An efficient model for auxiliary diagnosis of hepatocellular carcinoma based on gene expression programming

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical & biological engineering & computing Ročník 56; číslo 10; s. 1771 - 1779
Hlavní autori: Zhang, Li, Chen, Jiasheng, Gao, Chunming, Liu, Chuanmiao, Xu, Kuihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2018
Springer Nature B.V
Predmet:
ISSN:0140-0118, 1741-0444, 1741-0444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma
AbstractList Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma.Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis.
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma.
Author Gao, Chunming
Xu, Kuihua
Liu, Chuanmiao
Chen, Jiasheng
Zhang, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: zl_byfy@sina.com
  organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College
– sequence: 2
  givenname: Jiasheng
  surname: Chen
  fullname: Chen, Jiasheng
  organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College
– sequence: 3
  givenname: Chunming
  surname: Gao
  fullname: Gao, Chunming
  organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College
– sequence: 4
  givenname: Chuanmiao
  surname: Liu
  fullname: Liu, Chuanmiao
  organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College
– sequence: 5
  givenname: Kuihua
  surname: Xu
  fullname: Xu, Kuihua
  organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29546505$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFr3iAYhWV0rF-7_YDdDKE3u8nmazQxl6V0a6Gwm96L0TeZXaJfNYH239fwdSsUuisRn-M5nHNCjkIMSMhnYN-AsfZ7BpDQVgxUBQqgat6RHbQCKiaEOCI7BoKVV1DH5CTnO8Y4SC4-kGPeSdFIJnfkz3mgOAzeegwLnaPDiQ4xUbM--Mmb9EidN2OI2WcaB_ob92aJFqdpnUyi1iTrQ5wN7U1GR2OgIwak-LBPmLMv932KYzLz7MP4kbwfzJTx0_N5Sm5_XN5eXFU3v35eX5zfVLZu-VIpqQZeA3OqtqplaJ2VKAyXrRA9b2pUgzGdcqJnDtH2qqs74UxtAdtG9PUp-Xr4tljfr5gXPfu8RTYB45o1L7V0kkvVFPTsFXoX1xRKuI2STd0IwQv15Zla-xmd3ic_l2b03xYLAAfApphzwuEfAkxvS-nDUrospbel9GbdvtJYv5ilVLYk46f_KvlBmYtLGDG9hH5b9AToAKfn
CitedBy_id crossref_primary_10_1002_cam4_1778
crossref_primary_10_3389_fphar_2023_1177282
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_1155_2022_5914541
crossref_primary_10_1186_s12885_021_08843_z
crossref_primary_10_1016_j_bj_2024_100752
crossref_primary_10_1016_j_procs_2023_01_130
crossref_primary_10_1007_s12029_020_00485_x
Cites_doi 10.1016/j.critrevonc.2011.05.005
10.1016/j.bpg.2008.11.005
10.1002/hep.27016
10.4254/wjh.v7.i3.362
10.3892/or.2016.4842
10.1007/BF00993877
10.1189/jlb.0506297
10.1159/000345891
10.1148/radiol.14132361
10.1111/j.1572-0241.2001.04054.x
10.1196/annals.1310.020
10.1049/iet-syb.2015.0082
10.1053/j.gastro.2009.04.005
10.1007/s12328-015-0568-9
10.1371/journal.pone.0047687
10.1159/000449337
10.1016/S1590-8658(10)60512-9
10.1371/journal.pone.0158285
10.1159/000343875
10.1038/ng0802-339
10.1016/j.ejps.2011.08.021
10.1016/S0140-6736(11)61347-0
10.1055/s-0038-1634363
10.1016/j.jhep.2004.10.005
10.1016/j.jhep.2011.12.001
10.2147/JHC.S61146
10.1016/S0168-8278(01)00130-1
10.1016/j.bpg.2014.07.018
10.1371/journal.pone.0125517
10.1007/s11517-013-1108-8
10.1093/clinchem/38.1.9
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2018
Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2018
– notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-018-1811-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health Medical collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Business Collection (Alumni Edition)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1779
ExternalDocumentID 29546505
10_1007_s11517_018_1811_6
Genre Journal Article
GrantInformation_xml – fundername: Bengbu Medical College
  grantid: BYKY1677
  funderid: http://dx.doi.org/10.13039/501100007924
– fundername: Bengbu Medical College
  grantid: BYKY1677
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-858f2310d83c870ecdc5e4a25744b263e8faa98d4b0deecb89394da3c1e764b3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445105800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-0118
1741-0444
IngestDate Thu Sep 04 18:00:57 EDT 2025
Tue Nov 04 23:04:52 EST 2025
Mon Jul 21 05:46:05 EDT 2025
Sat Nov 29 04:15:22 EST 2025
Tue Nov 18 21:16:31 EST 2025
Fri Feb 21 02:31:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hepatocellular carcinoma
Auxiliary diagnosis
Serum biomarkers
Gene expression programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-858f2310d83c870ecdc5e4a25744b263e8faa98d4b0deecb89394da3c1e764b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29546505
PQID 2015636442
PQPubID 54161
PageCount 9
ParticipantIDs proquest_miscellaneous_2014952586
proquest_journals_2015636442
pubmed_primary_29546505
crossref_primary_10_1007_s11517_018_1811_6
crossref_citationtrail_10_1007_s11517_018_1811_6
springer_journals_10_1007_s11517_018_1811_6
PublicationCentury 2000
PublicationDate 20181000
2018-10-00
2018-Oct
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 20181000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Carr, Pancoska, Branch (CR6) 2010; 57
Thorgeirsson, Grisham (CR30) 2002; 31
El-Serag, Richardson, Everhart (CR10) 2001; 96
Choi, Lee, Sirlin (CR7) 2014; 272
Minami, Kudo (CR24) 2013; 84
Tremosini, Reig, de Lope, Forner, Bruix (CR31) 2010; 42
Kusy, Obrzut, Kluska (CR18) 2013; 51
Wang, Hsieh, Wen, Wen, Chen, Lu (CR32) 2016; 11
Marrero, Fontana, Fu, Conjeevaram, Su, Lok (CR20) 2005; 42
Singhal, Jayaraman, Dhanasekaran, Kohli (CR28) 2012; 82
Budhu, Wang (CR5) 2006; 80
(CR11) 2012; 56
Balogh, Victor, Asham, Burroughs, Boktour, Saharia, Li, Ghobrial, Monsour (CR3) 2016; 3
Yu, Lu, Si, Liu, Li, Gao, Cui, Li, Yang, Yao (CR33) 2015; 10
Masuzaki, Yoshida, Tateishi, Shiina, Omata (CR22) 2008; 22
Rich, Singal (CR27) 2014; 28
Heckerling, Gerber, Tape, Wigton (CR15) 2003; 42
Azzawi, Hou, Xiang, Alanni (CR2) 2016; 10
Maclin, Dempsey, Brooks, Rand (CR19) 1991; 15
Ferreira (CR12) 2001; 13
Nakanishi, Kurosaki, Tsuchiya, Yasui, Higuchi, Yoshida, Komiyama, Takaura, Hayashi, Kuwabara, Nakakuki, Takada, Ueda, Tamaki, Suzuki, Itakura, Takahashi, Izumi (CR25) 2016; 5
McCarthy, Marx, Hoffman, Gee, O'Neil, Ujwal, Hotchkiss (CR23) 2004; 1020
Tejeda-Maldonado, Garcia-Juarez, Aguirre-Valadez, Gonzalez-Aguirre, Vilatoba-Chapa, Armengol-Alonso, Escobar-Penagos, Torre, Sanchez-Avila, Carrillo-Perez (CR29) 2015; 7
Colbourn, Roskilly, Rowe, York (CR9) 2011; 44
Cicchetti (CR8) 1992; 38
Marrero, Feng, Wang, Nguyen, Befeler, Roberts, Reddy, Harnois, Llovet, Normolle, Dalhgren, Chia, Lok, Wagner, Srivastava, Schwartz (CR21) 2009; 137
Kondo, Kimura, Shimosegawa (CR16) 2015; 8
Forner, Llovet, Bruix (CR13) 2012; 379
Hann, Wan, Myers, Hann, Xing, Chen, Yang (CR14) 2012; 7
Reichl, Mikulits (CR26) 2016; 36
Kudo, Matsui, Izumi, Iijima, Kadoya, Imai, Okusaka, Miyayama, Tsuchiya, Ueshima, Hiraoka, Ikeda, Ogasawara, Yamashita, Minami, Yamakado (CR17) 2014; 3
Aleksandrova, Boeing, Nothlings, Jenab, Fedirko, Kaaks, Lukanova, Trichopoulou, Trichopoulos, Boffetta, Trepo, Westhpal, Duarte-Salles, Stepien, Overvad, Tjonneland, Halkjaer, Boutron-Ruault, Dossus, Racine, Lagiou, Bamia, Benetou, Agnoli, Palli, Panico, Tumino, Vineis, Bueno-de-Mesquita, Peeters, Gram, Lund, Weiderpass, Quiros, Agudo, Sanchez, Gavrila, Barricarte, Dorronsoro, Ohlsson, Lindkvist, Johansson, Sund, Khaw, Wareham, Travis, Riboli, Pischon (CR1) 2014; 60
Bruix, Sherman, Llovet, Beaugrand, Lencioni, Burroughs, Christensen, Pagliaro, Colombo, Rodes (CR4) 2001; 35
H Azzawi (1811_CR2) 2016; 10
PS Heckerling (1811_CR15) 2003; 42
EA Colbourn (1811_CR9) 2011; 44
HW Hann (1811_CR14) 2012; 7
Y Minami (1811_CR24) 2013; 84
P Reichl (1811_CR26) 2016; 36
HY Wang (1811_CR32) 2016; 11
DV Cicchetti (1811_CR8) 1992; 38
European Association For The Study Of The L, European Organisation For R, Treatment Of C (1811_CR11) 2012; 56
Y Kondo (1811_CR16) 2015; 8
JA Marrero (1811_CR21) 2009; 137
S Tremosini (1811_CR31) 2010; 42
SS Thorgeirsson (1811_CR30) 2002; 31
J Tejeda-Maldonado (1811_CR29) 2015; 7
J Bruix (1811_CR4) 2001; 35
M Kusy (1811_CR18) 2013; 51
JA Marrero (1811_CR20) 2005; 42
C Ferreira (1811_CR12) 2001; 13
A Budhu (1811_CR5) 2006; 80
A Singhal (1811_CR28) 2012; 82
JF McCarthy (1811_CR23) 2004; 1020
K Aleksandrova (1811_CR1) 2014; 60
R Masuzaki (1811_CR22) 2008; 22
J Balogh (1811_CR3) 2016; 3
N Rich (1811_CR27) 2014; 28
JY Choi (1811_CR7) 2014; 272
BI Carr (1811_CR6) 2010; 57
A Forner (1811_CR13) 2012; 379
H Nakanishi (1811_CR25) 2016; 5
M Kudo (1811_CR17) 2014; 3
HB El-Serag (1811_CR10) 2001; 96
PS Maclin (1811_CR19) 1991; 15
Z Yu (1811_CR33) 2015; 10
1733613 - Clin Chem. 1992 Jan;38(1):9-10
12874664 - Methods Inf Med. 2003;42(3):287-96
15664247 - J Hepatol. 2005 Feb;42(2):218-24
23112834 - PLoS One. 2012;7(10):e47687
19187872 - Best Pract Res Clin Gastroenterol. 2008;22(6):1137-51
12149612 - Nat Genet. 2002 Aug;31(4):339-46
27762231 - IET Syst Biol. 2016 Oct;10(5):168-178
22353262 - Lancet. 2012 Mar 31;379(9822):1245-55
27781198 - Liver Cancer. 2016 Oct;5(4):257-268
11592607 - J Hepatol. 2001 Sep;35(3):421-30
25153274 - Radiology. 2014 Sep;272(3):635-54
27355357 - PLoS One. 2016 Jun 29;11(6):e0158285
1748845 - J Med Syst. 1991 Feb;15(1):11-9
26280007 - Liver Cancer. 2014 Oct;3(3-4):458-68
21033244 - Hepatogastroenterology. 2010 Jul-Aug;57(101):869-74
27278244 - Oncol Rep. 2016 Aug;36(2):613-25
21903163 - Eur J Pharm Sci. 2011 Oct 9;44(3):366-74
24443059 - Hepatology. 2014 Sep;60(3):858-71
25260312 - Best Pract Res Clin Gastroenterol. 2014 Oct;28(5):843-53
16946019 - J Leukoc Biol. 2006 Dec;80(6):1197-213
19362088 - Gastroenterology. 2009 Jul;137(1):110-8
23428860 - Oncology. 2013;84 Suppl 1:58-63
27785449 - J Hepatocell Carcinoma. 2016 Oct 05;3:41-53
22424438 - J Hepatol. 2012 Apr;56(4):908-43
25855582 - Clin J Gastroenterol. 2015 Jun;8(3):109-15
25848464 - World J Hepatol. 2015 Mar 27;7(3):362-76
11513191 - Am J Gastroenterol. 2001 Aug;96(8):2462-7
15208196 - Ann N Y Acad Sci. 2004 May;1020:239-62
21680198 - Crit Rev Oncol Hematol. 2012 May;82(2):116-40
24136688 - Med Biol Eng Comput. 2013 Dec;51(12):1357-65
20547310 - Dig Liver Dis. 2010 Jul;42 Suppl 3:S242-8
25996920 - PLoS One. 2015 May 21;10(5):e0125517
References_xml – volume: 82
  start-page: 116
  year: 2012
  end-page: 140
  ident: CR28
  article-title: Molecular and serum markers in hepatocellular carcinoma: predictive tools for prognosis and recurrence
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2011.05.005
– volume: 22
  start-page: 1137
  year: 2008
  end-page: 1151
  ident: CR22
  article-title: Hepatocellular carcinoma in viral hepatitis: improving standard therapy
  publication-title: Best Pract Res Clin Gastroenterol
  doi: 10.1016/j.bpg.2008.11.005
– volume: 60
  start-page: 858
  year: 2014
  end-page: 871
  ident: CR1
  article-title: Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer
  publication-title: Hepatology
  doi: 10.1002/hep.27016
– volume: 7
  start-page: 362
  year: 2015
  end-page: 376
  ident: CR29
  article-title: Diagnosis and treatment of hepatocellular carcinoma: an update
  publication-title: World J Hepatol
  doi: 10.4254/wjh.v7.i3.362
– volume: 36
  start-page: 613
  year: 2016
  end-page: 625
  ident: CR26
  article-title: Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: an update for clinicians (review)
  publication-title: Oncol Rep
  doi: 10.3892/or.2016.4842
– volume: 15
  start-page: 11
  year: 1991
  end-page: 19
  ident: CR19
  article-title: Using neural networks to diagnose cancer
  publication-title: J Med Syst
  doi: 10.1007/BF00993877
– volume: 80
  start-page: 1197
  year: 2006
  end-page: 1213
  ident: CR5
  article-title: The role of cytokines in hepatocellular carcinoma
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0506297
– volume: 57
  start-page: 869
  year: 2010
  end-page: 874
  ident: CR6
  article-title: Significance of increased serum GGTP levels in HCC patients
  publication-title: Hepato-Gastroenterology
– volume: 84
  start-page: 58
  issue: Suppl 1
  year: 2013
  end-page: 63
  ident: CR24
  article-title: Therapeutic response assessment of transcatheter arterial chemoembolization for hepatocellular carcinoma: ultrasonography, CT and MR imaging
  publication-title: Oncology
  doi: 10.1159/000345891
– volume: 272
  start-page: 635
  year: 2014
  end-page: 654
  ident: CR7
  article-title: CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects
  publication-title: Radiology
  doi: 10.1148/radiol.14132361
– volume: 96
  start-page: 2462
  year: 2001
  end-page: 2467
  ident: CR10
  article-title: The role of diabetes in hepatocellular carcinoma: a case-control study among United States veterans
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2001.04054.x
– volume: 1020
  start-page: 239
  year: 2004
  end-page: 262
  ident: CR23
  article-title: Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1310.020
– volume: 10
  start-page: 168
  year: 2016
  end-page: 178
  ident: CR2
  article-title: Lung cancer prediction from microarray data by gene expression programming
  publication-title: IET Syst Biol
  doi: 10.1049/iet-syb.2015.0082
– volume: 137
  start-page: 110
  year: 2009
  end-page: 118
  ident: CR21
  article-title: Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.04.005
– volume: 8
  start-page: 109
  year: 2015
  end-page: 115
  ident: CR16
  article-title: Significant biomarkers for the management of hepatocellular carcinoma
  publication-title: Clin J Gastroenterol
  doi: 10.1007/s12328-015-0568-9
– volume: 7
  start-page: e47687
  year: 2012
  ident: CR14
  article-title: Comprehensive analysis of common serum liver enzymes as prospective predictors of hepatocellular carcinoma in HBV patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047687
– volume: 5
  start-page: 257
  year: 2016
  end-page: 268
  ident: CR25
  article-title: Novel pretreatment scoring incorporating C-reactive protein to predict overall survival in advanced hepatocellular carcinoma with sorafenib treatment
  publication-title: Liver Cancer
  doi: 10.1159/000449337
– volume: 42
  start-page: S242
  issue: Suppl 3
  year: 2010
  end-page: S248
  ident: CR31
  article-title: Treatment of early hepatocellular carcinoma: towards personalized therapy
  publication-title: Dig Liver Dis
  doi: 10.1016/S1590-8658(10)60512-9
– volume: 11
  start-page: e0158285
  year: 2016
  ident: CR32
  article-title: Cancers screening in an asymptomatic population by using multiple tumour markers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158285
– volume: 3
  start-page: 458
  year: 2014
  end-page: 468
  ident: CR17
  article-title: JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver cancer study group of Japan
  publication-title: Liver Cancer
  doi: 10.1159/000343875
– volume: 31
  start-page: 339
  year: 2002
  end-page: 346
  ident: CR30
  article-title: Molecular pathogenesis of human hepatocellular carcinoma
  publication-title: Nat Genet
  doi: 10.1038/ng0802-339
– volume: 44
  start-page: 366
  year: 2011
  end-page: 374
  ident: CR9
  article-title: Modelling formulations using gene expression programming—a comparative analysis with artificial neural networks
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2011.08.021
– volume: 379
  start-page: 1245
  year: 2012
  end-page: 1255
  ident: CR13
  article-title: Hepatocellular carcinoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61347-0
– volume: 42
  start-page: 287
  year: 2003
  end-page: 296
  ident: CR15
  article-title: Entering the black box of neural networks
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634363
– volume: 42
  start-page: 218
  year: 2005
  end-page: 224
  ident: CR20
  article-title: Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2004.10.005
– volume: 56
  start-page: 908
  year: 2012
  end-page: 943
  ident: CR11
  article-title: EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2011.12.001
– volume: 3
  start-page: 41
  year: 2016
  end-page: 53
  ident: CR3
  article-title: Hepatocellular carcinoma: a review
  publication-title: J Hepatocell Carcinoma
  doi: 10.2147/JHC.S61146
– volume: 38
  start-page: 9
  year: 1992
  end-page: 10
  ident: CR8
  article-title: Neural networks and diagnosis in the clinical laboratory: state of the art
  publication-title: Clin Chem
– volume: 35
  start-page: 421
  year: 2001
  end-page: 430
  ident: CR4
  article-title: Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver
  publication-title: J Hepatol
  doi: 10.1016/S0168-8278(01)00130-1
– volume: 28
  start-page: 843
  year: 2014
  end-page: 853
  ident: CR27
  article-title: Hepatocellular carcinoma tumour markers: current role and expectations
  publication-title: Best Pract Res Clin Gastroenterol
  doi: 10.1016/j.bpg.2014.07.018
– volume: 10
  start-page: e0125517
  year: 2015
  ident: CR33
  article-title: A highly efficient gene expression programming (GEP) model for auxiliary diagnosis of small cell lung cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125517
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  end-page: 129
  ident: CR12
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Systems
– volume: 51
  start-page: 1357
  year: 2013
  end-page: 1365
  ident: CR18
  article-title: Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-013-1108-8
– volume: 1020
  start-page: 239
  year: 2004
  ident: 1811_CR23
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1310.020
– volume: 8
  start-page: 109
  year: 2015
  ident: 1811_CR16
  publication-title: Clin J Gastroenterol
  doi: 10.1007/s12328-015-0568-9
– volume: 80
  start-page: 1197
  year: 2006
  ident: 1811_CR5
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0506297
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 1811_CR12
  publication-title: Complex Systems
– volume: 42
  start-page: 218
  year: 2005
  ident: 1811_CR20
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2004.10.005
– volume: 36
  start-page: 613
  year: 2016
  ident: 1811_CR26
  publication-title: Oncol Rep
  doi: 10.3892/or.2016.4842
– volume: 10
  start-page: e0125517
  year: 2015
  ident: 1811_CR33
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125517
– volume: 3
  start-page: 41
  year: 2016
  ident: 1811_CR3
  publication-title: J Hepatocell Carcinoma
  doi: 10.2147/JHC.S61146
– volume: 3
  start-page: 458
  year: 2014
  ident: 1811_CR17
  publication-title: Liver Cancer
  doi: 10.1159/000343875
– volume: 137
  start-page: 110
  year: 2009
  ident: 1811_CR21
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.04.005
– volume: 35
  start-page: 421
  year: 2001
  ident: 1811_CR4
  publication-title: J Hepatol
  doi: 10.1016/S0168-8278(01)00130-1
– volume: 56
  start-page: 908
  year: 2012
  ident: 1811_CR11
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2011.12.001
– volume: 38
  start-page: 9
  year: 1992
  ident: 1811_CR8
  publication-title: Clin Chem
  doi: 10.1093/clinchem/38.1.9
– volume: 10
  start-page: 168
  year: 2016
  ident: 1811_CR2
  publication-title: IET Syst Biol
  doi: 10.1049/iet-syb.2015.0082
– volume: 272
  start-page: 635
  year: 2014
  ident: 1811_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.14132361
– volume: 82
  start-page: 116
  year: 2012
  ident: 1811_CR28
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2011.05.005
– volume: 84
  start-page: 58
  issue: Suppl 1
  year: 2013
  ident: 1811_CR24
  publication-title: Oncology
  doi: 10.1159/000345891
– volume: 5
  start-page: 257
  year: 2016
  ident: 1811_CR25
  publication-title: Liver Cancer
  doi: 10.1159/000449337
– volume: 44
  start-page: 366
  year: 2011
  ident: 1811_CR9
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2011.08.021
– volume: 28
  start-page: 843
  year: 2014
  ident: 1811_CR27
  publication-title: Best Pract Res Clin Gastroenterol
  doi: 10.1016/j.bpg.2014.07.018
– volume: 7
  start-page: 362
  year: 2015
  ident: 1811_CR29
  publication-title: World J Hepatol
  doi: 10.4254/wjh.v7.i3.362
– volume: 31
  start-page: 339
  year: 2002
  ident: 1811_CR30
  publication-title: Nat Genet
  doi: 10.1038/ng0802-339
– volume: 42
  start-page: 287
  year: 2003
  ident: 1811_CR15
  publication-title: Methods Inf Med
  doi: 10.1055/s-0038-1634363
– volume: 15
  start-page: 11
  year: 1991
  ident: 1811_CR19
  publication-title: J Med Syst
  doi: 10.1007/BF00993877
– volume: 379
  start-page: 1245
  year: 2012
  ident: 1811_CR13
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61347-0
– volume: 51
  start-page: 1357
  year: 2013
  ident: 1811_CR18
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-013-1108-8
– volume: 22
  start-page: 1137
  year: 2008
  ident: 1811_CR22
  publication-title: Best Pract Res Clin Gastroenterol
  doi: 10.1016/j.bpg.2008.11.005
– volume: 11
  start-page: e0158285
  year: 2016
  ident: 1811_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158285
– volume: 96
  start-page: 2462
  year: 2001
  ident: 1811_CR10
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2001.04054.x
– volume: 57
  start-page: 869
  year: 2010
  ident: 1811_CR6
  publication-title: Hepato-Gastroenterology
– volume: 60
  start-page: 858
  year: 2014
  ident: 1811_CR1
  publication-title: Hepatology
  doi: 10.1002/hep.27016
– volume: 7
  start-page: e47687
  year: 2012
  ident: 1811_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047687
– volume: 42
  start-page: S242
  issue: Suppl 3
  year: 2010
  ident: 1811_CR31
  publication-title: Dig Liver Dis
  doi: 10.1016/S1590-8658(10)60512-9
– reference: 21903163 - Eur J Pharm Sci. 2011 Oct 9;44(3):366-74
– reference: 24443059 - Hepatology. 2014 Sep;60(3):858-71
– reference: 19362088 - Gastroenterology. 2009 Jul;137(1):110-8
– reference: 21033244 - Hepatogastroenterology. 2010 Jul-Aug;57(101):869-74
– reference: 25260312 - Best Pract Res Clin Gastroenterol. 2014 Oct;28(5):843-53
– reference: 27278244 - Oncol Rep. 2016 Aug;36(2):613-25
– reference: 26280007 - Liver Cancer. 2014 Oct;3(3-4):458-68
– reference: 11513191 - Am J Gastroenterol. 2001 Aug;96(8):2462-7
– reference: 23112834 - PLoS One. 2012;7(10):e47687
– reference: 25848464 - World J Hepatol. 2015 Mar 27;7(3):362-76
– reference: 15208196 - Ann N Y Acad Sci. 2004 May;1020:239-62
– reference: 22353262 - Lancet. 2012 Mar 31;379(9822):1245-55
– reference: 25996920 - PLoS One. 2015 May 21;10(5):e0125517
– reference: 1748845 - J Med Syst. 1991 Feb;15(1):11-9
– reference: 27355357 - PLoS One. 2016 Jun 29;11(6):e0158285
– reference: 25855582 - Clin J Gastroenterol. 2015 Jun;8(3):109-15
– reference: 27781198 - Liver Cancer. 2016 Oct;5(4):257-268
– reference: 12874664 - Methods Inf Med. 2003;42(3):287-96
– reference: 27785449 - J Hepatocell Carcinoma. 2016 Oct 05;3:41-53
– reference: 27762231 - IET Syst Biol. 2016 Oct;10(5):168-178
– reference: 22424438 - J Hepatol. 2012 Apr;56(4):908-43
– reference: 1733613 - Clin Chem. 1992 Jan;38(1):9-10
– reference: 15664247 - J Hepatol. 2005 Feb;42(2):218-24
– reference: 11592607 - J Hepatol. 2001 Sep;35(3):421-30
– reference: 19187872 - Best Pract Res Clin Gastroenterol. 2008;22(6):1137-51
– reference: 20547310 - Dig Liver Dis. 2010 Jul;42 Suppl 3:S242-8
– reference: 21680198 - Crit Rev Oncol Hematol. 2012 May;82(2):116-40
– reference: 16946019 - J Leukoc Biol. 2006 Dec;80(6):1197-213
– reference: 12149612 - Nat Genet. 2002 Aug;31(4):339-46
– reference: 23428860 - Oncology. 2013;84 Suppl 1:58-63
– reference: 25153274 - Radiology. 2014 Sep;272(3):635-54
– reference: 24136688 - Med Biol Eng Comput. 2013 Dec;51(12):1357-65
SSID ssj0021524
Score 2.2796369
Snippet Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1771
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Antigens
Artificial Intelligence
Artificial neural networks
Biomarkers
Biomarkers, Tumor - blood
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Carbohydrates
Carcinoembryonic antigen
Carcinoma, Hepatocellular - blood
Carcinoma, Hepatocellular - diagnosis
Carcinoma, Hepatocellular - genetics
Case-Control Studies
Computer Applications
Diagnosis
Evolutionary algorithms
Female
Gene expression
Gene Expression Regulation, Neoplastic
Hepatocellular carcinoma
Human Physiology
Humans
Imaging
Liver cancer
Liver Neoplasms - blood
Liver Neoplasms - diagnosis
Liver Neoplasms - genetics
Male
Mathematical models
Medical diagnosis
Middle Aged
Multilayer perceptrons
Neural networks
Original Article
Problem solving
Radiology
ROC Curve
Test sets
Young Adult
α-Fetoprotein
γ-Glutamyltransferase
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZYWK24AMuyMLyUlTjtqtK0SafpCSEE4gCIAwduVZO4YgS07DwQ_HvsTNoRQnDh3DRNazvf59i1AQ6MNBIt9iMjZRYpIviRUXEcaYJm8p85oOur659nl5f65ia_Cgdu45BW2e6JfqN2jeUzcnLSydOQhN7J4eP_iLtGcXQ1tND4BkvEbGJO6bpIrjqHi7BJdSmMxKTbqKb_dY7Gc9Il-VCa1jZ4i0vvyOa7QKnHn9PVr658DVYC8xRHM1X5CQtYr8OPixBb_wV3R7VAX1CCcEj4DjmCGK0op8_D-2E5ehFulpY3HIumEreEY5OGz_05kVVY7klUNw-lYFx0oqkFqSYKfA6ZtrUIqWAP9HobcH16cn18FoVWDJGVWTKJdKorZoJOS0sWjtbZFFVJ9q6USQYSdVWWuXbK9B2iNcSCcuVKaWPMBsrI37BYNzVugcCECKYkGlTZTNkq1cbElctt7GKHLq960G_lUNhQppy7ZdwX8wLLLLqCRFew6IpBD_52tzzOanR8Nni3lVIRzHVczEXUgz_dZTI0_opljc3UjyFnMkk1TbE5U4ruaRwsJaqb9uBfqyXzyT9cyvbnS9mB5cTrJyvvLixORlPcg-_2aTIcj_a9pr8CtCIDKg
  priority: 102
  providerName: ProQuest
Title An efficient model for auxiliary diagnosis of hepatocellular carcinoma based on gene expression programming
URI https://link.springer.com/article/10.1007/s11517-018-1811-6
https://www.ncbi.nlm.nih.gov/pubmed/29546505
https://www.proquest.com/docview/2015636442
https://www.proquest.com/docview/2014952586
Volume 56
WOSCitedRecordID wos000445105800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 7RV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9sK-KL9duz9VjBJyVwyW5uN4-1tAja4zhLPX0J2d0JPWwTuQ9p__vO7CU5pCroy0C4zd4ymcnvt5nZGYA3VlqJDgeRlVJHigh-ZFUcR4agmfbPHNAN1fU_6dHITKfZuDnHvWiz3duQZHhTbw67EThxmiTtegzNNtyCHUI7w_0aJp_Pul0WAZLq8haJPrehzN9N8SsY3WKYt6KjAXSOd_9ruQ_hQcMxxcHaKB7BHawew72TJor-BL4fVAJD6QhCHBF64QjirqJYXc0uZsX8Wvh1At5sIepSnBNiLWv-ws8pq8Jx96GqviwEI6AXdSXICFHgVZNTW4km6euS1vsUTo-PTg8_RE3ThchJnSwjk5qSOZ830pEvo_MuRVWQZytlk6FEUxZFZryyA4_oLPGdTPlCuhj1UFn5DLarusIXIDAhKimJ8JROK1emxtq49JmLfezRZ2UPBq3yc9cUJOe-GBf5ppQy6zAnHeasw3zYg7fdLT_W1Tj-Nni_faJ545iLPOGj45JIYNKD193P5FKsxaLCehXG0LYxSQ1N8XxtCd2_cViUSG3ag3ftY99M_selvPyn0XtwPwl2wwa8D9vL-QpfwV33czlbzPuwpSdnLL98ZTnVQZo-7Lw_Go0ndPVRRyRPBocskzFLzXKcfusHX7kBmWgCsA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBhSrSJnY2zgGhCqhadbvqYQ-9WbE9ESvapOwD2h_Ff2TGeaxQRW89cE7iJM43_mYyn2cA3llpJTocRlbKLFLk4EdWxXGkiZopfuaEbqiuP84mE318nB9twO9uLwzLKrs1MSzUvnb8j5yCdIo0JLF38unsR8Rdozi72rXQaGBxgBe_KGRbfNz_Qt_3fZLsfp1-3ovargKRk1myjHSqS3ZqvJaOwIrOuxRVQdBVyiYjibosilx7ZYce0Vki9Fz5QroYs5Gykoa9ATcVFxZjpWBy1Md3RIWqV0yS494lUcNOPWJW1nhSyKZpKkZ_0-Al3_ZSXjbQ3e79_2yiHsC91q8WO40hPIQNrB7B7cNWOfAYvu9UAkO5DGJZEfr_CPLXRbE6n53MivmF8I3ocLYQdSm-EUsva85qsExXOO64VNWnhWDW96KuBBkeCjxvdcSVaIVupzSbT2B6HW_6FDarusLnIDAh91mSk1e6TLky1dbGpc9d7GOPPi8HMOw-u3FtEXbuBXJi1uWjGSmGkGIYKWY0gA_9JWdNBZKrTt7qQGHaxWhh1ogYwNv-MC0jPItFhfUqnEOhcpJqGuJZg8H-bpwKJkc-HcB2B8r14P98lBdXP8obuLM3PRyb8f7k4CXcTYJpsN1sweZyvsJXcMv9XM4W89fByASYa8bqH4zAYGM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiouvB-BAosEF5BF7F3H6wNCFSWiaoly6KHisvLujkVEa5c8oP1p_Dtm1o8IVfTWA-c4G2fzzX7fZD7PALyy0kp0OIyslFmkSOBHVsVxpImaKX_mgm7orn-QTSb66CifbsDv7lkYtlV2Z2I4qH3t-D9yStIp05DE3sm7srVFTHfHH05_RDxBiiut3TiNBiL7eP6L0rfF-71d-q1fJ8n40-HHz1E7YSByMkuWkU51yQLHa-kIuOi8S1EVBGOlbDKSqMuiyLVXdugRnSVyz5UvpIsxGykradlrcD2jFJPdhNP0a5_rES2q3j1JIr4rqIan9ohl2e9J6ZumbRn9TYkXdO6FGm2gvvHt_3jT7sCtVm-LnSZA7sIGVvdg60vrKLgP33cqgaGNBrGvCHOBBOl4UazOZsezYn4ufGNGnC1EXYpvxN7LmqsdbN8VjicxVfVJIVgNeFFXggISBZ61_uJKtAa4E9rZB3B4Fd_0IWxWdYWPQWBCslqS-CtdplyZamvj0ucu9rFHn5cDGHYQMK5tzs4zQo7Nuq00o8YQagyjxowG8KZ_y2nTmeSyi7c7gJj2kFqYNToG8LJ_mY4X3sWiwnoVrqEUOkk1LfGowWP_aVwiJoGfDuBtB9D14v-8lSeX38oL2CKImoO9yf5TuJmEKOEQ2obN5XyFz-CG-7mcLebPQ7wJMFcM1T-HnWlP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+model+for+auxiliary+diagnosis+of+hepatocellular+carcinoma+based+on+gene+expression+programming&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Jiasheng&rft.au=Gao%2C+Chunming&rft.au=Liu%2C+Chuanmiao&rft.date=2018-10-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=56&rft.issue=10&rft.spage=1771&rft_id=info:doi/10.1007%2Fs11517-018-1811-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon