Integer cat swarm optimization algorithm for multiobjective integer problems

In the literature, several variants of cat swarm optimization (CSO) algorithm are reported. However, CSO for integer multiobjective optimization problems (MOPs) has not yet been investigated. Owing to the frequent occurrence of integer MOPs and their importance in practical design problems, in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 24; H. 3; S. 1927 - 1955
Hauptverfasser: Ali Murtza, Shahid, Ahmad, Ayaz, Shafique, Jawad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the literature, several variants of cat swarm optimization (CSO) algorithm are reported. However, CSO for integer multiobjective optimization problems (MOPs) has not yet been investigated. Owing to the frequent occurrence of integer MOPs and their importance in practical design problems, in this work, we investigate a new CSO approach for solving purely integer MOPs. This new approach named as multiobjective integer cat swarm optimization (MO-ICSO) algorithm incorporates the modified version of the CSO algorithm for MOPs. This approach is comprised of the concepts of rounding the floating points to the nearest integer numbers and the probabilistic updating (PU) technique. It uses the idea of Pareto dominance for finding the non-dominated solutions and an external archive for storing these solutions. We demonstrate the power of this new approach via its quantitative analysis and sensitivity test of its several parameters using different performance metrics performed over multiobjective multidimensional knapsack problem and several standard test functions. The simulation results argue that the proposed MO-ICSO approach can be a better candidate for solving the integer MOPs.
AbstractList In the literature, several variants of cat swarm optimization (CSO) algorithm are reported. However, CSO for integer multiobjective optimization problems (MOPs) has not yet been investigated. Owing to the frequent occurrence of integer MOPs and their importance in practical design problems, in this work, we investigate a new CSO approach for solving purely integer MOPs. This new approach named as multiobjective integer cat swarm optimization (MO-ICSO) algorithm incorporates the modified version of the CSO algorithm for MOPs. This approach is comprised of the concepts of rounding the floating points to the nearest integer numbers and the probabilistic updating (PU) technique. It uses the idea of Pareto dominance for finding the non-dominated solutions and an external archive for storing these solutions. We demonstrate the power of this new approach via its quantitative analysis and sensitivity test of its several parameters using different performance metrics performed over multiobjective multidimensional knapsack problem and several standard test functions. The simulation results argue that the proposed MO-ICSO approach can be a better candidate for solving the integer MOPs.
Author Ahmad, Ayaz
Ali Murtza, Shahid
Shafique, Jawad
Author_xml – sequence: 1
  givenname: Shahid
  surname: Ali Murtza
  fullname: Ali Murtza, Shahid
  organization: School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST)
– sequence: 2
  givenname: Ayaz
  orcidid: 0000-0002-2253-6004
  surname: Ahmad
  fullname: Ahmad, Ayaz
  email: ayaz.ahmad@ciitwah.edu.pk, ayaz.uet@gmail.com
  organization: Department of Electrical and Computer Engineering, COMSATS University Islamabad
– sequence: 3
  givenname: Jawad
  surname: Shafique
  fullname: Shafique, Jawad
  organization: Department of Electronics Engineering, UET
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19FzksxkZinFS6HgRtchk2Zqylxqkir69KYXEFx0lUP4v3P5JmTUD70l5BrhFgHkXQDIAShgRUEA4xTPyBgF51QKWY32NaOyEPyCTEJYAzCUOR-TxbyPdmV9ZnTMwpf2XTZsouvcj45u6DPdrgbv4nuXNYPPum2bfuu1NdF92swd2Y0f6tZ24ZKcN7oN9ur4Tsnb48Pr7JkuXp7ms_sFNVyySGWDaOqiqpmRyAxb5tIwURjNEHMjsJFFIfNm2WhoyiWmAziDwhZC1kzUuuJTcnPomwZ_bG2Iaj1sfZ9GKlZhiVBCvkuVh5TxQwjeNsq4uL8qeu1ahaB27tTBnUru1N6dwoSyf-jGu07779MQP0Ahhfvk5W-rE9QvKrWDgQ
CitedBy_id crossref_primary_10_1007_s00500_020_05165_3
Cites_doi 10.1080/15325008.2013.853215
10.1109/ICMMT.2010.5524774
10.1109/TAP.2006.882165
10.1109/ICNN.1995.488968
10.1162/evco.1999.7.3.205
10.1080/08839514.2018.1556419
10.3233/AIC-160708
10.1109/SoCPaR.2009.23
10.1109/DSD.2008.21
10.1016/j.eswa.2011.08.157
10.1109/IC4.2013.6653754
10.13182/NT15-130
10.1016/j.eswa.2011.04.054
10.1016/j.apenergy.2016.05.056
10.1007/s10462-017-9559-1
10.1016/j.cor.2006.12.030
10.1007/s10489-018-1190-6
10.1016/j.energy.2014.09.062
10.1017/S0890060400002821
10.1115/1.1876436
10.1016/j.rser.2010.12.008
10.1109/ICEC.1998.699326
10.1145/298151.298382
10.1016/j.asoc.2017.06.059
10.1109/ICSMC.1997.637339
10.1016/j.engappai.2018.05.003
10.1007/978-3-662-03199-5
10.1109/4235.996017
10.1016/j.jocs.2017.07.018
10.1007/3-540-61723-X_1014
10.1109/4235.797969
10.1007/978-3-030-10674-4
10.1007/s00607-017-0574-5
10.1109/CEC.2002.1004478
10.1007/s11227-017-2046-2
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-04023-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1955
ExternalDocumentID 10_1007_s00500_019_04023_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c372t-7f11cb69b2c712c2d57c246ca2115c41f76675fdfa0f8d14793206e647b24ba93
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518595800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 02:11:07 EST 2025
Tue Nov 18 22:02:25 EST 2025
Sat Nov 29 03:35:55 EST 2025
Fri Feb 21 02:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cat swarm optimization
Swarm intelligence
Multiobjective optimization
Integer optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-7f11cb69b2c712c2d57c246ca2115c41f76675fdfa0f8d14793206e647b24ba93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2253-6004
PQID 2918108059
PQPubID 2043697
PageCount 29
ParticipantIDs proquest_journals_2918108059
crossref_citationtrail_10_1007_s00500_019_04023_1
crossref_primary_10_1007_s00500_019_04023_1
springer_journals_10_1007_s00500_019_04023_1
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kennedy J, Eberhart R (1995) Particle swarm optimization (PSO). In: Proceedings IEEE international conference on neural networks, pp 1942–1948
Kennedy J, Spears WM (1998) Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE international conference on evolutionary computation, Citeseer, pp 78–83
JawadSAyazAAliMSA multi-objective integer melody search algorithmAppl Artif Intell201933320822810.1080/08839514.2018.1556419
Matsui T, Kato K, Sakawa M, Uno T, Matsumoto K (2008) Particle swarm optimization for nonlinear integer programming problems. In: Proceedings of international multiconference of engineers and computer scientists, pp 1874–1877
Zhao X, Jin Y, Ji H, Geng J, Liang X, Jin R (2013) An improved mixed-integer multiobjective particle swarm optimization and its application in antenna array design. In: IEEE 5th international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (MAPE). IEEE pp 412–415
HorstRTuyHGlobal optimization: deterministic approaches1996New YorkSpringer10.1007/978-3-662-03199-50867.90105
ChuS-CTsaiP-WComputational intelligence based on the behavior of catsInt J Innov Comput Inf Control200731163173
AliMSAyazAYasirQMQadri NadiaNJameelAOptimizing energy and throughput for mpsocs: an integer particle swarm optimization approachComputing2018100322724410.1007/s00607-017-0574-53770904
RaoSSEngineering optimization-theory and practice1996New DelhiWiley Eastern
TsaiP-WPanJ-SChenS-MLiaoB-YEnhanced parallel cat swarm optimization based on the Taguchi methodExpert Syst Appl20123963096319
AbualigahLMKhaderATHanandehESA new feature selection method to improve the document clustering using particle swarm optimization algorithmJ Comput Sci20182545646610.1016/j.jocs.2017.07.018
CuiS-YWangZ-HTsaiP-WChangC-CYueSPanJ-SHuangH-CJainLCZhaoYSingle bitmap block truncation coding of color images using cat swarm optimizationRecent advances in information hiding and applications2013BerlinSpringer
GujaratiDNBasic econometrics2009New YorkTata McGraw-Hill Education
Santosa B, Ningrum MK (2009) Cat swarm optimization for clustering. In: International conference of soft computing and pattern recognition, SOCPAR’09. IEEE pp 54–59
AbualigahLMKhaderATHanandehESHybrid clustering analysis using improved krill herd algorithmAppl Intell201848114047407110.1007/s10489-018-1190-6
ChenJGarciaHEEconomic optimization of operations for hybrid energy systems under variable marketsAppl Energy2016177112410.1016/j.apenergy.2016.05.056
Palermo G, Silvano C, Zaccaria V (2008) Discrete particle swarm optimization for multiobjective design space exploration. In: 11th EUROMICRO conference on digital system design architectures, methods and tools, 2008, DSD’08. IEEE, pp 641–644
TanYGaoH-MZengJ-CParticle swarm optimization for integer programmingSyst Eng Theory Pract20045021
DeepKSinghKPKansalMMohanCA real coded genetic algorithm for solving integer and mixed integer optimization problemsAppl Math Comput200921250551825319771168.65353
IshfaqHAbidaPAyazAYasirQMQadri NadiaNJameelANsga-ii-based design space exploration for energy and throughput aware multicore architecturesCybern Syst2017486–7536550
DebKMulti-objective genetic algorithms: problem difficulties and construction of test problemsEvol Comput19997320523010.1162/evco.1999.7.3.2052284451
PradhanPMPandaGSolving multiobjective problems using cat swarm optimizationExpert Syst Appl20123932956296410.1016/j.eswa.2011.08.157
Tsai P-W, Pan J-S, Chen S-M, Liao B-Y, Hao S-P (2008) Parallel cat swarm optimization. In: IEEE seventh international conference on machine learning and cybernetics, Kunming, China, pp 3328–3333
ChenJGarciaHEKimJSBragg-SittonSMOperations optimization of nuclear hybrid energy systemsNucl Technol Am Nucl Soc2016195214315610.13182/NT15-130
Sharafi Y, Khanesar MA, Teshnehlab M (2013) Discrete binary cat swarm optimization algorithm. In: 2013 3rd international conference on computer, control & communication (IC4). IEEE, pp 1–6
WolseyLANemhauserGLInteger and combinatorial optimization2014LondonJohn Wiley & Sons0944.90001
KumarDSamantaraySKamwaISahooNReliability-constrained based optimal placement and sizing of multiple distributed generators in power distribution network using cat swarm optimizationElectric Power Compon Syst201442214916410.1080/15325008.2013.853215
PandaGPradhanPMMajhiBPanigrahiBKShiYLimM-HDirect and inverse modeling of plants using cat swarm optimizationHandbook of swarm intelligence2011BerlinSpringer1207.68361
HussainIAhmadAQadriMYQadriNNAhmedJAnt colony optimization for multicore re-configurable architectureAI Commun201629559560610.3233/AIC-1607083581864
Kita H, Yabumoto Y, Mori N, Nishikawa Y (1996) Multi-objective optimization by means of the thermodynamical genetic algorithm. In: Parallel problem solving from natureppsn IV. Springer, Berlin, pp 504–512
BanosRManzano-AgugliaroFMontoyaFGilCAlcaydeAGmezJOptimization methods applied to renewable and sustainable energy: a reviewRenew Sustain Energy Rev20111541753176610.1016/j.rser.2010.12.008
AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput20176042343510.1016/j.asoc.2017.06.059
AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomput201773114773479510.1007/s11227-017-2046-2
WangG-GGandomiAHAlaviAHGongDA comprehensive review of krill herd algorithm: variants, hybrids and applicationsArtif Intell Rev201951111914810.1007/s10462-017-9559-1
ChenJCHwangJCPanJSCSO algorithm for economic dispatch decision of hybrid generation systemJ Energy Power Eng2011573749
WahBWWuZThe theory of discrete lagrange multipliers for nonlinear discrete optimizationPrinciples and practice of constraint programming-CP991999BerlinSpringer2842
Shi W, Zhang Q, Du H (2010) Quantum particle swarm optimization for integer programming of phased array feeds. In: 2010 international conference on. microwave and millimeter wave technology (ICMMT), pp 1386–1389
RaoSSXiongYA hybrid genetic algorithm for mixed-discrete design optimizationJ Mech Des200512761100111210.1115/1.1876436
BacarisasNDYusiongJTThe effects of varying the fitness function on the efficiency of the cat swarm optimization algorithm in solving the graph coloring problemAnn Comput Sci Ser201191738
FeldmanAMSerranoRWelfare economics and social choice theory2006New YorkSpringer
MikkiSMKishkAAQuantum particle swarm optimization for electromagneticsIEEE Trans Antennas Propag200654102764277510.1109/TAP.2006.882165
ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
DeepKThakurMA new crossover operator for real coded genetic algorithmsAppl Math Comput2007188189591123277651137.90726
PetrieCJWebsterTACutkoskyMRUsing Pareto optimality to coordinate distributed agentsArtif Intell Eng Des Anal Manuf19959426928110.1017/S0890060400002821
AbualigahLMQHanandehESApplying genetic algorithms to information retrieval using vector space modelInt J Comput Sci Eng Appl20155119
Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the world on congress on computational intelligence, vol 2. IEEE, pp 1582–1587
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
AbualigahLMKhaderATHanandehESA combination of objective functions and hybrid krill herd algorithm for text document clustering analysisEng Appl Artif Intell20187311112510.1016/j.engappai.2018.05.003
AbualigahLMQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer10.1007/978-3-030-10674-4
PanQ-KTasgetirenMFLiangY-CA discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problemComput Oper Res20083592807283910.1016/j.cor.2006.12.03025864011144.90393
Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations, DTIC Document, Tech. Rep
PandaGPradhanPMMajhiBIIR system identification using cat swarm optimizationExpert Syst Appl201138126711268310.1016/j.eswa.2011.04.054
KimJSEdgarTFOptimal scheduling of combined heat and power plants using mixed-integer nonlinear programmingEnergy20147767569010.1016/j.energy.2014.09.062
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on computational cybernetics and simulation, systems, man, and cybernetics, vol 5. IEEE, pp 4104–4108
Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. DTIC Document, Tech. Rep
LM Abualigah (4023_CR7) 2018; 25
SS Rao (4023_CR41) 1996
4023_CR43
S Jawad (4023_CR25) 2019; 33
4023_CR44
SM Mikki (4023_CR34) 2006; 54
4023_CR45
S-Y Cui (4023_CR15) 2013
4023_CR46
4023_CR48
G Panda (4023_CR37) 2011
I Hussain (4023_CR23) 2016; 29
E Zitzler (4023_CR55) 1999; 3
LM Abualigah (4023_CR4) 2017; 60
ND Bacarisas (4023_CR9) 2011; 9
K Deb (4023_CR17) 2002; 6
S-C Chu (4023_CR14) 2007; 3
LM Abualigah (4023_CR6) 2018; 48
4023_CR32
4023_CR33
4023_CR35
LA Wolsey (4023_CR53) 2014
MS Ali (4023_CR8) 2018; 100
4023_CR30
P-W Tsai (4023_CR49) 2012; 39
K Deep (4023_CR19) 2009; 212
PM Pradhan (4023_CR40) 2012; 39
J Chen (4023_CR13) 2016; 195
G-G Wang (4023_CR52) 2019; 51
K Deb (4023_CR16) 1999; 7
R Horst (4023_CR22) 1996
Y Tan (4023_CR47) 2004; 5
BW Wah (4023_CR51) 1999
4023_CR26
G Panda (4023_CR38) 2011; 38
4023_CR27
H Ishfaq (4023_CR24) 2017; 48
4023_CR28
DN Gujarati (4023_CR21) 2009
LMQ Abualigah (4023_CR1) 2019
JS Kim (4023_CR29) 2014; 77
J Chen (4023_CR11) 2016; 177
LM Abualigah (4023_CR3) 2017; 73
AM Feldman (4023_CR20) 2006
K Deep (4023_CR18) 2007; 188
LM Abualigah (4023_CR5) 2018; 73
D Kumar (4023_CR31) 2014; 42
4023_CR54
LMQ Abualigah (4023_CR2) 2015; 5
4023_CR50
JC Chen (4023_CR12) 2011; 5
SS Rao (4023_CR42) 2005; 127
Q-K Pan (4023_CR36) 2008; 35
R Banos (4023_CR10) 2011; 15
CJ Petrie (4023_CR39) 1995; 9
References_xml – reference: AbualigahLMQHanandehESApplying genetic algorithms to information retrieval using vector space modelInt J Comput Sci Eng Appl20155119
– reference: PetrieCJWebsterTACutkoskyMRUsing Pareto optimality to coordinate distributed agentsArtif Intell Eng Des Anal Manuf19959426928110.1017/S0890060400002821
– reference: Matsui T, Kato K, Sakawa M, Uno T, Matsumoto K (2008) Particle swarm optimization for nonlinear integer programming problems. In: Proceedings of international multiconference of engineers and computer scientists, pp 1874–1877
– reference: AbualigahLMKhaderATHanandehESA new feature selection method to improve the document clustering using particle swarm optimization algorithmJ Comput Sci20182545646610.1016/j.jocs.2017.07.018
– reference: Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE international conference on computational cybernetics and simulation, systems, man, and cybernetics, vol 5. IEEE, pp 4104–4108
– reference: PandaGPradhanPMMajhiBPanigrahiBKShiYLimM-HDirect and inverse modeling of plants using cat swarm optimizationHandbook of swarm intelligence2011BerlinSpringer1207.68361
– reference: TsaiP-WPanJ-SChenS-MLiaoB-YEnhanced parallel cat swarm optimization based on the Taguchi methodExpert Syst Appl20123963096319
– reference: IshfaqHAbidaPAyazAYasirQMQadri NadiaNJameelANsga-ii-based design space exploration for energy and throughput aware multicore architecturesCybern Syst2017486–7536550
– reference: Santosa B, Ningrum MK (2009) Cat swarm optimization for clustering. In: International conference of soft computing and pattern recognition, SOCPAR’09. IEEE pp 54–59
– reference: TanYGaoH-MZengJ-CParticle swarm optimization for integer programmingSyst Eng Theory Pract20045021
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: KumarDSamantaraySKamwaISahooNReliability-constrained based optimal placement and sizing of multiple distributed generators in power distribution network using cat swarm optimizationElectric Power Compon Syst201442214916410.1080/15325008.2013.853215
– reference: WahBWWuZThe theory of discrete lagrange multipliers for nonlinear discrete optimizationPrinciples and practice of constraint programming-CP991999BerlinSpringer2842
– reference: DeepKSinghKPKansalMMohanCA real coded genetic algorithm for solving integer and mixed integer optimization problemsAppl Math Comput200921250551825319771168.65353
– reference: DebKMulti-objective genetic algorithms: problem difficulties and construction of test problemsEvol Comput19997320523010.1162/evco.1999.7.3.2052284451
– reference: RaoSSEngineering optimization-theory and practice1996New DelhiWiley Eastern
– reference: HorstRTuyHGlobal optimization: deterministic approaches1996New YorkSpringer10.1007/978-3-662-03199-50867.90105
– reference: HussainIAhmadAQadriMYQadriNNAhmedJAnt colony optimization for multicore re-configurable architectureAI Commun201629559560610.3233/AIC-1607083581864
– reference: GujaratiDNBasic econometrics2009New YorkTata McGraw-Hill Education
– reference: Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. DTIC Document, Tech. Rep
– reference: DeepKThakurMA new crossover operator for real coded genetic algorithmsAppl Math Comput2007188189591123277651137.90726
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization (PSO). In: Proceedings IEEE international conference on neural networks, pp 1942–1948
– reference: Shi W, Zhang Q, Du H (2010) Quantum particle swarm optimization for integer programming of phased array feeds. In: 2010 international conference on. microwave and millimeter wave technology (ICMMT), pp 1386–1389
– reference: BanosRManzano-AgugliaroFMontoyaFGilCAlcaydeAGmezJOptimization methods applied to renewable and sustainable energy: a reviewRenew Sustain Energy Rev20111541753176610.1016/j.rser.2010.12.008
– reference: AbualigahLMKhaderATHanandehESA combination of objective functions and hybrid krill herd algorithm for text document clustering analysisEng Appl Artif Intell20187311112510.1016/j.engappai.2018.05.003
– reference: AliMSAyazAYasirQMQadri NadiaNJameelAOptimizing energy and throughput for mpsocs: an integer particle swarm optimization approachComputing2018100322724410.1007/s00607-017-0574-53770904
– reference: WangG-GGandomiAHAlaviAHGongDA comprehensive review of krill herd algorithm: variants, hybrids and applicationsArtif Intell Rev201951111914810.1007/s10462-017-9559-1
– reference: BacarisasNDYusiongJTThe effects of varying the fitness function on the efficiency of the cat swarm optimization algorithm in solving the graph coloring problemAnn Comput Sci Ser201191738
– reference: PandaGPradhanPMMajhiBIIR system identification using cat swarm optimizationExpert Syst Appl201138126711268310.1016/j.eswa.2011.04.054
– reference: Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the world on congress on computational intelligence, vol 2. IEEE, pp 1582–1587
– reference: AbualigahLMKhaderATHanandehESHybrid clustering analysis using improved krill herd algorithmAppl Intell201848114047407110.1007/s10489-018-1190-6
– reference: AbualigahLMQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer10.1007/978-3-030-10674-4
– reference: ChenJGarciaHEEconomic optimization of operations for hybrid energy systems under variable marketsAppl Energy2016177112410.1016/j.apenergy.2016.05.056
– reference: ChenJCHwangJCPanJSCSO algorithm for economic dispatch decision of hybrid generation systemJ Energy Power Eng2011573749
– reference: ChuS-CTsaiP-WComputational intelligence based on the behavior of catsInt J Innov Comput Inf Control200731163173
– reference: JawadSAyazAAliMSA multi-objective integer melody search algorithmAppl Artif Intell201933320822810.1080/08839514.2018.1556419
– reference: Kennedy J, Spears WM (1998) Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE international conference on evolutionary computation, Citeseer, pp 78–83
– reference: KimJSEdgarTFOptimal scheduling of combined heat and power plants using mixed-integer nonlinear programmingEnergy20147767569010.1016/j.energy.2014.09.062
– reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
– reference: AbualigahLMKhaderATHanandehESGandomiAHA novel hybridization strategy for krill herd algorithm applied to clustering techniquesAppl Soft Comput20176042343510.1016/j.asoc.2017.06.059
– reference: Kita H, Yabumoto Y, Mori N, Nishikawa Y (1996) Multi-objective optimization by means of the thermodynamical genetic algorithm. In: Parallel problem solving from natureppsn IV. Springer, Berlin, pp 504–512
– reference: AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomput201773114773479510.1007/s11227-017-2046-2
– reference: FeldmanAMSerranoRWelfare economics and social choice theory2006New YorkSpringer
– reference: RaoSSXiongYA hybrid genetic algorithm for mixed-discrete design optimizationJ Mech Des200512761100111210.1115/1.1876436
– reference: Tsai P-W, Pan J-S, Chen S-M, Liao B-Y, Hao S-P (2008) Parallel cat swarm optimization. In: IEEE seventh international conference on machine learning and cybernetics, Kunming, China, pp 3328–3333
– reference: WolseyLANemhauserGLInteger and combinatorial optimization2014LondonJohn Wiley & Sons0944.90001
– reference: PradhanPMPandaGSolving multiobjective problems using cat swarm optimizationExpert Syst Appl20123932956296410.1016/j.eswa.2011.08.157
– reference: Zhao X, Jin Y, Ji H, Geng J, Liang X, Jin R (2013) An improved mixed-integer multiobjective particle swarm optimization and its application in antenna array design. In: IEEE 5th international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (MAPE). IEEE pp 412–415
– reference: Palermo G, Silvano C, Zaccaria V (2008) Discrete particle swarm optimization for multiobjective design space exploration. In: 11th EUROMICRO conference on digital system design architectures, methods and tools, 2008, DSD’08. IEEE, pp 641–644
– reference: ChenJGarciaHEKimJSBragg-SittonSMOperations optimization of nuclear hybrid energy systemsNucl Technol Am Nucl Soc2016195214315610.13182/NT15-130
– reference: PanQ-KTasgetirenMFLiangY-CA discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problemComput Oper Res20083592807283910.1016/j.cor.2006.12.03025864011144.90393
– reference: Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations, DTIC Document, Tech. Rep
– reference: MikkiSMKishkAAQuantum particle swarm optimization for electromagneticsIEEE Trans Antennas Propag200654102764277510.1109/TAP.2006.882165
– reference: Sharafi Y, Khanesar MA, Teshnehlab M (2013) Discrete binary cat swarm optimization algorithm. In: 2013 3rd international conference on computer, control & communication (IC4). IEEE, pp 1–6
– reference: CuiS-YWangZ-HTsaiP-WChangC-CYueSPanJ-SHuangH-CJainLCZhaoYSingle bitmap block truncation coding of color images using cat swarm optimizationRecent advances in information hiding and applications2013BerlinSpringer
– volume: 42
  start-page: 149
  issue: 2
  year: 2014
  ident: 4023_CR31
  publication-title: Electric Power Compon Syst
  doi: 10.1080/15325008.2013.853215
– ident: 4023_CR46
  doi: 10.1109/ICMMT.2010.5524774
– volume: 5
  start-page: 19
  issue: 1
  year: 2015
  ident: 4023_CR2
  publication-title: Int J Comput Sci Eng Appl
– volume: 54
  start-page: 2764
  issue: 10
  year: 2006
  ident: 4023_CR34
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.2006.882165
– volume-title: Recent advances in information hiding and applications
  year: 2013
  ident: 4023_CR15
– volume-title: Handbook of swarm intelligence
  year: 2011
  ident: 4023_CR37
– ident: 4023_CR26
  doi: 10.1109/ICNN.1995.488968
– volume: 7
  start-page: 205
  issue: 3
  year: 1999
  ident: 4023_CR16
  publication-title: Evol Comput
  doi: 10.1162/evco.1999.7.3.205
– volume: 33
  start-page: 208
  issue: 3
  year: 2019
  ident: 4023_CR25
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2018.1556419
– volume: 29
  start-page: 595
  issue: 5
  year: 2016
  ident: 4023_CR23
  publication-title: AI Commun
  doi: 10.3233/AIC-160708
– ident: 4023_CR43
  doi: 10.1109/SoCPaR.2009.23
– ident: 4023_CR33
– ident: 4023_CR35
  doi: 10.1109/DSD.2008.21
– volume: 39
  start-page: 2956
  issue: 3
  year: 2012
  ident: 4023_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.157
– volume: 212
  start-page: 505
  year: 2009
  ident: 4023_CR19
  publication-title: Appl Math Comput
– volume: 9
  start-page: 1738
  year: 2011
  ident: 4023_CR9
  publication-title: Ann Comput Sci Ser
– ident: 4023_CR45
  doi: 10.1109/IC4.2013.6653754
– volume: 195
  start-page: 143
  issue: 2
  year: 2016
  ident: 4023_CR13
  publication-title: Nucl Technol Am Nucl Soc
  doi: 10.13182/NT15-130
– volume: 3
  start-page: 163
  issue: 1
  year: 2007
  ident: 4023_CR14
  publication-title: Int J Innov Comput Inf Control
– volume: 38
  start-page: 1267112683
  year: 2011
  ident: 4023_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.054
– volume: 177
  start-page: 11
  year: 2016
  ident: 4023_CR11
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.056
– volume: 51
  start-page: 119
  issue: 1
  year: 2019
  ident: 4023_CR52
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9559-1
– volume: 35
  start-page: 2807
  issue: 9
  year: 2008
  ident: 4023_CR36
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2006.12.030
– volume: 188
  start-page: 895
  issue: 1
  year: 2007
  ident: 4023_CR18
  publication-title: Appl Math Comput
– volume: 48
  start-page: 4047
  issue: 11
  year: 2018
  ident: 4023_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1190-6
– ident: 4023_CR48
– volume-title: Welfare economics and social choice theory
  year: 2006
  ident: 4023_CR20
– ident: 4023_CR44
– volume-title: Engineering optimization-theory and practice
  year: 1996
  ident: 4023_CR41
– volume: 77
  start-page: 675
  year: 2014
  ident: 4023_CR29
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.062
– volume: 9
  start-page: 269
  issue: 4
  year: 1995
  ident: 4023_CR39
  publication-title: Artif Intell Eng Des Anal Manuf
  doi: 10.1017/S0890060400002821
– volume: 127
  start-page: 1100
  issue: 6
  year: 2005
  ident: 4023_CR42
  publication-title: J Mech Des
  doi: 10.1115/1.1876436
– volume: 15
  start-page: 1753
  issue: 4
  year: 2011
  ident: 4023_CR10
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.12.008
– ident: 4023_CR54
– ident: 4023_CR28
  doi: 10.1109/ICEC.1998.699326
– volume-title: Basic econometrics
  year: 2009
  ident: 4023_CR21
– start-page: 28
  volume-title: Principles and practice of constraint programming-CP99
  year: 1999
  ident: 4023_CR51
– ident: 4023_CR50
  doi: 10.1145/298151.298382
– volume: 48
  start-page: 536
  issue: 6–7
  year: 2017
  ident: 4023_CR24
  publication-title: Cybern Syst
– volume: 60
  start-page: 423
  year: 2017
  ident: 4023_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.059
– ident: 4023_CR27
  doi: 10.1109/ICSMC.1997.637339
– volume: 73
  start-page: 111
  year: 2018
  ident: 4023_CR5
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.05.003
– volume: 5
  start-page: 021
  year: 2004
  ident: 4023_CR47
  publication-title: Syst Eng Theory Pract
– volume: 5
  start-page: 73749
  year: 2011
  ident: 4023_CR12
  publication-title: J Energy Power Eng
– volume-title: Global optimization: deterministic approaches
  year: 1996
  ident: 4023_CR22
  doi: 10.1007/978-3-662-03199-5
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 4023_CR17
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume-title: Integer and combinatorial optimization
  year: 2014
  ident: 4023_CR53
– volume: 25
  start-page: 456
  year: 2018
  ident: 4023_CR7
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.07.018
– volume: 39
  start-page: 63096319
  year: 2012
  ident: 4023_CR49
  publication-title: Expert Syst Appl
– ident: 4023_CR30
  doi: 10.1007/3-540-61723-X_1014
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 4023_CR55
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– volume-title: Feature selection and enhanced krill herd algorithm for text document clustering
  year: 2019
  ident: 4023_CR1
  doi: 10.1007/978-3-030-10674-4
– volume: 100
  start-page: 227
  issue: 3
  year: 2018
  ident: 4023_CR8
  publication-title: Computing
  doi: 10.1007/s00607-017-0574-5
– ident: 4023_CR32
  doi: 10.1109/CEC.2002.1004478
– volume: 73
  start-page: 4773
  issue: 11
  year: 2017
  ident: 4023_CR3
  publication-title: J Supercomput
  doi: 10.1007/s11227-017-2046-2
SSID ssj0021753
Score 2.2422893
Snippet In the literature, several variants of cat swarm optimization (CSO) algorithm are reported. However, CSO for integer multiobjective optimization problems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1927
SubjectTerms Algorithms
Artificial Intelligence
Business metrics
Cats
Computational Intelligence
Control
Design optimization
Engineering
Genetic algorithms
Integer programming
Integers
Investigations
Knapsack problem
Lagrange multiplier
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Multiple objective analysis
Optimization algorithms
Parameter sensitivity
Pareto optimization
Performance evaluation
Performance measurement
Robotics
Variables
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhIA9sYBE7T08IUBFDVVUIULfIjxiK-qIJ8Pc5p04rkOjCnNiyfOe7787n-xA6o0mkM8CxxPMTTQLfE4TrQJGYS2U0D6QsyWCeO3G3m_T7vOcSbrkrq6xsYmmo9UTZHPkl4-CLAN6E_Gr6TixrlL1ddRQa66huO5WBntdv2t3ewyLkcn0oARQAjgTn657NlI_nbOsTW5RlLwfAcxH60zUt8eavK9LS89w1_rvmbbTlMCe-nivJDlrLxruoUfE5YHe891DHpgdhAViJAudfYjbCE7AoI_dUE4vhC8xevI4wIF1cliJO5NvcYuKBG-sYavJ99HTXfry9J45tgSg_ZgWJDaVKRlwyFVOmmA5jxYJICdjZUAXUxBEEF0Yb4ZlEU5uRY16URUEsWSAF9w9QbTwZZ4cIB9o3EGZFQgG4BIwlvYQb5nGInmRojGwiWm10qlwrcsuIMUwXTZRL4aQgnLQUTkqb6HwxZjpvxLHy71YlkdQdyjxdiqOJLiqZLj__PdvR6tmO0SazUXhZy91CtWL2kZ2gDfVZDPLZqVPJbzeu5d4
  priority: 102
  providerName: ProQuest
Title Integer cat swarm optimization algorithm for multiobjective integer problems
URI https://link.springer.com/article/10.1007/s00500-019-04023-1
https://www.proquest.com/docview/2918108059
Volume 24
WOSCitedRecordID wos000518595800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0B5QAHdkShVD5wA0uJszg-AmqFBKoqNiEuUezEUEQblAT4fSapExYBElxyie1E42XeG88CsGcHfpwgjqWWE8TUdayIithVlAupdCxcKatiMNdnfDAIbm7E0ASF5bW3e30lWZ3UTbBbmaqkdKIqjfmoaShynhaqO16u5fOL64ZmmdyTCAQQO6LCNaEy34_xWR29Y8wv16KVtukv_-8_V2DJoEtyOF0OqzCTTNZgua7cQMxGXoPFD2kI1-GsNAviB4iKCpK_RtmYpHiSjE2IJoke79JsVNyPCSJcUrkgpvJhelKSkelrKtPkG3DV710en1BTZYEqh7OCcm3bSvpCMsVtpljsccVcX0VIDT3l2pr7SCp0rCNLB7FdWuKY5Se-yyVzZSScTZibpJNkC4gbOxrplR8pBJWIraQVCM0sgaxJelrLNti1sENlUpCXlTAewyZ5ciW8EIUXVsIL7TbsN32epgk4fm3dqecwNJsxD5lAGIPI2BNtOKjn7P31z6Nt_635Diywko1XPt0dmCuy52QX5tVLMcqzLrSOeoPheRdmTznF59C77VYL9w35z-JJ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hBalcCrQglqcP7am1iB1vEh8Q4ikQ2xWqKOIWYjuGrdhd2AQQf6q_seOss6siwY1Dz7EtOf488814HgBfWBKZHHksDcLEUBEGGZVGaBpLpa2RQqmqGcxFO-50kstLeTYFf-pcGBdWWcvESlCbgXY-8i0uURchvWnJnbt76rpGudfVuoXGCBan-fMTmmzF9skBnu9Xzo8Oz_ePqe8qQHUY85LGljGtIqm4jhnX3LRizUWkMzSFWlowG0dIoq2xWWATw5zniQdRHolYcaEyV3wJRf60CFGsN2B677Bz9nNs4vm6l0hCkLeisvdpOlWyniu14oLA3GMEakrK_lWFE3774km20nRHc__bP5qHj55Tk93RJViAqbz_CebqfhXEi6_P0HbuT9ww0VlJiqds2CMDlJg9n4pKsttr3E150yPI5EkVajlQv0cagXT9XN-Bp1iEX--ypyVo9Af9fBmIMKFFMzLKNJJn5JAqSKTlgUTrULWsVU1g9cGm2pdadx0_btNxkegKDCmCIa3AkLImfBvPuRsVGnlz9FqNgNQLnSKdHH8TvtcYmnx-fbWVt1fbhA_H5z_aafukc7oKs9x5HKq49TVolMOHfB1m9GPZLYYb_joQuHpvdP0Fe1FBVw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hQAgOLAVEWX3gBhGx4ybxEQEViKpCLFVvUWzHUERb1Ab4fcap0wICJMQ5jhONl3nPnnkDsE_jUGeIYz0_iLXHAz_1hObKi4RURgsuZVEMptWIms243RZXH7L4i2j38kpylNNgVZp6-dGzNkfjxDcrW2IDquzBPnodD_nPDKd-bNXzr29aY8rldCgRFCCOROfr0ma-7-Oza5rgzS9XpIXnqS_9_5-XYdGhTnI8miYrMJX1KrBUVnQgboFXYOGDPOEqNOxxIX6MqDQnw7d00CV93GG6LnWTpE_3_UEnf-gSRL6kCE3sy8fRDko67l1XsWa4Bnf1s9uTc89VX_BUELHciwylSoZCMhVRppiuRYrxUKVIGWuKUxOFSDaMNqlvYk3tCR3zwyzkkWRcpiJYh-lev5dtAOE6MEi7wlQh2ETMJf1YGOYLZFOyZoysAi0NnygnTW4rZDwlY1HlwngJGi8pjJfQKhyM33keCXP82nq7HM_ELdJhwgTCG0TMNVGFw3L8Jo9_7m3zb833YO7qtJ40LpqXWzDPLGEvwr63YTofvGQ7MKte885wsFvM3XeVoeqe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+cat+swarm+optimization+algorithm+for+multiobjective+integer+problems&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Ali+Murtza%2C+Shahid&rft.au=Ahmad%2C+Ayaz&rft.au=Shafique%2C+Jawad&rft.date=2020-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=3&rft.spage=1927&rft.epage=1955&rft_id=info:doi/10.1007%2Fs00500-019-04023-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_04023_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon