An efficient model for auxiliary diagnosis of hepatocellular carcinoma based on gene expression programming
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model...
Uložené v:
| Vydané v: | Medical & biological engineering & computing Ročník 56; číslo 10; s. 1771 - 1779 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0140-0118, 1741-0444, 1741-0444 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis.
Graphical abstract
The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma |
|---|---|
| AbstractList | Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma.Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term disease-free survival. However, HCC is usually difficult to be diagnosed at an early stage. The aim of this study was to create the prediction model to diagnose HCC based on gene expression programming (GEP). GEP is an evolutionary algorithm and a domain-independent problem-solving technique. Clinical data show that six serum biomarkers, including gamma-glutamyl transferase, C-reaction protein, carcinoembryonic antigen, alpha-fetoprotein, carbohydrate antigen 153, and carbohydrate antigen 199, are related to HCC characteristics. In this study, the prediction of HCC was made based on these six biomarkers (195 HCC patients and 215 non-HCC controls) by setting up optimal joint models with GEP. The GEP model discriminated 353 out of 410 subjects, representing a determination coefficient of 86.28% (283/328) and 85.37% (70/82) for training and test sets, respectively. Compared to the results from the support vector machine, the artificial neural network, and the multilayer perceptron, GEP showed a better outcome. The results suggested that GEP modeling was a promising and excellent tool in diagnosis of hepatocellular carcinoma, and it could be widely used in HCC auxiliary diagnosis. Graphical abstract The process to establish an efficient model for auxiliary diagnosis of hepatocellular carcinoma. |
| Author | Gao, Chunming Xu, Kuihua Liu, Chuanmiao Chen, Jiasheng Zhang, Li |
| Author_xml | – sequence: 1 givenname: Li surname: Zhang fullname: Zhang, Li email: zl_byfy@sina.com organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College – sequence: 2 givenname: Jiasheng surname: Chen fullname: Chen, Jiasheng organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College – sequence: 3 givenname: Chunming surname: Gao fullname: Gao, Chunming organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College – sequence: 4 givenname: Chuanmiao surname: Liu fullname: Liu, Chuanmiao organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College – sequence: 5 givenname: Kuihua surname: Xu fullname: Xu, Kuihua organization: Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29546505$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVFr3iAYhWV0rF-7_YDdDKE3u8nmazQxl6V0a6Gwm96L0TeZXaJfNYH239fwdSsUuisRn-M5nHNCjkIMSMhnYN-AsfZ7BpDQVgxUBQqgat6RHbQCKiaEOCI7BoKVV1DH5CTnO8Y4SC4-kGPeSdFIJnfkz3mgOAzeegwLnaPDiQ4xUbM--Mmb9EidN2OI2WcaB_ob92aJFqdpnUyi1iTrQ5wN7U1GR2OgIwak-LBPmLMv932KYzLz7MP4kbwfzJTx0_N5Sm5_XN5eXFU3v35eX5zfVLZu-VIpqQZeA3OqtqplaJ2VKAyXrRA9b2pUgzGdcqJnDtH2qqs74UxtAdtG9PUp-Xr4tljfr5gXPfu8RTYB45o1L7V0kkvVFPTsFXoX1xRKuI2STd0IwQv15Zla-xmd3ic_l2b03xYLAAfApphzwuEfAkxvS-nDUrospbel9GbdvtJYv5ilVLYk46f_KvlBmYtLGDG9hH5b9AToAKfn |
| CitedBy_id | crossref_primary_10_1002_cam4_1778 crossref_primary_10_3389_fphar_2023_1177282 crossref_primary_10_1016_j_bbe_2019_05_010 crossref_primary_10_1155_2022_5914541 crossref_primary_10_1186_s12885_021_08843_z crossref_primary_10_1016_j_bj_2024_100752 crossref_primary_10_1016_j_procs_2023_01_130 crossref_primary_10_1007_s12029_020_00485_x |
| Cites_doi | 10.1016/j.critrevonc.2011.05.005 10.1016/j.bpg.2008.11.005 10.1002/hep.27016 10.4254/wjh.v7.i3.362 10.3892/or.2016.4842 10.1007/BF00993877 10.1189/jlb.0506297 10.1159/000345891 10.1148/radiol.14132361 10.1111/j.1572-0241.2001.04054.x 10.1196/annals.1310.020 10.1049/iet-syb.2015.0082 10.1053/j.gastro.2009.04.005 10.1007/s12328-015-0568-9 10.1371/journal.pone.0047687 10.1159/000449337 10.1016/S1590-8658(10)60512-9 10.1371/journal.pone.0158285 10.1159/000343875 10.1038/ng0802-339 10.1016/j.ejps.2011.08.021 10.1016/S0140-6736(11)61347-0 10.1055/s-0038-1634363 10.1016/j.jhep.2004.10.005 10.1016/j.jhep.2011.12.001 10.2147/JHC.S61146 10.1016/S0168-8278(01)00130-1 10.1016/j.bpg.2014.07.018 10.1371/journal.pone.0125517 10.1007/s11517-013-1108-8 10.1093/clinchem/38.1.9 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2018 Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2018 – notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s11517-018-1811-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health Medical collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 1779 |
| ExternalDocumentID | 29546505 10_1007_s11517_018_1811_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Bengbu Medical College grantid: BYKY1677 funderid: http://dx.doi.org/10.13039/501100007924 – fundername: Bengbu Medical College grantid: BYKY1677 |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-858f2310d83c870ecdc5e4a25744b263e8faa98d4b0deecb89394da3c1e764b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445105800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Sep 04 18:00:57 EDT 2025 Tue Nov 04 23:04:52 EST 2025 Mon Jul 21 05:46:05 EDT 2025 Sat Nov 29 04:15:22 EST 2025 Tue Nov 18 21:16:31 EST 2025 Fri Feb 21 02:31:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Hepatocellular carcinoma Auxiliary diagnosis Serum biomarkers Gene expression programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-858f2310d83c870ecdc5e4a25744b263e8faa98d4b0deecb89394da3c1e764b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 29546505 |
| PQID | 2015636442 |
| PQPubID | 54161 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2014952586 proquest_journals_2015636442 pubmed_primary_29546505 crossref_primary_10_1007_s11517_018_1811_6 crossref_citationtrail_10_1007_s11517_018_1811_6 springer_journals_10_1007_s11517_018_1811_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20181000 2018-10-00 2018-Oct 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 20181000 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Carr, Pancoska, Branch (CR6) 2010; 57 Thorgeirsson, Grisham (CR30) 2002; 31 El-Serag, Richardson, Everhart (CR10) 2001; 96 Choi, Lee, Sirlin (CR7) 2014; 272 Minami, Kudo (CR24) 2013; 84 Tremosini, Reig, de Lope, Forner, Bruix (CR31) 2010; 42 Kusy, Obrzut, Kluska (CR18) 2013; 51 Wang, Hsieh, Wen, Wen, Chen, Lu (CR32) 2016; 11 Marrero, Fontana, Fu, Conjeevaram, Su, Lok (CR20) 2005; 42 Singhal, Jayaraman, Dhanasekaran, Kohli (CR28) 2012; 82 Budhu, Wang (CR5) 2006; 80 (CR11) 2012; 56 Balogh, Victor, Asham, Burroughs, Boktour, Saharia, Li, Ghobrial, Monsour (CR3) 2016; 3 Yu, Lu, Si, Liu, Li, Gao, Cui, Li, Yang, Yao (CR33) 2015; 10 Masuzaki, Yoshida, Tateishi, Shiina, Omata (CR22) 2008; 22 Rich, Singal (CR27) 2014; 28 Heckerling, Gerber, Tape, Wigton (CR15) 2003; 42 Azzawi, Hou, Xiang, Alanni (CR2) 2016; 10 Maclin, Dempsey, Brooks, Rand (CR19) 1991; 15 Ferreira (CR12) 2001; 13 Nakanishi, Kurosaki, Tsuchiya, Yasui, Higuchi, Yoshida, Komiyama, Takaura, Hayashi, Kuwabara, Nakakuki, Takada, Ueda, Tamaki, Suzuki, Itakura, Takahashi, Izumi (CR25) 2016; 5 McCarthy, Marx, Hoffman, Gee, O'Neil, Ujwal, Hotchkiss (CR23) 2004; 1020 Tejeda-Maldonado, Garcia-Juarez, Aguirre-Valadez, Gonzalez-Aguirre, Vilatoba-Chapa, Armengol-Alonso, Escobar-Penagos, Torre, Sanchez-Avila, Carrillo-Perez (CR29) 2015; 7 Colbourn, Roskilly, Rowe, York (CR9) 2011; 44 Cicchetti (CR8) 1992; 38 Marrero, Feng, Wang, Nguyen, Befeler, Roberts, Reddy, Harnois, Llovet, Normolle, Dalhgren, Chia, Lok, Wagner, Srivastava, Schwartz (CR21) 2009; 137 Kondo, Kimura, Shimosegawa (CR16) 2015; 8 Forner, Llovet, Bruix (CR13) 2012; 379 Hann, Wan, Myers, Hann, Xing, Chen, Yang (CR14) 2012; 7 Reichl, Mikulits (CR26) 2016; 36 Kudo, Matsui, Izumi, Iijima, Kadoya, Imai, Okusaka, Miyayama, Tsuchiya, Ueshima, Hiraoka, Ikeda, Ogasawara, Yamashita, Minami, Yamakado (CR17) 2014; 3 Aleksandrova, Boeing, Nothlings, Jenab, Fedirko, Kaaks, Lukanova, Trichopoulou, Trichopoulos, Boffetta, Trepo, Westhpal, Duarte-Salles, Stepien, Overvad, Tjonneland, Halkjaer, Boutron-Ruault, Dossus, Racine, Lagiou, Bamia, Benetou, Agnoli, Palli, Panico, Tumino, Vineis, Bueno-de-Mesquita, Peeters, Gram, Lund, Weiderpass, Quiros, Agudo, Sanchez, Gavrila, Barricarte, Dorronsoro, Ohlsson, Lindkvist, Johansson, Sund, Khaw, Wareham, Travis, Riboli, Pischon (CR1) 2014; 60 Bruix, Sherman, Llovet, Beaugrand, Lencioni, Burroughs, Christensen, Pagliaro, Colombo, Rodes (CR4) 2001; 35 H Azzawi (1811_CR2) 2016; 10 PS Heckerling (1811_CR15) 2003; 42 EA Colbourn (1811_CR9) 2011; 44 HW Hann (1811_CR14) 2012; 7 Y Minami (1811_CR24) 2013; 84 P Reichl (1811_CR26) 2016; 36 HY Wang (1811_CR32) 2016; 11 DV Cicchetti (1811_CR8) 1992; 38 European Association For The Study Of The L, European Organisation For R, Treatment Of C (1811_CR11) 2012; 56 Y Kondo (1811_CR16) 2015; 8 JA Marrero (1811_CR21) 2009; 137 S Tremosini (1811_CR31) 2010; 42 SS Thorgeirsson (1811_CR30) 2002; 31 J Tejeda-Maldonado (1811_CR29) 2015; 7 J Bruix (1811_CR4) 2001; 35 M Kusy (1811_CR18) 2013; 51 JA Marrero (1811_CR20) 2005; 42 C Ferreira (1811_CR12) 2001; 13 A Budhu (1811_CR5) 2006; 80 A Singhal (1811_CR28) 2012; 82 JF McCarthy (1811_CR23) 2004; 1020 K Aleksandrova (1811_CR1) 2014; 60 R Masuzaki (1811_CR22) 2008; 22 J Balogh (1811_CR3) 2016; 3 N Rich (1811_CR27) 2014; 28 JY Choi (1811_CR7) 2014; 272 BI Carr (1811_CR6) 2010; 57 A Forner (1811_CR13) 2012; 379 H Nakanishi (1811_CR25) 2016; 5 M Kudo (1811_CR17) 2014; 3 HB El-Serag (1811_CR10) 2001; 96 PS Maclin (1811_CR19) 1991; 15 Z Yu (1811_CR33) 2015; 10 1733613 - Clin Chem. 1992 Jan;38(1):9-10 12874664 - Methods Inf Med. 2003;42(3):287-96 15664247 - J Hepatol. 2005 Feb;42(2):218-24 23112834 - PLoS One. 2012;7(10):e47687 19187872 - Best Pract Res Clin Gastroenterol. 2008;22(6):1137-51 12149612 - Nat Genet. 2002 Aug;31(4):339-46 27762231 - IET Syst Biol. 2016 Oct;10(5):168-178 22353262 - Lancet. 2012 Mar 31;379(9822):1245-55 27781198 - Liver Cancer. 2016 Oct;5(4):257-268 11592607 - J Hepatol. 2001 Sep;35(3):421-30 25153274 - Radiology. 2014 Sep;272(3):635-54 27355357 - PLoS One. 2016 Jun 29;11(6):e0158285 1748845 - J Med Syst. 1991 Feb;15(1):11-9 26280007 - Liver Cancer. 2014 Oct;3(3-4):458-68 21033244 - Hepatogastroenterology. 2010 Jul-Aug;57(101):869-74 27278244 - Oncol Rep. 2016 Aug;36(2):613-25 21903163 - Eur J Pharm Sci. 2011 Oct 9;44(3):366-74 24443059 - Hepatology. 2014 Sep;60(3):858-71 25260312 - Best Pract Res Clin Gastroenterol. 2014 Oct;28(5):843-53 16946019 - J Leukoc Biol. 2006 Dec;80(6):1197-213 19362088 - Gastroenterology. 2009 Jul;137(1):110-8 23428860 - Oncology. 2013;84 Suppl 1:58-63 27785449 - J Hepatocell Carcinoma. 2016 Oct 05;3:41-53 22424438 - J Hepatol. 2012 Apr;56(4):908-43 25855582 - Clin J Gastroenterol. 2015 Jun;8(3):109-15 25848464 - World J Hepatol. 2015 Mar 27;7(3):362-76 11513191 - Am J Gastroenterol. 2001 Aug;96(8):2462-7 15208196 - Ann N Y Acad Sci. 2004 May;1020:239-62 21680198 - Crit Rev Oncol Hematol. 2012 May;82(2):116-40 24136688 - Med Biol Eng Comput. 2013 Dec;51(12):1357-65 20547310 - Dig Liver Dis. 2010 Jul;42 Suppl 3:S242-8 25996920 - PLoS One. 2015 May 21;10(5):e0125517 |
| References_xml | – volume: 82 start-page: 116 year: 2012 end-page: 140 ident: CR28 article-title: Molecular and serum markers in hepatocellular carcinoma: predictive tools for prognosis and recurrence publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2011.05.005 – volume: 22 start-page: 1137 year: 2008 end-page: 1151 ident: CR22 article-title: Hepatocellular carcinoma in viral hepatitis: improving standard therapy publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2008.11.005 – volume: 60 start-page: 858 year: 2014 end-page: 871 ident: CR1 article-title: Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer publication-title: Hepatology doi: 10.1002/hep.27016 – volume: 7 start-page: 362 year: 2015 end-page: 376 ident: CR29 article-title: Diagnosis and treatment of hepatocellular carcinoma: an update publication-title: World J Hepatol doi: 10.4254/wjh.v7.i3.362 – volume: 36 start-page: 613 year: 2016 end-page: 625 ident: CR26 article-title: Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: an update for clinicians (review) publication-title: Oncol Rep doi: 10.3892/or.2016.4842 – volume: 15 start-page: 11 year: 1991 end-page: 19 ident: CR19 article-title: Using neural networks to diagnose cancer publication-title: J Med Syst doi: 10.1007/BF00993877 – volume: 80 start-page: 1197 year: 2006 end-page: 1213 ident: CR5 article-title: The role of cytokines in hepatocellular carcinoma publication-title: J Leukoc Biol doi: 10.1189/jlb.0506297 – volume: 57 start-page: 869 year: 2010 end-page: 874 ident: CR6 article-title: Significance of increased serum GGTP levels in HCC patients publication-title: Hepato-Gastroenterology – volume: 84 start-page: 58 issue: Suppl 1 year: 2013 end-page: 63 ident: CR24 article-title: Therapeutic response assessment of transcatheter arterial chemoembolization for hepatocellular carcinoma: ultrasonography, CT and MR imaging publication-title: Oncology doi: 10.1159/000345891 – volume: 272 start-page: 635 year: 2014 end-page: 654 ident: CR7 article-title: CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects publication-title: Radiology doi: 10.1148/radiol.14132361 – volume: 96 start-page: 2462 year: 2001 end-page: 2467 ident: CR10 article-title: The role of diabetes in hepatocellular carcinoma: a case-control study among United States veterans publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2001.04054.x – volume: 1020 start-page: 239 year: 2004 end-page: 262 ident: CR23 article-title: Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1310.020 – volume: 10 start-page: 168 year: 2016 end-page: 178 ident: CR2 article-title: Lung cancer prediction from microarray data by gene expression programming publication-title: IET Syst Biol doi: 10.1049/iet-syb.2015.0082 – volume: 137 start-page: 110 year: 2009 end-page: 118 ident: CR21 article-title: Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.04.005 – volume: 8 start-page: 109 year: 2015 end-page: 115 ident: CR16 article-title: Significant biomarkers for the management of hepatocellular carcinoma publication-title: Clin J Gastroenterol doi: 10.1007/s12328-015-0568-9 – volume: 7 start-page: e47687 year: 2012 ident: CR14 article-title: Comprehensive analysis of common serum liver enzymes as prospective predictors of hepatocellular carcinoma in HBV patients publication-title: PLoS One doi: 10.1371/journal.pone.0047687 – volume: 5 start-page: 257 year: 2016 end-page: 268 ident: CR25 article-title: Novel pretreatment scoring incorporating C-reactive protein to predict overall survival in advanced hepatocellular carcinoma with sorafenib treatment publication-title: Liver Cancer doi: 10.1159/000449337 – volume: 42 start-page: S242 issue: Suppl 3 year: 2010 end-page: S248 ident: CR31 article-title: Treatment of early hepatocellular carcinoma: towards personalized therapy publication-title: Dig Liver Dis doi: 10.1016/S1590-8658(10)60512-9 – volume: 11 start-page: e0158285 year: 2016 ident: CR32 article-title: Cancers screening in an asymptomatic population by using multiple tumour markers publication-title: PLoS One doi: 10.1371/journal.pone.0158285 – volume: 3 start-page: 458 year: 2014 end-page: 468 ident: CR17 article-title: JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver cancer study group of Japan publication-title: Liver Cancer doi: 10.1159/000343875 – volume: 31 start-page: 339 year: 2002 end-page: 346 ident: CR30 article-title: Molecular pathogenesis of human hepatocellular carcinoma publication-title: Nat Genet doi: 10.1038/ng0802-339 – volume: 44 start-page: 366 year: 2011 end-page: 374 ident: CR9 article-title: Modelling formulations using gene expression programming—a comparative analysis with artificial neural networks publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2011.08.021 – volume: 379 start-page: 1245 year: 2012 end-page: 1255 ident: CR13 article-title: Hepatocellular carcinoma publication-title: Lancet doi: 10.1016/S0140-6736(11)61347-0 – volume: 42 start-page: 287 year: 2003 end-page: 296 ident: CR15 article-title: Entering the black box of neural networks publication-title: Methods Inf Med doi: 10.1055/s-0038-1634363 – volume: 42 start-page: 218 year: 2005 end-page: 224 ident: CR20 article-title: Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2004.10.005 – volume: 56 start-page: 908 year: 2012 end-page: 943 ident: CR11 article-title: EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2011.12.001 – volume: 3 start-page: 41 year: 2016 end-page: 53 ident: CR3 article-title: Hepatocellular carcinoma: a review publication-title: J Hepatocell Carcinoma doi: 10.2147/JHC.S61146 – volume: 38 start-page: 9 year: 1992 end-page: 10 ident: CR8 article-title: Neural networks and diagnosis in the clinical laboratory: state of the art publication-title: Clin Chem – volume: 35 start-page: 421 year: 2001 end-page: 430 ident: CR4 article-title: Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver publication-title: J Hepatol doi: 10.1016/S0168-8278(01)00130-1 – volume: 28 start-page: 843 year: 2014 end-page: 853 ident: CR27 article-title: Hepatocellular carcinoma tumour markers: current role and expectations publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2014.07.018 – volume: 10 start-page: e0125517 year: 2015 ident: CR33 article-title: A highly efficient gene expression programming (GEP) model for auxiliary diagnosis of small cell lung cancer publication-title: PLoS One doi: 10.1371/journal.pone.0125517 – volume: 13 start-page: 87 issue: 2 year: 2001 end-page: 129 ident: CR12 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Systems – volume: 51 start-page: 1357 year: 2013 end-page: 1365 ident: CR18 article-title: Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients publication-title: Med Biol Eng Comput doi: 10.1007/s11517-013-1108-8 – volume: 1020 start-page: 239 year: 2004 ident: 1811_CR23 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1310.020 – volume: 8 start-page: 109 year: 2015 ident: 1811_CR16 publication-title: Clin J Gastroenterol doi: 10.1007/s12328-015-0568-9 – volume: 80 start-page: 1197 year: 2006 ident: 1811_CR5 publication-title: J Leukoc Biol doi: 10.1189/jlb.0506297 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 1811_CR12 publication-title: Complex Systems – volume: 42 start-page: 218 year: 2005 ident: 1811_CR20 publication-title: J Hepatol doi: 10.1016/j.jhep.2004.10.005 – volume: 36 start-page: 613 year: 2016 ident: 1811_CR26 publication-title: Oncol Rep doi: 10.3892/or.2016.4842 – volume: 10 start-page: e0125517 year: 2015 ident: 1811_CR33 publication-title: PLoS One doi: 10.1371/journal.pone.0125517 – volume: 3 start-page: 41 year: 2016 ident: 1811_CR3 publication-title: J Hepatocell Carcinoma doi: 10.2147/JHC.S61146 – volume: 3 start-page: 458 year: 2014 ident: 1811_CR17 publication-title: Liver Cancer doi: 10.1159/000343875 – volume: 137 start-page: 110 year: 2009 ident: 1811_CR21 publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.04.005 – volume: 35 start-page: 421 year: 2001 ident: 1811_CR4 publication-title: J Hepatol doi: 10.1016/S0168-8278(01)00130-1 – volume: 56 start-page: 908 year: 2012 ident: 1811_CR11 publication-title: J Hepatol doi: 10.1016/j.jhep.2011.12.001 – volume: 38 start-page: 9 year: 1992 ident: 1811_CR8 publication-title: Clin Chem doi: 10.1093/clinchem/38.1.9 – volume: 10 start-page: 168 year: 2016 ident: 1811_CR2 publication-title: IET Syst Biol doi: 10.1049/iet-syb.2015.0082 – volume: 272 start-page: 635 year: 2014 ident: 1811_CR7 publication-title: Radiology doi: 10.1148/radiol.14132361 – volume: 82 start-page: 116 year: 2012 ident: 1811_CR28 publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2011.05.005 – volume: 84 start-page: 58 issue: Suppl 1 year: 2013 ident: 1811_CR24 publication-title: Oncology doi: 10.1159/000345891 – volume: 5 start-page: 257 year: 2016 ident: 1811_CR25 publication-title: Liver Cancer doi: 10.1159/000449337 – volume: 44 start-page: 366 year: 2011 ident: 1811_CR9 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2011.08.021 – volume: 28 start-page: 843 year: 2014 ident: 1811_CR27 publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2014.07.018 – volume: 7 start-page: 362 year: 2015 ident: 1811_CR29 publication-title: World J Hepatol doi: 10.4254/wjh.v7.i3.362 – volume: 31 start-page: 339 year: 2002 ident: 1811_CR30 publication-title: Nat Genet doi: 10.1038/ng0802-339 – volume: 42 start-page: 287 year: 2003 ident: 1811_CR15 publication-title: Methods Inf Med doi: 10.1055/s-0038-1634363 – volume: 15 start-page: 11 year: 1991 ident: 1811_CR19 publication-title: J Med Syst doi: 10.1007/BF00993877 – volume: 379 start-page: 1245 year: 2012 ident: 1811_CR13 publication-title: Lancet doi: 10.1016/S0140-6736(11)61347-0 – volume: 51 start-page: 1357 year: 2013 ident: 1811_CR18 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-013-1108-8 – volume: 22 start-page: 1137 year: 2008 ident: 1811_CR22 publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2008.11.005 – volume: 11 start-page: e0158285 year: 2016 ident: 1811_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0158285 – volume: 96 start-page: 2462 year: 2001 ident: 1811_CR10 publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2001.04054.x – volume: 57 start-page: 869 year: 2010 ident: 1811_CR6 publication-title: Hepato-Gastroenterology – volume: 60 start-page: 858 year: 2014 ident: 1811_CR1 publication-title: Hepatology doi: 10.1002/hep.27016 – volume: 7 start-page: e47687 year: 2012 ident: 1811_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0047687 – volume: 42 start-page: S242 issue: Suppl 3 year: 2010 ident: 1811_CR31 publication-title: Dig Liver Dis doi: 10.1016/S1590-8658(10)60512-9 – reference: 21903163 - Eur J Pharm Sci. 2011 Oct 9;44(3):366-74 – reference: 24443059 - Hepatology. 2014 Sep;60(3):858-71 – reference: 19362088 - Gastroenterology. 2009 Jul;137(1):110-8 – reference: 21033244 - Hepatogastroenterology. 2010 Jul-Aug;57(101):869-74 – reference: 25260312 - Best Pract Res Clin Gastroenterol. 2014 Oct;28(5):843-53 – reference: 27278244 - Oncol Rep. 2016 Aug;36(2):613-25 – reference: 26280007 - Liver Cancer. 2014 Oct;3(3-4):458-68 – reference: 11513191 - Am J Gastroenterol. 2001 Aug;96(8):2462-7 – reference: 23112834 - PLoS One. 2012;7(10):e47687 – reference: 25848464 - World J Hepatol. 2015 Mar 27;7(3):362-76 – reference: 15208196 - Ann N Y Acad Sci. 2004 May;1020:239-62 – reference: 22353262 - Lancet. 2012 Mar 31;379(9822):1245-55 – reference: 25996920 - PLoS One. 2015 May 21;10(5):e0125517 – reference: 1748845 - J Med Syst. 1991 Feb;15(1):11-9 – reference: 27355357 - PLoS One. 2016 Jun 29;11(6):e0158285 – reference: 25855582 - Clin J Gastroenterol. 2015 Jun;8(3):109-15 – reference: 27781198 - Liver Cancer. 2016 Oct;5(4):257-268 – reference: 12874664 - Methods Inf Med. 2003;42(3):287-96 – reference: 27785449 - J Hepatocell Carcinoma. 2016 Oct 05;3:41-53 – reference: 27762231 - IET Syst Biol. 2016 Oct;10(5):168-178 – reference: 22424438 - J Hepatol. 2012 Apr;56(4):908-43 – reference: 1733613 - Clin Chem. 1992 Jan;38(1):9-10 – reference: 15664247 - J Hepatol. 2005 Feb;42(2):218-24 – reference: 11592607 - J Hepatol. 2001 Sep;35(3):421-30 – reference: 19187872 - Best Pract Res Clin Gastroenterol. 2008;22(6):1137-51 – reference: 20547310 - Dig Liver Dis. 2010 Jul;42 Suppl 3:S242-8 – reference: 21680198 - Crit Rev Oncol Hematol. 2012 May;82(2):116-40 – reference: 16946019 - J Leukoc Biol. 2006 Dec;80(6):1197-213 – reference: 12149612 - Nat Genet. 2002 Aug;31(4):339-46 – reference: 23428860 - Oncology. 2013;84 Suppl 1:58-63 – reference: 25153274 - Radiology. 2014 Sep;272(3):635-54 – reference: 24136688 - Med Biol Eng Comput. 2013 Dec;51(12):1357-65 |
| SSID | ssj0021524 |
| Score | 2.2796369 |
| Snippet | Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The early diagnosis of HCC is greatly helpful to achieve long-term... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1771 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Antigens Artificial Intelligence Artificial neural networks Biomarkers Biomarkers, Tumor - blood Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Carbohydrates Carcinoembryonic antigen Carcinoma, Hepatocellular - blood Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - genetics Case-Control Studies Computer Applications Diagnosis Evolutionary algorithms Female Gene expression Gene Expression Regulation, Neoplastic Hepatocellular carcinoma Human Physiology Humans Imaging Liver cancer Liver Neoplasms - blood Liver Neoplasms - diagnosis Liver Neoplasms - genetics Male Mathematical models Medical diagnosis Middle Aged Multilayer perceptrons Neural networks Original Article Problem solving Radiology ROC Curve Test sets Young Adult α-Fetoprotein γ-Glutamyltransferase |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZYWK24AMuyMLyUlTjtqtK0SafpCSEE4gCIAwduVZO4YgS07DwQ_HvsTNoRQnDh3DRNazvf59i1AQ6MNBIt9iMjZRYpIviRUXEcaYJm8p85oOur659nl5f65ia_Cgdu45BW2e6JfqN2jeUzcnLSydOQhN7J4eP_iLtGcXQ1tND4BkvEbGJO6bpIrjqHi7BJdSmMxKTbqKb_dY7Gc9Il-VCa1jZ4i0vvyOa7QKnHn9PVr658DVYC8xRHM1X5CQtYr8OPixBb_wV3R7VAX1CCcEj4DjmCGK0op8_D-2E5ehFulpY3HIumEreEY5OGz_05kVVY7klUNw-lYFx0oqkFqSYKfA6ZtrUIqWAP9HobcH16cn18FoVWDJGVWTKJdKorZoJOS0sWjtbZFFVJ9q6USQYSdVWWuXbK9B2iNcSCcuVKaWPMBsrI37BYNzVugcCECKYkGlTZTNkq1cbElctt7GKHLq960G_lUNhQppy7ZdwX8wLLLLqCRFew6IpBD_52tzzOanR8Nni3lVIRzHVczEXUgz_dZTI0_opljc3UjyFnMkk1TbE5U4ruaRwsJaqb9uBfqyXzyT9cyvbnS9mB5cTrJyvvLixORlPcg-_2aTIcj_a9pr8CtCIDKg priority: 102 providerName: ProQuest |
| Title | An efficient model for auxiliary diagnosis of hepatocellular carcinoma based on gene expression programming |
| URI | https://link.springer.com/article/10.1007/s11517-018-1811-6 https://www.ncbi.nlm.nih.gov/pubmed/29546505 https://www.proquest.com/docview/2015636442 https://www.proquest.com/docview/2014952586 |
| Volume | 56 |
| WOSCitedRecordID | wos000445105800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1741-0444 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 7RV dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9sK-KL9duz9VjBJyVwyW5uN4-1tAja4zhLPX0J2d0JPWwTuQ9p__vO7CU5pCroy0C4zd4ymcnvt5nZGYA3VlqJDgeRlVJHigh-ZFUcR4agmfbPHNAN1fU_6dHITKfZuDnHvWiz3duQZHhTbw67EThxmiTtegzNNtyCHUI7w_0aJp_Pul0WAZLq8haJPrehzN9N8SsY3WKYt6KjAXSOd_9ruQ_hQcMxxcHaKB7BHawew72TJor-BL4fVAJD6QhCHBF64QjirqJYXc0uZsX8Wvh1At5sIepSnBNiLWv-ws8pq8Jx96GqviwEI6AXdSXICFHgVZNTW4km6euS1vsUTo-PTg8_RE3ThchJnSwjk5qSOZ830pEvo_MuRVWQZytlk6FEUxZFZryyA4_oLPGdTPlCuhj1UFn5DLarusIXIDAhKimJ8JROK1emxtq49JmLfezRZ2UPBq3yc9cUJOe-GBf5ppQy6zAnHeasw3zYg7fdLT_W1Tj-Nni_faJ545iLPOGj45JIYNKD193P5FKsxaLCehXG0LYxSQ1N8XxtCd2_cViUSG3ag3ftY99M_selvPyn0XtwPwl2wwa8D9vL-QpfwV33czlbzPuwpSdnLL98ZTnVQZo-7Lw_Go0ndPVRRyRPBocskzFLzXKcfusHX7kBmWgCsA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBhSrSJnY2zgGhCqhadbvqYQ-9WbE9ESvapOwD2h_Ff2TGeaxQRW89cE7iJM43_mYyn2cA3llpJTocRlbKLFLk4EdWxXGkiZopfuaEbqiuP84mE318nB9twO9uLwzLKrs1MSzUvnb8j5yCdIo0JLF38unsR8Rdozi72rXQaGBxgBe_KGRbfNz_Qt_3fZLsfp1-3ovargKRk1myjHSqS3ZqvJaOwIrOuxRVQdBVyiYjibosilx7ZYce0Vki9Fz5QroYs5Gykoa9ATcVFxZjpWBy1Md3RIWqV0yS494lUcNOPWJW1nhSyKZpKkZ_0-Al3_ZSXjbQ3e79_2yiHsC91q8WO40hPIQNrB7B7cNWOfAYvu9UAkO5DGJZEfr_CPLXRbE6n53MivmF8I3ocLYQdSm-EUsva85qsExXOO64VNWnhWDW96KuBBkeCjxvdcSVaIVupzSbT2B6HW_6FDarusLnIDAh91mSk1e6TLky1dbGpc9d7GOPPi8HMOw-u3FtEXbuBXJi1uWjGSmGkGIYKWY0gA_9JWdNBZKrTt7qQGHaxWhh1ogYwNv-MC0jPItFhfUqnEOhcpJqGuJZg8H-bpwKJkc-HcB2B8r14P98lBdXP8obuLM3PRyb8f7k4CXcTYJpsN1sweZyvsJXcMv9XM4W89fByASYa8bqH4zAYGM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgiouvB-BAosEF5BF7F3H6wNCFSWiaoly6KHisvLujkVEa5c8oP1p_Dtm1o8IVfTWA-c4G2fzzX7fZD7PALyy0kp0OIyslFmkSOBHVsVxpImaKX_mgm7orn-QTSb66CifbsDv7lkYtlV2Z2I4qH3t-D9yStIp05DE3sm7srVFTHfHH05_RDxBiiut3TiNBiL7eP6L0rfF-71d-q1fJ8n40-HHz1E7YSByMkuWkU51yQLHa-kIuOi8S1EVBGOlbDKSqMuiyLVXdugRnSVyz5UvpIsxGykradlrcD2jFJPdhNP0a5_rES2q3j1JIr4rqIan9ohl2e9J6ZumbRn9TYkXdO6FGm2gvvHt_3jT7sCtVm-LnSZA7sIGVvdg60vrKLgP33cqgaGNBrGvCHOBBOl4UazOZsezYn4ufGNGnC1EXYpvxN7LmqsdbN8VjicxVfVJIVgNeFFXggISBZ61_uJKtAa4E9rZB3B4Fd_0IWxWdYWPQWBCslqS-CtdplyZamvj0ucu9rFHn5cDGHYQMK5tzs4zQo7Nuq00o8YQagyjxowG8KZ_y2nTmeSyi7c7gJj2kFqYNToG8LJ_mY4X3sWiwnoVrqEUOkk1LfGowWP_aVwiJoGfDuBtB9D14v-8lSeX38oL2CKImoO9yf5TuJmEKOEQ2obN5XyFz-CG-7mcLebPQ7wJMFcM1T-HnWlP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+model+for+auxiliary+diagnosis+of+hepatocellular+carcinoma+based+on+gene+expression+programming&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Jiasheng&rft.au=Gao%2C+Chunming&rft.au=Liu%2C+Chuanmiao&rft.date=2018-10-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=56&rft.issue=10&rft.spage=1771&rft_id=info:doi/10.1007%2Fs11517-018-1811-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |