Lung Nodule Detection based on Ensemble of Hand Crafted and Deep Features

Lung cancer is considered as a deadliest disease worldwide due to which 1.76 million deaths occurred in the year 2018. Keeping in view its dreadful effect on humans, cancer detection at a premature stage is a more significant requirement to reduce the probability of mortality rate. This manuscript d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems Jg. 43; H. 12; S. 332
Hauptverfasser: Saba, Tanzila, Sameh, Ahmed, Khan, Fatima, Shad, Shafqat Ali, Sharif, Muhammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2019
Springer Nature B.V
Schlagworte:
ISSN:0148-5598, 1573-689X, 1573-689X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer is considered as a deadliest disease worldwide due to which 1.76 million deaths occurred in the year 2018. Keeping in view its dreadful effect on humans, cancer detection at a premature stage is a more significant requirement to reduce the probability of mortality rate. This manuscript depicts an approach of finding lung nodule at an initial stage that comprises of three major phases: (1) lung nodule segmentation using Otsu threshold followed by morphological operation; (2) extraction of geometrical, texture and deep learning features for selecting optimal features; (3) The optimal features are fused serially for classification of lung nodule into two categories that is malignant and benign. The lung image database consortium image database resource initiative (LIDC-IDRI) is used for experimentation. The experimental outcomes show better performance of presented approach as compared with the existing methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0148-5598
1573-689X
1573-689X
DOI:10.1007/s10916-019-1455-6