crossref_primary_10_1016_j_cad_2025_103932
crossref_primary_10_1007_s11042_024_19466_4
crossref_primary_10_1587_transinf_2024EDP7158
crossref_primary_10_1109_JSEN_2023_3262134
crossref_primary_10_1016_j_comnet_2025_111382
crossref_primary_10_1016_j_displa_2022_102322
crossref_primary_10_3390_s24144718
crossref_primary_10_1016_j_imavis_2024_105229
crossref_primary_10_1109_JIOT_2025_3541044
crossref_primary_10_3390_ani12151980
crossref_primary_10_1016_j_knosys_2024_112134
crossref_primary_10_1016_j_neucom_2025_131177
crossref_primary_10_3389_fcomp_2024_1382080
crossref_primary_10_1016_j_patcog_2024_110671
crossref_primary_10_3390_robotics12060155
crossref_primary_10_1016_j_patcog_2024_110557
crossref_primary_10_1109_TITS_2024_3456293
crossref_primary_10_1117_1_JEI_33_3_033021
crossref_primary_10_1016_j_asoc_2024_112117
crossref_primary_10_1016_j_engappai_2024_109183
crossref_primary_10_1109_JSEN_2025_3562284
crossref_primary_10_3390_robotics13020023
crossref_primary_10_1016_j_asoc_2025_113181
crossref_primary_10_1109_ACCESS_2025_3563248
crossref_primary_10_1109_TPAMI_2023_3333838
crossref_primary_10_1038_s44310_025_00070_9
crossref_primary_10_1109_JSEN_2023_3305592
crossref_primary_10_3390_s23031359
crossref_primary_10_1016_j_eswa_2023_122319
crossref_primary_10_3390_rs15051210
crossref_primary_10_1109_TITS_2023_3317372
crossref_primary_10_1109_TNNLS_2024_3495045
crossref_primary_10_1109_ACCESS_2025_3563483
Cites_doi 10.1007/s11263-009-0275-4
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108796
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108796
S0031320322002771
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-8af79a8390a86c522532ec0213b5ece5bfed60edd2949367a3a1b1a7019aed673
ISICitedReferencesCount 252
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808339300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 21:35:41 EST 2025
Sat Nov 29 07:25:50 EST 2025
Fri Feb 23 02:39:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autonomous driving
02–07
Point clouds
3D object detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-8af79a8390a86c522532ec0213b5ece5bfed60edd2949367a3a1b1a7019aed673
ORCID 0000-0003-0758-5219
0000-0003-0753-7049
ParticipantIDs crossref_primary_10_1016_j_patcog_2022_108796
crossref_citationtrail_10_1016_j_patcog_2022_108796
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108796
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Zhao, Huang, Hu, Zhou, Bai (bib0085) 2020
Song, Xiao (bib0042) 2016
Dornaika (bib0059) 2007
Liang, Yang, Chen, Hu, Urtasun (bib0090) 2019
Li, Zhang, Xia (bib0048) 2016
Roddick, Kendall, Cipolla (bib0081) 2019
Halloran, Premaratne, Vial (bib0058) 2020
Weng, Kitani (bib0041) 2019
Liu, Tang, Lin, Han (bib0011) 2019
Wang, Chao, Garg, Hariharan, Campbell, Weinberger (bib0076) 2019
Tu, Ren, Manivasagam, Liang, Yang, Du, Cheng, Urtasun (bib0097) 2020
Guo, Wang, Hu, Liu, Liu, Bennamoun (bib0035) 2020; volume 43
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0094) 2017
Chen, Kundu, Zhu, Ma, Fidler, Urtasun (bib0047) 2018; volume 40
Yang, Sun, Liu, Jia (bib0051) 2020
Sun, Kretzschmar, Dotiwalla, Chouard, Patnaik, Tsui, Guo, Zhou, Chai, Caine, Vasudevan, Han, Ngiam, Zhao, Timofeev, Ettinger, Krivokon, Gao, Joshi, Zhang, Shlens, Chen, Anguelov (bib0007) 2020
Lang, Vora, Caesar, Zhou, Yang, Beijbom (bib0006) 2019
Chen, Liu, Shen, Jia (bib0004) 2020
Patil, Malla, Gang, Chen (bib0062) 2019
Deng, Shi, Li, Zhou, Zhang, Li (bib0028) 2021
Li, Bu, Sun, Wu, Di, Chen (bib0009) 2018
Park, Ambrus, Guizilini, Li, Gaidon (bib0020) 2021
Shi, Rajkumar (bib0052) 2020
Shi, Wang, Shi, Wang, Li (bib0056) 2021; volume 43
Yin, Zhou, Krähenbühl (bib0023) 2021
Liang, Yang, Wang, Urtasun (bib0032) 2018; volume 11220
Li, Chen, Shen (bib0018) 2019
He, Zeng, Huang, Hua, Zhang (bib0053) 2020
Everingham, Gool, Williams, Winn, Zisserman (bib0067) 2010; 88
Zhang, Lu, Zhou (bib0084) 2021
Ku, Mozifian, Lee, Harakeh, Waslander (bib0031) 2018
Qian, Lai, Li (bib0088) 2022; volume 125
Caesar, Bankiti, Lang, Vora, Liong, Xu, Krishnan, Pan, Baldan, Beijbom (bib0037) 2020
Yang, Sun, Liu, Shen, Jia (bib0050) 2019
Chen, Kundu, Zhu, Berneshawi, Ma, Fidler, Urtasun (bib0046) 2015
He, Gkioxari, Dollár, Girshick (bib0075) 2017
Yan, Mao, Li (bib0025) 2018; volume 18
Qi, Liao, Jia, Fidler, Urtasun (bib0093) 2017
Chen, Ma, Wan, Li, Xia (bib0030) 2017
Kuang, Wang, An, Zhang, Zhang (bib0055) 2020; volume 20
Lin, Goyal, Girshick, He, Dollár (bib0074) 2017
Xu, Chen (bib0045) 2018
Guo, Shi, Wang, Li (bib0079) 2021
Liu, Wang, Liu (bib0022) 2021
He, Zhang, Ren, Sun (bib0070) 2014; volume 8691
Zhou, Tuzel (bib0024) 2018
Pang, Morris, Radha (bib0034) 2020
Sheng, Cai, Liu, Deng, Huang, Hua, Zhao (bib0029) 2021
Shi, Wang, Li (bib0040) 2019
Zhou, Sun, Zhang, Anguelov, Gao, Ouyang, Guo, Ngiam, Vasudevan (bib0054) 2020
Chen, Kundu, Zhang, Ma, Fidler, Urtasun (bib0044) 2016
Mao, Xue, Niu, Bai, Feng, Liang, Xu, Xu (bib0005) 2021
Mousavian, Anguelov, Flynn, Kosecka (bib0016) 2017
Ma, Zhang, Xu, Zhou, Yi, Li, Ouyang (bib0021) 2021
Wang, Jia (bib0038) 2019
Shi, Ye, Chen, Chen, Chen, Kim (bib0019) 2021
Redmon, Divvala, Girshick, Farhadi (bib0072) 2016
Mai (bib0043) 2017
Xu, Zhong, Neumann (bib0010) 2022; volume 36
Li, Ouyang, Sheng, Zeng, Wang (bib0017) 2019
Rahman, Tan, Xue, Lu (bib0013) 2019; volume 29
Chen, Kundu, Zhu, Berneshawi, Ma, Fidler, Urtasun (bib0066) 2015
Yoo, Kim, Kim, Choi (bib0033) 2020
Girshick (bib0069) 2015
Hamilton, Ying, Leskovec (bib0095) 2017
Feng, Haase-Schütz, Rosenbaum, Hertlein, Glaeser, Timm, Wiesbeck, Dietmayer (bib0036) 2021; volume 22
LeCun, Bengio, Hinton (bib0091) 2015
Kesten, Usman, Houston, Pandya, Nadhamuni, Ferreira, Yuan, sB. Low, Jain, Ondruska, S.Omari, Shah, Kulkarni, Kazakova, Tao, Platinsky, Jiang, Shet (bib0061) 2019
Zheng, Tang, Chen, Jiang, Fu (bib0026) 2021
Wang, Sun, Liu, Sarma, Bronstein, Solomon (bib0096) 2019
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0073) 2016
Qi, Yi, Su, Guibas (bib0092) 2017
Chabot, Chaouch, Rabarisoa, Teulière, Chateau (bib0015) 2017
Xu, Zhou, Wang, Qi, Anguelov (bib0086) 2021
Ye, Xu, Cao (bib0057) 2020
International (bib0001) accessed in 2021
Qian, Garg, Wang, You, Belongie, Hariharan, Campbell, Weinberger, Chao (bib0078) 2020
Simonelli, Bulò, Porzi, Lopez-Antequera, Kontschieder (bib0068) 2019
Ren, He, Girshick, Sun (bib0071) 2015
Arnold, Al-Jarrah, Dianati, Fallah, Oxtoby, Mouzakitis (bib0014) 2019; volume 20
Shi, Guo, Jiang, Wang, Shi, Wang, Li (bib0039) 2020
Fu, Gong, Wang, Batmanghelich, Tao (bib0003) 2018
Reading, Harakeh, Chae, Waslander (bib0080) 2021
Ma, Zhu, Zhang, Yang, Wang, Manocha (bib0063) 2019
Geiger, Lenz, Urtasun (bib0008) 2012
You, Wang, Chao, Garg, Pleiss, Hariharan, Campbell, Weinberger (bib0077) 2020
Geiger, Lenz, Stiller, Urtasun (bib0060) 2013; volume 32
Huang, Wang, Cheng, Zhou, Geng, Yang (bib0064) 2020; volume 42
Chang, Lambert, Sangkloy, Singh, Bak, Hartnett, Wang, Carr, Lucey, Ramanan, Hays (bib0065) 2019
Zheng, Tang, Jiang, Fu (bib0027) 2021
Kipf, Welling (bib0083) 2017
Chang, Chen (bib0002) 2018
Vora, Lang, Helou, Beijbom (bib0012) 2020
Yang, Luo, Urtasun (bib0049) 2018
Qi, Liu, Wu, Su, Guibas (bib0089) 2018
Chen, Liu, Shen, Jia (bib0087) 2019
Qi, Su, Mo, Guibas (bib0082) 2017
Pang (10.1016/j.patcog.2022.108796_bib0034) 2020
Xu (10.1016/j.patcog.2022.108796_bib0010) 2022; volume 36
Dornaika (10.1016/j.patcog.2022.108796_bib0059) 2007
Ku (10.1016/j.patcog.2022.108796_bib0031) 2018
Fu (10.1016/j.patcog.2022.108796_bib0003) 2018
Mousavian (10.1016/j.patcog.2022.108796_bib0016) 2017
Sun (10.1016/j.patcog.2022.108796_bib0007) 2020
Arnold (10.1016/j.patcog.2022.108796_bib0014) 2019; volume 20
Ma (10.1016/j.patcog.2022.108796_bib0021) 2021
Vora (10.1016/j.patcog.2022.108796_bib0012) 2020
Geiger (10.1016/j.patcog.2022.108796_bib0008) 2012
Simonelli (10.1016/j.patcog.2022.108796_bib0068) 2019
Liu (10.1016/j.patcog.2022.108796_bib0022) 2021
You (10.1016/j.patcog.2022.108796_bib0077) 2020
Li (10.1016/j.patcog.2022.108796_bib0048) 2016
Shi (10.1016/j.patcog.2022.108796_bib0052) 2020
Wang (10.1016/j.patcog.2022.108796_bib0038) 2019
Girshick (10.1016/j.patcog.2022.108796_bib0069) 2015
He (10.1016/j.patcog.2022.108796_bib0075) 2017
Shi (10.1016/j.patcog.2022.108796_bib0056) 2021; volume 43
Liang (10.1016/j.patcog.2022.108796_bib0090) 2019
LeCun (10.1016/j.patcog.2022.108796_bib0091) 2015
Redmon (10.1016/j.patcog.2022.108796_bib0072) 2016
Shi (10.1016/j.patcog.2022.108796_bib0040) 2019
Qi (10.1016/j.patcog.2022.108796_bib0093) 2017
Patil (10.1016/j.patcog.2022.108796_bib0062) 2019
Guo (10.1016/j.patcog.2022.108796_bib0035) 2020; volume 43
Xu (10.1016/j.patcog.2022.108796_bib0086) 2021
Kipf (10.1016/j.patcog.2022.108796_bib0083) 2017
Chen (10.1016/j.patcog.2022.108796_bib0046) 2015
Yang (10.1016/j.patcog.2022.108796_bib0050) 2019
Qi (10.1016/j.patcog.2022.108796_bib0092) 2017
Qian (10.1016/j.patcog.2022.108796_bib0078) 2020
Liu (10.1016/j.patcog.2022.108796_bib0011) 2019
Huang (10.1016/j.patcog.2022.108796_bib0064) 2020; volume 42
Liu (10.1016/j.patcog.2022.108796_bib0085) 2020
Chen (10.1016/j.patcog.2022.108796_bib0030) 2017
Ye (10.1016/j.patcog.2022.108796_bib0057) 2020
Wang (10.1016/j.patcog.2022.108796_bib0076) 2019
Hamilton (10.1016/j.patcog.2022.108796_bib0095) 2017
International (10.1016/j.patcog.2022.108796_sbref0001) 2021
Shi (10.1016/j.patcog.2022.108796_bib0019) 2021
Chen (10.1016/j.patcog.2022.108796_bib0087) 2019
He (10.1016/j.patcog.2022.108796_bib0053) 2020
Caesar (10.1016/j.patcog.2022.108796_bib0037) 2020
Xu (10.1016/j.patcog.2022.108796_bib0045) 2018
Liu (10.1016/j.patcog.2022.108796_bib0073) 2016
Deng (10.1016/j.patcog.2022.108796_bib0028) 2021
Zhou (10.1016/j.patcog.2022.108796_bib0024) 2018
Rahman (10.1016/j.patcog.2022.108796_bib0013) 2019; volume 29
Mao (10.1016/j.patcog.2022.108796_bib0005) 2021
Mai (10.1016/j.patcog.2022.108796_sbref0043) 2017
Sheng (10.1016/j.patcog.2022.108796_bib0029) 2021
Kuang (10.1016/j.patcog.2022.108796_bib0055) 2020; volume 20
Li (10.1016/j.patcog.2022.108796_bib0009) 2018
Weng (10.1016/j.patcog.2022.108796_bib0041) 2019
Ma (10.1016/j.patcog.2022.108796_bib0063) 2019
Everingham (10.1016/j.patcog.2022.108796_bib0067) 2010; 88
Feng (10.1016/j.patcog.2022.108796_bib0036) 2021; volume 22
Yin (10.1016/j.patcog.2022.108796_bib0023) 2021
Geiger (10.1016/j.patcog.2022.108796_bib0060) 2013; volume 32
Chang (10.1016/j.patcog.2022.108796_bib0002) 2018
Zhou (10.1016/j.patcog.2022.108796_bib0054) 2020
Chang (10.1016/j.patcog.2022.108796_bib0065) 2019
Yang (10.1016/j.patcog.2022.108796_bib0051) 2020
Liang (10.1016/j.patcog.2022.108796_bib0032) 2018; volume 11220
Lin (10.1016/j.patcog.2022.108796_bib0074) 2017
Tu (10.1016/j.patcog.2022.108796_bib0097) 2020
Chen (10.1016/j.patcog.2022.108796_bib0047) 2018; volume 40
Ren (10.1016/j.patcog.2022.108796_bib0071) 2015
Song (10.1016/j.patcog.2022.108796_bib0042) 2016
Chen (10.1016/j.patcog.2022.108796_bib0066) 2015
Yan (10.1016/j.patcog.2022.108796_bib0025) 2018; volume 18
Park (10.1016/j.patcog.2022.108796_bib0020) 2021
Zheng (10.1016/j.patcog.2022.108796_bib0026) 2021
Qian (10.1016/j.patcog.2022.108796_bib0088) 2022; volume 125
Yoo (10.1016/j.patcog.2022.108796_bib0033) 2020
Qi (10.1016/j.patcog.2022.108796_bib0082) 2017
Roddick (10.1016/j.patcog.2022.108796_bib0081) 2019
Li (10.1016/j.patcog.2022.108796_bib0017) 2019
Halloran (10.1016/j.patcog.2022.108796_bib0058) 2020
Chabot (10.1016/j.patcog.2022.108796_bib0015) 2017
Qi (10.1016/j.patcog.2022.108796_bib0089) 2018
Guo (10.1016/j.patcog.2022.108796_bib0079) 2021
He (10.1016/j.patcog.2022.108796_bib0070) 2014; volume 8691
Wang (10.1016/j.patcog.2022.108796_bib0096) 2019
Li (10.1016/j.patcog.2022.108796_bib0018) 2019
Vaswani (10.1016/j.patcog.2022.108796_bib0094) 2017
Zheng (10.1016/j.patcog.2022.108796_bib0027) 2021
Chen (10.1016/j.patcog.2022.108796_bib0004) 2020
Shi (10.1016/j.patcog.2022.108796_bib0039) 2020
Yang (10.1016/j.patcog.2022.108796_bib0049) 2018
Kesten (10.1016/j.patcog.2022.108796_bib0061) 2019
Zhang (10.1016/j.patcog.2022.108796_bib0084) 2021
Chen (10.1016/j.patcog.2022.108796_bib0044) 2016
Reading (10.1016/j.patcog.2022.108796_bib0080) 2021
Lang (10.1016/j.patcog.2022.108796_bib0006) 2019
References_xml – volume: volume 18
  start-page: 3337
  year: 2018
  ident: bib0025
  article-title: SECOND: sparsely embedded convolutional detection
  publication-title: Sensors
– volume: volume 8691
  start-page: 346
  year: 2014
  end-page: 361
  ident: bib0070
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: European Conference on Computer Vision
– start-page: 11618
  year: 2020
  end-page: 11628
  ident: bib0037
  article-title: nuScenes: A multimodal dataset for autonomous driving
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 5881
  year: 2020
  end-page: 5890
  ident: bib0078
  article-title: End-to-end pseudo-lidar for image-based 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 2443
  year: 2020
  end-page: 2451
  ident: bib0007
  article-title: Scalability in perception for autonomous driving: Waymo open dataset
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 3555
  year: 2021
  end-page: 3562
  ident: bib0026
  article-title: CIA-SSD: confident iou-aware single-stage object detector from point cloud
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 1019
  year: 2019
  end-page: 1028
  ident: bib0017
  article-title: GS3D: An efficient 3D object detection framework for autonomous driving
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 1742
  year: 2019
  end-page: 1749
  ident: bib0038
  article-title: Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3D object detection
  publication-title: International Conference on Intelligent Robots and Systems
– start-page: 5632
  year: 2017
  end-page: 5640
  ident: bib0016
  article-title: 3D bounding box estimation using deep learning and geometry
  publication-title: Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0061
  article-title: Lyft level 5 AV dataset 2019
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bib0067
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int J Comput Vis
– start-page: 10386
  year: 2020
  end-page: 10393
  ident: bib0034
  article-title: CLOCs: Camera-LiDAR object candidates fusion for 3D object detection
  publication-title: International Conference on Intelligent Robots and Systems
– start-page: 2147
  year: 2016
  end-page: 2156
  ident: bib0044
  article-title: Monocular 3D object detection for autonomous driving
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 13018
  year: 2021
  end-page: 13024
  ident: bib0022
  article-title: YOLOStereo3D: a step back to 2D for efficient stereo 3D detection
  publication-title: International Conference on Robotics and Automation
– start-page: 11870
  year: 2020
  end-page: 11879
  ident: bib0053
  article-title: Structure aware single-stage 3D object detection from point cloud
  publication-title: Conference on Computer Vision and Pattern Recognition
– year: 2016
  ident: bib0048
  article-title: Vehicle detection from 3D lidar using fully convolutional network
  publication-title: Robotics: Science and Systems
– start-page: 3164
  year: 2021
  end-page: 3173
  ident: bib0005
  article-title: Voxel transformer for 3D object detection
  publication-title: International Conference on Computer Vision
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0073
  article-title: SSD: single shot multibox detector
  publication-title: European Conference on Computer Vision
– start-page: 424
  year: 2015
  end-page: 432
  ident: bib0066
  article-title: 3D object proposals for accurate object class detection
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3142
  year: 2021
  end-page: 3152
  ident: bib0020
  article-title: Is Pseudo-Lidar needed for monocular 3D object detection?
  publication-title: International Conference on Computer Vision
– start-page: 923
  year: 2020
  end-page: 932
  ident: bib0054
  article-title: End-to-end multi-view fusion for 3D object detection in lidar point clouds
  publication-title: Conference on Robot Learning
– start-page: 1827
  year: 2017
  end-page: 1836
  ident: bib0015
  article-title: Deep MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 42
  start-page: 2702
  year: 2020
  end-page: 2719
  ident: bib0064
  article-title: The apolloscape open dataset for autonomous driving and its application
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
– start-page: 963
  year: 2019
  end-page: 973
  ident: bib0011
  article-title: Point-Voxel CNN for efficient 3D deep learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 285
  year: 2019
  ident: bib0081
  article-title: Orthographic feature transform for monocular 3d object detection
  publication-title: British Machine Vision Conference
– year: accessed in 2021
  ident: bib0001
  article-title: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles
– start-page: 436
  year: 2015
  end-page: 444
  ident: bib0091
  article-title: Deep learning
  publication-title: Nature
– volume: volume 40
  start-page: 1259
  year: 2018
  end-page: 1272
  ident: bib0047
  article-title: 3D object proposals using stereo imagery for accurate object class detection
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
– start-page: 770
  year: 2019
  end-page: 779
  ident: bib0040
  article-title: PointRCNN: 3D object proposal generation and detection from point cloud
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 4490
  year: 2018
  end-page: 4499
  ident: bib0024
  article-title: VoxelNet: End-to-end learning for point cloud based 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0072
  article-title: You only look once: Unified, real-time object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 2002
  year: 2018
  end-page: 2011
  ident: bib0003
  article-title: Deep ordinal regression network for monocular depth estimation
  publication-title: Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib0043
  article-title: What are passive and active sensors?
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bib0069
  article-title: Fast R-CNN
  publication-title: International Conference on Computer Vision
– start-page: 5209
  year: 2017
  end-page: 5218
  ident: bib0093
  article-title: 3D graph neural networks for RGB-D semantic segmentation
  publication-title: International Conference on Computer Vision
– start-page: 11784
  year: 2021
  end-page: 11793
  ident: bib0023
  article-title: Center-based 3D object detection and tracking
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 424
  year: 2015
  end-page: 432
  ident: bib0046
  article-title: 3D object proposals for accurate object class detection
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2019
  end-page: 12
  ident: bib0096
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: Transactions on Graphics
– start-page: 15172
  year: 2021
  end-page: 15181
  ident: bib0019
  article-title: Geometry-based distance decomposition for monocular 3D object detection
  publication-title: International Conference on Computer Vision
– start-page: 8748
  year: 2019
  end-page: 8757
  ident: bib0065
  article-title: Argoverse: 3D tracking and forecasting with rich maps
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 7345
  year: 2019
  end-page: 7353
  ident: bib0090
  article-title: Multi-task multi-sensor fusion for 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 43
  start-page: 4338
  year: 2020
  end-page: 4364
  ident: bib0035
  article-title: Deep learning for 3D point clouds: A survey
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
– start-page: 9774
  year: 2019
  end-page: 9783
  ident: bib0087
  article-title: Fast Point R-CNN
  publication-title: International Conference on Computer Vision
– start-page: 6120
  year: 2019
  end-page: 6127
  ident: bib0063
  article-title: Trafficpredict: Trajectory prediction for heterogeneous traffic-agents
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 4603
  year: 2020
  end-page: 4611
  ident: bib0012
  article-title: Pointpainting: Sequential fusion for 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 1628
  year: 2020
  end-page: 1637
  ident: bib0057
  article-title: HVNet: Hybrid voxel network for lidar based 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 43
  start-page: 2647
  year: 2021
  end-page: 2664
  ident: bib0056
  article-title: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network
  publication-title: Transactions on Pattern Analysis and Machine Intelligence
– start-page: 2716
  year: 2007
  end-page: 2729
  ident: bib0059
  article-title: Self-calibration of a stereo rig using monocular epipolar geometries
  publication-title: Pattern Recognition
– volume: volume 22
  start-page: 1341
  year: 2021
  end-page: 1360
  ident: bib0036
  article-title: Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges
  publication-title: Transactions on Intelligent Transportation Systems
– start-page: 1201
  year: 2021
  end-page: 1209
  ident: bib0028
  article-title: Voxel R-CNN: towards high performance voxel-based 3D object detection
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 7652
  year: 2018
  end-page: 7660
  ident: bib0049
  article-title: PIXOR: Real-time 3D object detection from point clouds
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0075
  article-title: Mask R-CNN
  publication-title: International Conference on Computer Vision
– start-page: 2345
  year: 2018
  end-page: 2353
  ident: bib0045
  article-title: Multi-level fusion based 3D object detection from monocular images
  publication-title: Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0077
  article-title: Pseudo-lidar++: Accurate depth for 3D object detection in autonomous driving
  publication-title: International Conference on Learning Representations
– start-page: 5099
  year: 2017
  end-page: 5108
  ident: bib0092
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1708
  year: 2020
  end-page: 1716
  ident: bib0052
  article-title: Point-GNN: Graph neural network for 3D object detection in a point cloud
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 125
  start-page: 108524
  year: 2022
  ident: bib0088
  article-title: BADet: Boundary-aware 3D object detection from point clouds
  publication-title: Pattern Recognition
– volume: volume 32
  start-page: 1231
  year: 2013
  end-page: 1237
  ident: bib0060
  article-title: Vision meets robotics: The KITTI dataset
  publication-title: The International Journal of Robotics Research
– volume: volume 11220
  start-page: 663
  year: 2018
  end-page: 678
  ident: bib0032
  article-title: Deep continuous fusion for multi-sensor 3D object detection
  publication-title: European Conference on Computer Vision
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: bib0074
  article-title: Focal loss for dense object detection
  publication-title: International Conference on Computer Vision
– start-page: 808
  year: 2016
  end-page: 816
  ident: bib0042
  article-title: Deep sliding shapes for amodal 3D object detection in RGB-D images
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 1907
  year: 2017
  end-page: 1915
  ident: bib0030
  article-title: Multi-view 3D object detection network for autonomous driving
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 1951
  year: 2019
  end-page: 1960
  ident: bib0050
  article-title: STD: Sparse-to-dense 3D object detector for point cloud
  publication-title: International Conference on Computer Vision
– start-page: 14494
  year: 2021
  end-page: 14503
  ident: bib0027
  article-title: SE-SSD: Self-Ensembling single-stage object detector from point cloud
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 7644
  year: 2019
  end-page: 7652
  ident: bib0018
  article-title: Stereo R-CNN based 3D object detection for autonomous driving
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 3354
  year: 2012
  end-page: 3361
  ident: bib0008
  article-title: Are we ready for autonomous driving? the KITTI vision benchmark suite
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 12697
  year: 2019
  end-page: 12705
  ident: bib0006
  article-title: PointPillars: Fast encoders for object detection from point clouds
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 20
  start-page: 3782
  year: 2019
  end-page: 3795
  ident: bib0014
  article-title: A survey on 3D object detection methods for autonomous driving applications
  publication-title: Transactions on Intelligent Transportation Systems
– start-page: 8555
  year: 2021
  end-page: 8564
  ident: bib0080
  article-title: Categorical depth distribution network for monocular 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 29
  start-page: 2947
  year: 2019
  end-page: 2962
  ident: bib0013
  article-title: Recent advances in 3D object detection in the era of deep neural networks: A survey
  publication-title: Transactions on Image Processing
– start-page: 2743
  year: 2021
  end-page: 2752
  ident: bib0029
  article-title: Improving 3D object detection with channel-wise transformer
  publication-title: International Conference on Computer Vision
– start-page: 1024
  year: 2017
  end-page: 1034
  ident: bib0095
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems
– start-page: 4721
  year: 2021
  end-page: 4730
  ident: bib0021
  article-title: Delving into localization errors for monocular 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 857
  year: 2019
  end-page: 866
  ident: bib0041
  article-title: Monocular 3D object detection with pseudo-lidar point cloud
  publication-title: International Conference on Computer Vision Workshops
– start-page: 828
  year: 2018
  end-page: 838
  ident: bib0009
  article-title: PointCNN: Convolution on X-transformed points
  publication-title: Advances in Neural Information Processing Systems
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0071
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0031
  article-title: Joint 3D proposal generation and object detection from view aggregation
  publication-title: International Conference on Intelligent Robots and Systems
– start-page: 11037
  year: 2020
  end-page: 11045
  ident: bib0051
  article-title: 3DSSD: Point-based 3D single stage object detector
  publication-title: Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib0083
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: International Conference on Learning Representations
– start-page: 3289
  year: 2021
  end-page: 3298
  ident: bib0084
  article-title: Objects are different: Flexible monocular 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 12533
  year: 2020
  end-page: 12542
  ident: bib0004
  article-title: DSGN: deep stereo geometry network for 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 20
  start-page: 704
  year: 2020
  ident: bib0055
  article-title: Voxel-FPN: Multi-scale voxel feature aggregation for 3D object detection from LIDAR point clouds
  publication-title: Sensors
– start-page: 918
  year: 2018
  end-page: 927
  ident: bib0089
  article-title: Frustum pointnets for 3D object detection from RGB-D data
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 107058
  year: 2020
  ident: bib0058
  article-title: Robust one-dimensional calibration and localisation of a distributed camera sensor network
  publication-title: Pattern Recognition
– start-page: 8445
  year: 2019
  end-page: 8453
  ident: bib0076
  article-title: Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 15446
  year: 2021
  end-page: 15456
  ident: bib0086
  article-title: SPG: Unsupervised domain adaptation for 3D object detection via semantic point generation
  publication-title: International Conference on Computer Vision
– start-page: 652
  year: 2017
  end-page: 660
  ident: bib0082
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 9552
  year: 2019
  end-page: 9557
  ident: bib0062
  article-title: The H3D dataset for full-surround 3D multi-object detection and tracking in crowded urban scenes
  publication-title: International Conference on Robotics and Automation, ICRA
– start-page: 720
  year: 2020
  end-page: 736
  ident: bib0033
  article-title: 3D-CVF: Generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection
  publication-title: European Conference on Computer Vision
– start-page: 11677
  year: 2020
  end-page: 11684
  ident: bib0085
  article-title: TANet: Robust 3D object detection from point clouds with triple attention
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: bib0094
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– start-page: 10526
  year: 2020
  end-page: 10535
  ident: bib0039
  article-title: PV-RCNN: Point-Voxel feature set abstraction for 3D object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 5410
  year: 2018
  end-page: 5418
  ident: bib0002
  article-title: Pyramid stereo matching network
  publication-title: Conference on Computer Vision and Pattern Recognition
– volume: volume 36
  year: 2022
  ident: bib0010
  article-title: Behind the curtain: Learning occluded shapes for 3D object detection
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 13713
  year: 2020
  end-page: 13722
  ident: bib0097
  article-title: Physically realizable adversarial examples for lidar object detection
  publication-title: Conference on Computer Vision and Pattern Recognition
– start-page: 1991
  year: 2019
  end-page: 1999
  ident: bib0068
  article-title: Disentangling monocular 3D object detection
  publication-title: International Conference on Computer Vision
– start-page: 3153
  year: 2021
  end-page: 3163
  ident: bib0079
  article-title: LIGA-Stereo: Learning lidar geometry aware representations for stereo-based 3D detector
  publication-title: International Conference on Computer Vision
– volume: volume 125
  start-page: 108524
  year: 2022
  ident: 10.1016/j.patcog.2022.108796_bib0088
  article-title: BADet: Boundary-aware 3D object detection from point clouds
– volume: volume 11220
  start-page: 663
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0032
  article-title: Deep continuous fusion for multi-sensor 3D object detection
– volume: volume 18
  start-page: 3337
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0025
  article-title: SECOND: sparsely embedded convolutional detection
– start-page: 13713
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0097
  article-title: Physically realizable adversarial examples for lidar object detection
– start-page: 2443
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0007
  article-title: Scalability in perception for autonomous driving: Waymo open dataset
– volume: volume 43
  start-page: 4338
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0035
  article-title: Deep learning for 3D point clouds: A survey
– start-page: 1024
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0095
  article-title: Inductive representation learning on large graphs
– volume: volume 29
  start-page: 2947
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0013
  article-title: Recent advances in 3D object detection in the era of deep neural networks: A survey
– start-page: 8748
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0065
  article-title: Argoverse: 3D tracking and forecasting with rich maps
– start-page: 2147
  year: 2016
  ident: 10.1016/j.patcog.2022.108796_bib0044
  article-title: Monocular 3D object detection for autonomous driving
– volume: volume 32
  start-page: 1231
  year: 2013
  ident: 10.1016/j.patcog.2022.108796_bib0060
  article-title: Vision meets robotics: The KITTI dataset
– year: 2016
  ident: 10.1016/j.patcog.2022.108796_bib0048
  article-title: Vehicle detection from 3D lidar using fully convolutional network
– start-page: 285
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0081
  article-title: Orthographic feature transform for monocular 3d object detection
– start-page: 11870
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0053
  article-title: Structure aware single-stage 3D object detection from point cloud
– start-page: 13018
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0022
  article-title: YOLOStereo3D: a step back to 2D for efficient stereo 3D detection
– start-page: 918
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0089
  article-title: Frustum pointnets for 3D object detection from RGB-D data
– start-page: 5998
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0094
  article-title: Attention is all you need
– volume: volume 36
  year: 2022
  ident: 10.1016/j.patcog.2022.108796_bib0010
  article-title: Behind the curtain: Learning occluded shapes for 3D object detection
– start-page: 857
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0041
  article-title: Monocular 3D object detection with pseudo-lidar point cloud
– start-page: 7644
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0018
  article-title: Stereo R-CNN based 3D object detection for autonomous driving
– year: 2021
  ident: 10.1016/j.patcog.2022.108796_sbref0001
– start-page: 963
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0011
  article-title: Point-Voxel CNN for efficient 3D deep learning
– year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0077
  article-title: Pseudo-lidar++: Accurate depth for 3D object detection in autonomous driving
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2022.108796_bib0067
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0031
  article-title: Joint 3D proposal generation and object detection from view aggregation
– start-page: 3153
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0079
  article-title: LIGA-Stereo: Learning lidar geometry aware representations for stereo-based 3D detector
– start-page: 107058
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0058
  article-title: Robust one-dimensional calibration and localisation of a distributed camera sensor network
– start-page: 2716
  year: 2007
  ident: 10.1016/j.patcog.2022.108796_bib0059
  article-title: Self-calibration of a stereo rig using monocular epipolar geometries
– start-page: 11677
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0085
  article-title: TANet: Robust 3D object detection from point clouds with triple attention
– start-page: 1742
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0038
  article-title: Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3D object detection
– start-page: 9774
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0087
  article-title: Fast Point R-CNN
– start-page: 2345
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0045
  article-title: Multi-level fusion based 3D object detection from monocular images
– start-page: 5632
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0016
  article-title: 3D bounding box estimation using deep learning and geometry
– start-page: 10386
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0034
  article-title: CLOCs: Camera-LiDAR object candidates fusion for 3D object detection
– start-page: 14494
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0027
  article-title: SE-SSD: Self-Ensembling single-stage object detector from point cloud
– start-page: 1951
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0050
  article-title: STD: Sparse-to-dense 3D object detector for point cloud
– start-page: 1827
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0015
  article-title: Deep MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image
– start-page: 1201
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0028
  article-title: Voxel R-CNN: towards high performance voxel-based 3D object detection
– start-page: 720
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0033
  article-title: 3D-CVF: Generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection
– start-page: 1991
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0068
  article-title: Disentangling monocular 3D object detection
– start-page: 8555
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0080
  article-title: Categorical depth distribution network for monocular 3D object detection
– start-page: 11784
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0023
  article-title: Center-based 3D object detection and tracking
– start-page: 6120
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0063
  article-title: Trafficpredict: Trajectory prediction for heterogeneous traffic-agents
– start-page: 808
  year: 2016
  ident: 10.1016/j.patcog.2022.108796_bib0042
  article-title: Deep sliding shapes for amodal 3D object detection in RGB-D images
– start-page: 8445
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0076
  article-title: Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving
– start-page: 923
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0054
  article-title: End-to-end multi-view fusion for 3D object detection in lidar point clouds
– start-page: 779
  year: 2016
  ident: 10.1016/j.patcog.2022.108796_bib0072
  article-title: You only look once: Unified, real-time object detection
– start-page: 9552
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0062
  article-title: The H3D dataset for full-surround 3D multi-object detection and tracking in crowded urban scenes
– start-page: 5410
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0002
  article-title: Pyramid stereo matching network
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0096
  article-title: Dynamic graph CNN for learning on point clouds
– volume: volume 42
  start-page: 2702
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0064
  article-title: The apolloscape open dataset for autonomous driving and its application
– start-page: 5881
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0078
  article-title: End-to-end pseudo-lidar for image-based 3D object detection
– start-page: 12697
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0006
  article-title: PointPillars: Fast encoders for object detection from point clouds
– start-page: 15446
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0086
  article-title: SPG: Unsupervised domain adaptation for 3D object detection via semantic point generation
– start-page: 4721
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0021
  article-title: Delving into localization errors for monocular 3D object detection
– start-page: 3289
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0084
  article-title: Objects are different: Flexible monocular 3D object detection
– start-page: 7345
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0090
  article-title: Multi-task multi-sensor fusion for 3D object detection
– start-page: 436
  year: 2015
  ident: 10.1016/j.patcog.2022.108796_bib0091
  article-title: Deep learning
– start-page: 3164
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0005
  article-title: Voxel transformer for 3D object detection
– start-page: 15172
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0019
  article-title: Geometry-based distance decomposition for monocular 3D object detection
– start-page: 424
  year: 2015
  ident: 10.1016/j.patcog.2022.108796_bib0066
  article-title: 3D object proposals for accurate object class detection
– volume: volume 43
  start-page: 2647
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0056
  article-title: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network
– start-page: 1440
  year: 2015
  ident: 10.1016/j.patcog.2022.108796_bib0069
  article-title: Fast R-CNN
– start-page: 7652
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0049
  article-title: PIXOR: Real-time 3D object detection from point clouds
– start-page: 5099
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0092
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– start-page: 12533
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0004
  article-title: DSGN: deep stereo geometry network for 3D object detection
– start-page: 3354
  year: 2012
  ident: 10.1016/j.patcog.2022.108796_bib0008
  article-title: Are we ready for autonomous driving? the KITTI vision benchmark suite
– start-page: 91
  year: 2015
  ident: 10.1016/j.patcog.2022.108796_bib0071
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
– start-page: 11618
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0037
  article-title: nuScenes: A multimodal dataset for autonomous driving
– start-page: 11037
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0051
  article-title: 3DSSD: Point-based 3D single stage object detector
– start-page: 1708
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0052
  article-title: Point-GNN: Graph neural network for 3D object detection in a point cloud
– year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0083
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 3555
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0026
  article-title: CIA-SSD: confident iou-aware single-stage object detector from point cloud
– start-page: 1628
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0057
  article-title: HVNet: Hybrid voxel network for lidar based 3D object detection
– start-page: 424
  year: 2015
  ident: 10.1016/j.patcog.2022.108796_bib0046
  article-title: 3D object proposals for accurate object class detection
– volume: volume 40
  start-page: 1259
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0047
  article-title: 3D object proposals using stereo imagery for accurate object class detection
– start-page: 2002
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0003
  article-title: Deep ordinal regression network for monocular depth estimation
– start-page: 10526
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0039
  article-title: PV-RCNN: Point-Voxel feature set abstraction for 3D object detection
– volume: volume 20
  start-page: 704
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0055
  article-title: Voxel-FPN: Multi-scale voxel feature aggregation for 3D object detection from LIDAR point clouds
– start-page: 2980
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0075
  article-title: Mask R-CNN
– start-page: 652
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0082
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– start-page: 5209
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0093
  article-title: 3D graph neural networks for RGB-D semantic segmentation
– start-page: 2743
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0029
  article-title: Improving 3D object detection with channel-wise transformer
– year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0061
– start-page: 4490
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0024
  article-title: VoxelNet: End-to-end learning for point cloud based 3D object detection
– start-page: 1907
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0030
  article-title: Multi-view 3D object detection network for autonomous driving
– start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2022.108796_bib0073
  article-title: SSD: single shot multibox detector
– volume: volume 22
  start-page: 1341
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0036
  article-title: Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges
– start-page: 828
  year: 2018
  ident: 10.1016/j.patcog.2022.108796_bib0009
  article-title: PointCNN: Convolution on X-transformed points
– year: 2017
  ident: 10.1016/j.patcog.2022.108796_sbref0043
– volume: volume 8691
  start-page: 346
  year: 2014
  ident: 10.1016/j.patcog.2022.108796_bib0070
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
– start-page: 2999
  year: 2017
  ident: 10.1016/j.patcog.2022.108796_bib0074
  article-title: Focal loss for dense object detection
– start-page: 3142
  year: 2021
  ident: 10.1016/j.patcog.2022.108796_bib0020
  article-title: Is Pseudo-Lidar needed for monocular 3D object detection?
– start-page: 770
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0040
  article-title: PointRCNN: 3D object proposal generation and detection from point cloud
– start-page: 4603
  year: 2020
  ident: 10.1016/j.patcog.2022.108796_bib0012
  article-title: Pointpainting: Sequential fusion for 3D object detection
– start-page: 1019
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0017
  article-title: GS3D: An efficient 3D object detection framework for autonomous driving
– volume: volume 20
  start-page: 3782
  year: 2019
  ident: 10.1016/j.patcog.2022.108796_bib0014
  article-title: A survey on 3D object detection methods for autonomous driving applications
SSID ssj0017142
Score 2.7344794
Snippet •Notice that no recent literature exists to collect the growing knowledge concerning 3D object detection, we fill this gap by starting with several basic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108796
SubjectTerms 3D object detection
Autonomous driving
Point clouds
Title 3D Object Detection for Autonomous Driving: A Survey
URI https://dx.doi.org/10.1016/j.patcog.2022.108796
Volume 130
WOSCitedRecordID wos000808339300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT4MwFG_8Onjx2_idHrwZFqCwUm_EzagHPxJNdiOlFMNi2MLY4p_v61rAOaPu4IWQ0hbSX3l97fu99xA6D2TiURh9K3Zcankk8ayAwy5F8nYiAk8wJ-bTZBP0_j7o9dijSTQ-mqYToHkevL-z4b9CDWUAtnKdXQDuulMogHsAHa4AO1z_BDzpXDzE6nQFZEkpRc0lDMelcmBQlNdOkU2Mo3MIoqOYzBp3H6cxN5WfiyEXNab6p8zYjcZZTeXRCa17WUPuMQXFwCyL5lQBNqQVP62WlMSxiGuTGUlpTCha1jl2QHU22jkxrE8E-q0hLCeD15Z6QaupPhv1-stqVHMEK_pZP9K9RKqXSPeyjFZd6jOQYqvhbbd3V9uNqOPp-PDm6ytnySmjb_5rvldGPikYz1tow-wMcKgR3UZLMt9Bm1XWDWyE8C7ySAdrgHENMAaAcQMwNgBf4hBrePfQy3X3-erGMrkvLEGoW8IPk1LGQXu1edAWoCT7xJUCFDIS-1JIP05l0rZlkrjMY6RNOeFO7HAVXJ_DE0r20Uo-yOUBwrGwWQpqt804LItpGrjK9VIFspM-921yiEg1CJEwgeFVfpK36CcIDpFVtxrqwCi_1KfV-EZGudNKWwST5seWRwu-6RitNzP6BK2UxVieojUxKbNRcWZmzAfCMW1H
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Object+Detection+for+Autonomous+Driving%3A+A+Survey&rft.jtitle=Pattern+recognition&rft.au=Qian%2C+Rui&rft.au=Lai%2C+Xin&rft.au=Li%2C+Xirong&rft.date=2022-10-01&rft.issn=0031-3203&rft.volume=130&rft.spage=108796&rft_id=info:doi/10.1016%2Fj.patcog.2022.108796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon