Distributed target localization using quantized received signal strength
In this paper, we propose a distributed gradient algorithm for received signal strength based target localization using only quantized data. The Maximum Likelihood of the Quantized RSS is derived and Particle Swarm Optimization is used to provide an initial estimate for the gradient algorithm. A pra...
Saved in:
| Published in: | Signal processing Vol. 134; pp. 214 - 223 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2017
|
| Subjects: | |
| ISSN: | 0165-1684, 1872-7557 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we propose a distributed gradient algorithm for received signal strength based target localization using only quantized data. The Maximum Likelihood of the Quantized RSS is derived and Particle Swarm Optimization is used to provide an initial estimate for the gradient algorithm. A practical quantization threshold designer is presented for RSS data. To derive a distributed algorithm using only the quantized signal, the local estimate at each node is also quantized. The RSS measurements and the local estimate at each sensor node are quantized in different ways. By using a quantization elimination scheme, a quantized distributed gradient method is proposed. In the distributed algorithm, the quantization noise in the local estimate is gradually eliminated with each iteration. Section 5 shows that the performance of the centralized algorithm can reach the Cramer Rao Lower Bound. The proposed distributed algorithm using a small number of bits can achieve the performance of the distributed gradient algorithm using unquantized data.
•The quantized distributed gradient method is applied for target localization.•Particle swarm optimization is used to provide an initial estimate.•A quantization error elimination scheme reduces communication cost.•A quantization method for RSS measurements is presented. |
|---|---|
| AbstractList | In this paper, we propose a distributed gradient algorithm for received signal strength based target localization using only quantized data. The Maximum Likelihood of the Quantized RSS is derived and Particle Swarm Optimization is used to provide an initial estimate for the gradient algorithm. A practical quantization threshold designer is presented for RSS data. To derive a distributed algorithm using only the quantized signal, the local estimate at each node is also quantized. The RSS measurements and the local estimate at each sensor node are quantized in different ways. By using a quantization elimination scheme, a quantized distributed gradient method is proposed. In the distributed algorithm, the quantization noise in the local estimate is gradually eliminated with each iteration. Section 5 shows that the performance of the centralized algorithm can reach the Cramer Rao Lower Bound. The proposed distributed algorithm using a small number of bits can achieve the performance of the distributed gradient algorithm using unquantized data.
•The quantized distributed gradient method is applied for target localization.•Particle swarm optimization is used to provide an initial estimate.•A quantization error elimination scheme reduces communication cost.•A quantization method for RSS measurements is presented. |
| Author | Chung, Pei-Jung Mulgrew, Bernard Li, Zeyuan |
| Author_xml | – sequence: 1 givenname: Zeyuan surname: Li fullname: Li, Zeyuan email: z.li@ed.ac.uk – sequence: 2 givenname: Pei-Jung surname: Chung fullname: Chung, Pei-Jung – sequence: 3 givenname: Bernard surname: Mulgrew fullname: Mulgrew, Bernard |
| BookMark | eNqFkM1OwzAMgCM0JLbBG3DoC7Qk6U86Dkho_AxpEhc4R2niFk8lHUk6iT09GePEAU62ZX-2_M3IxA4WCLlkNGOUVVebzGO3dUPGY5UxnlGan5ApqwVPRVmKCZnGRpmyqi7OyMz7DaWU5RWdktUd-uCwGQOYJCjXQUj6Qase9yrgYJPRo-2Sj1HZgPs440AD7mIST1rVJ5EG24W3c3Laqt7DxU-ck9eH-5flKl0_Pz4tb9epzgUPqQDBtW5pDKVqCsqKhSlqZdpaaMaVyMFUjBV103JVQaNNCQxyvciVoQAN5HNSHPdqN3jvoJVbh-_KfUpG5cGG3MijDXmwIRmX0UbErn9hGsP3h8Ep7P-Db44wxMd2CE56jWA1GIw6gjQD_r3gC4eggxA |
| CitedBy_id | crossref_primary_10_3390_s20113203 crossref_primary_10_1007_s11277_020_07495_9 crossref_primary_10_1016_j_adhoc_2017_10_010 crossref_primary_10_1016_j_automatica_2022_110593 crossref_primary_10_1109_TCOMM_2020_3037551 crossref_primary_10_1016_j_sigpro_2017_06_020 crossref_primary_10_1016_j_sigpro_2020_107814 crossref_primary_10_1016_j_sigpro_2018_10_023 crossref_primary_10_21303_2461_4262_2022_002380 crossref_primary_10_3390_s19143242 crossref_primary_10_1109_ACCESS_2019_2915657 crossref_primary_10_1155_2020_3482463 crossref_primary_10_1007_s00500_020_05554_8 crossref_primary_10_1109_ACCESS_2019_2909974 |
| Cites_doi | 10.1109/GLOCOM.2009.5425268 10.1109/GLOCOM.2002.1188058 10.1109/ICU.2005.1570035 10.1109/TSP.2011.2152400 10.1002/rnc.1396 10.1109/CDC.2008.4738860 10.1109/TSP.2012.2223692 10.1109/98.878533 10.1109/TSP.2009.2016226 10.1109/TSP.2008.2009893 10.1109/TIT.2006.874516 10.1109/TAES.2013.6621821 10.1109/TSP.2003.814469 10.1109/CDC.2010.5717526 10.1109/TPDS.2012.248 10.1145/1947940.1947969 10.1049/iet-wss.2011.0107 10.1109/SAHCN.2008.66 10.1109/ACSSC.2010.5757776 10.1109/MSP.2005.1458287 10.1109/TAC.2004.834113 10.1016/j.adhoc.2004.04.003 10.1109/ICASSP.2004.1326696 10.2514/6.2005-1897 10.1109/TIM.2011.2135030 10.1109/TSP.2006.879312 10.1109/TSP.2012.2199314 10.1145/941350.941354 10.1109/TSP.2006.882082 10.1007/s11277-007-9375-z 10.1007/978-94-015-7744-1 10.1109/ICEC.1998.699146 10.1016/j.swevo.2012.11.001 10.1109/ICNN.1995.488968 10.1109/CEC.1999.785511 10.1017/CBO9780511804458.011 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2016.12.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7557 |
| EndPage | 223 |
| ExternalDocumentID | 10_1016_j_sigpro_2016_12_003 S0165168416303450 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c372t-7e72ccf0e725ab40149d48adf87c12a73ed61148bf2a6ebcd5e1e3c93ad0eebe3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393243800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sat Nov 29 03:22:51 EST 2025 Tue Nov 18 21:39:28 EST 2025 Fri Feb 23 02:33:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Quantization Received signal strength Target localization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-7e72ccf0e725ab40149d48adf87c12a73ed61148bf2a6ebcd5e1e3c93ad0eebe3 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_sigpro_2016_12_003 crossref_citationtrail_10_1016_j_sigpro_2016_12_003 elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_12_003 |
| PublicationCentury | 2000 |
| PublicationDate | May 2017 2017-05-00 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Signal processing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Thanou, Kokiopoulou, Pu, Frossard (bib36) 2013; 61 T. Panigrahi, G. Panda, B. Mulgrew, B. Majhi, Maximum lilkelihood source localization in wireless sensor network using particle swarm optimization, in: Proceedings International Conference on electronics Systems (ICES), 2011, pp. 111–115. Panigrahi, Panda, Mulgrew (bib34) 2012; 2 Nguyen, Guo, Low (bib8) 2011; 60 〉 So, Lin (bib6) 2011; 59 Akyildiz, Kasimoglu (bib1) 2004; 2 URL Niu, Varshney (bib10) 2006; 54 Bejar, Zazo (bib18) 2012; 1 M. Rabbat, R. Nowak, Decentralized source localization and tracking [wireless sensor networks], in: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'04), vol. 3, 2004, pp. iii–921–4. Ozdemir, Niu, Varshney (bib12) 2009; 57 R. Hassan, B. Cohanim, O. de Weck, G. Venter, A comparison of particle swarm optimization and the genetic algorithm, in: Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences. Gezici (bib23) 2008; 44 Liu, Hu, Pan (bib17) 2012; 60 J. Li, E. Elhamifar, I.J. Wang, R. Vidal, Consensus with robustness to outliers via distributed optimization, in: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 2111–2117. Boyd, Ghosh, Prabhakar, Shah (bib38) 2006; 52 Patwari, Ash, Kyperountas, Hero, Moses, Correal (bib22) 2005; 22 B. Johansson, C. Carretti, M. Johansson, On distributed optimization using peer-to-peer communications in wireless sensor networks, in: Proceedings of the 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON'08, 2008, pp. 497–505. Y. Shi, R. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 3, 1999, p. 1950. Patwari, Hero, Perkins, Correal, O'Dea (bib5) 2003; 51 Olfati-Saber, Murray (bib31) 2004; 49 A. Nedic, A. Ozdaglar, Convex Optimization in Signal Processing and Communications, Cambridge University Press, Ch. Cooperative Distributed Multi-Agent Optimization, 2008, pp. 240–386. J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Evolutionary Computation Proceedings, 1998, IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on, 1998, pp. 69–73. Frasca, Carli, Fagnani, Zampieri (bib39) 2008; 19 Bulusu, Heidemann, Estrin (bib14) 2000; 7 Xu, Sun, Yu, Yang (bib2) 2013; 24 Blatt, Hero (bib16) 2006; 54 B. Bjar, P. Belanovic, S. Zazo, Distributed gauss-newton method for localization in ad-hoc networks, in: Proceedings of 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, pp. 1452–1454. Schizas, Mateos, Giannakis (bib30) 2009; 57 L. Xiao, S. Boyd, S. Lall, Distributed Average Consensus with Time-Varying Metropolis Weights, 2006. . R. Ouyang, A.-S. Wong, C.-T. Lea, V. Zhang, Received signal strength-based wireless localization via semidefinite programming, in: Global Telecommunications Conference, GLOBECOM 2009, IEEE, 2009, pp. 1–6. N. Sundaram, P. Ramanathan, Connectivity based location estimation scheme for wireless ad hoc networks, in: Proceedings of Global Telecommunications Conference, GLOBECOM'02. IEEE, vol. 1, 2002, pp. 143–147. P.J.M. Laarhoven, E.H.L. Aarts, (Eds.), Simulated Annealing: Theory and Applications, Kluwer Academic Publishers, Norwell, MA, USA, 1987. N. Patwari, A.O. Hero, III, Using proximity and quantized RSS for sensor localization in wireless networks, in: Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, WSNA '03, ACM, New York, NY, USA, 2003, pp. 20–29. A. Nedic, A. Olshevsky, A. Ozdaglar, J. Tsitsiklis, Distributed subgradient methods and quantization effects, in: Proceedings of the 47th IEEE Conference on Decision and Control. CDC 2008, 2008, pp. 4177–4184. Yang, Niu, Masazade, Varshney (bib11) 2013; 49 Panigrahi, Panda, Mulgrew, Majhi (bib35) 2013; 9 Patwari, Ash, Kyperountas, Hero, Moses, Correal (bib4) 2005; 22 P. Cheong, A. Rabbachin, J.P. Montillet, K. Yu, I. Oppermann, Synchronization, toa and position estimation for low-complexity ldr uwb devices, in: Proceedings of 2005 IEEE International Conference on Ultra-Wideband, 2005, pp. 480–484. Gezici (10.1016/j.sigpro.2016.12.003_bib23) 2008; 44 Ozdemir (10.1016/j.sigpro.2016.12.003_bib12) 2009; 57 Panigrahi (10.1016/j.sigpro.2016.12.003_bib35) 2013; 9 Thanou (10.1016/j.sigpro.2016.12.003_bib36) 2013; 61 Yang (10.1016/j.sigpro.2016.12.003_bib11) 2013; 49 10.1016/j.sigpro.2016.12.003_bib32 10.1016/j.sigpro.2016.12.003_bib33 Xu (10.1016/j.sigpro.2016.12.003_bib2) 2013; 24 Bejar (10.1016/j.sigpro.2016.12.003_bib18) 2012; 1 10.1016/j.sigpro.2016.12.003_bib15 10.1016/j.sigpro.2016.12.003_bib37 10.1016/j.sigpro.2016.12.003_bib13 10.1016/j.sigpro.2016.12.003_bib29 10.1016/j.sigpro.2016.12.003_bib27 Frasca (10.1016/j.sigpro.2016.12.003_bib39) 2008; 19 Bulusu (10.1016/j.sigpro.2016.12.003_bib14) 2000; 7 10.1016/j.sigpro.2016.12.003_bib28 So (10.1016/j.sigpro.2016.12.003_bib6) 2011; 59 Patwari (10.1016/j.sigpro.2016.12.003_bib22) 2005; 22 Liu (10.1016/j.sigpro.2016.12.003_bib17) 2012; 60 Akyildiz (10.1016/j.sigpro.2016.12.003_bib1) 2004; 2 10.1016/j.sigpro.2016.12.003_bib9 10.1016/j.sigpro.2016.12.003_bib7 Patwari (10.1016/j.sigpro.2016.12.003_bib5) 2003; 51 10.1016/j.sigpro.2016.12.003_bib3 10.1016/j.sigpro.2016.12.003_bib21 Olfati-Saber (10.1016/j.sigpro.2016.12.003_bib31) 2004; 49 Boyd (10.1016/j.sigpro.2016.12.003_bib38) 2006; 52 10.1016/j.sigpro.2016.12.003_bib20 10.1016/j.sigpro.2016.12.003_bib25 10.1016/j.sigpro.2016.12.003_bib26 10.1016/j.sigpro.2016.12.003_bib24 10.1016/j.sigpro.2016.12.003_bib19 Schizas (10.1016/j.sigpro.2016.12.003_bib30) 2009; 57 Patwari (10.1016/j.sigpro.2016.12.003_bib4) 2005; 22 Panigrahi (10.1016/j.sigpro.2016.12.003_bib34) 2012; 2 Nguyen (10.1016/j.sigpro.2016.12.003_bib8) 2011; 60 Blatt (10.1016/j.sigpro.2016.12.003_bib16) 2006; 54 Niu (10.1016/j.sigpro.2016.12.003_bib10) 2006; 54 |
| References_xml | – volume: 54 start-page: 3614 year: 2006 end-page: 3619 ident: bib16 article-title: Energy-based sensor network source localization via projection onto convex sets publication-title: IEEE Trans. Signal Process. – reference: J. Li, E. Elhamifar, I.J. Wang, R. Vidal, Consensus with robustness to outliers via distributed optimization, in: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 2111–2117. 〈 – volume: 57 start-page: 2365 year: 2009 end-page: 2382 ident: bib30 article-title: Distributed LMS for consensus-based in-network adaptive processing publication-title: IEEE Trans. Signal Process. – volume: 7 start-page: 28 year: 2000 end-page: 34 ident: bib14 article-title: Gps-less low-cost outdoor localization for very small devices publication-title: IEEE Pers. Commun. – volume: 24 start-page: 1567 year: 2013 end-page: 1576 ident: bib2 article-title: High-accuracy tdoa-based localization without time synchronization publication-title: IEEE Trans. Parallel Distrib. Syst. – reference: A. Nedic, A. Olshevsky, A. Ozdaglar, J. Tsitsiklis, Distributed subgradient methods and quantization effects, in: Proceedings of the 47th IEEE Conference on Decision and Control. CDC 2008, 2008, pp. 4177–4184. 〈 – reference: B. Bjar, P. Belanovic, S. Zazo, Distributed gauss-newton method for localization in ad-hoc networks, in: Proceedings of 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, pp. 1452–1454. 〈 – volume: 44 start-page: 263 year: 2008 end-page: 282 ident: bib23 article-title: A survey on wireless position estimation publication-title: Wirel. Pers. Commun. – reference: Y. Shi, R. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 3, 1999, p. 1950. 〈 – volume: 2 start-page: 385 year: 2012 end-page: 393 ident: bib34 article-title: Distributed bearing estimation technique using diffusion particle swarm optimisation algorithm publication-title: Wirel. Sens. Syst. IET – reference: P.J.M. Laarhoven, E.H.L. Aarts, (Eds.), Simulated Annealing: Theory and Applications, Kluwer Academic Publishers, Norwell, MA, USA, 1987. – reference: N. Sundaram, P. Ramanathan, Connectivity based location estimation scheme for wireless ad hoc networks, in: Proceedings of Global Telecommunications Conference, GLOBECOM'02. IEEE, vol. 1, 2002, pp. 143–147. 〈 – volume: 22 start-page: 54 year: 2005 end-page: 69 ident: bib22 article-title: Locating the nodes: cooperative localization in wireless sensor networks publication-title: IEEE Signal Process. Mag. – volume: 49 start-page: 1520 year: 2004 end-page: 1533 ident: bib31 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Trans. Autom. Control – volume: 1 start-page: 1 year: 2012 end-page: 11 ident: bib18 article-title: A practical approach for outdoors distributed target localization in wireless sensor networks publication-title: EURASIP J. Adv. Signal Process. 2012 – volume: 59 start-page: 4035 year: 2011 end-page: 4040 ident: bib6 article-title: Linear least squares approach for accurate received signal strength based source localization publication-title: IEEE Trans. Signal Process. – reference: R. Ouyang, A.-S. Wong, C.-T. Lea, V. Zhang, Received signal strength-based wireless localization via semidefinite programming, in: Global Telecommunications Conference, GLOBECOM 2009, IEEE, 2009, pp. 1–6. 〈 – reference: 〉. URL 〈 – reference: 〉. – volume: 51 start-page: 2137 year: 2003 end-page: 2148 ident: bib5 article-title: Relative location estimation in wireless sensor networks publication-title: IEEE Trans. Signal Process. – reference: R. Hassan, B. Cohanim, O. de Weck, G. Venter, A comparison of particle swarm optimization and the genetic algorithm, in: Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences. – reference: L. Xiao, S. Boyd, S. Lall, Distributed Average Consensus with Time-Varying Metropolis Weights, 2006. – volume: 57 start-page: 1190 year: 2009 end-page: 1202 ident: bib12 article-title: Channel aware target localization with quantized data in wireless sensor networks publication-title: IEEE Trans. Signal Process. – volume: 52 start-page: 2508 year: 2006 end-page: 2530 ident: bib38 article-title: Randomized gossip algorithms publication-title: IEEE Trans. Inf. Theory – volume: 9 start-page: 47 year: 2013 end-page: 57 ident: bib35 article-title: Distributed {DOA} estimation using clustering of sensor nodes and diffusion {PSO} algorithm publication-title: Swarm Evolut. Comput. – volume: 19 start-page: 1787 year: 2008 end-page: 1816 ident: bib39 article-title: Average consensus on networks with quantized communication publication-title: Int. J. Non-Linear Robust. Control – reference: 〉 – reference: N. Patwari, A.O. Hero, III, Using proximity and quantized RSS for sensor localization in wireless networks, in: Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, WSNA '03, ACM, New York, NY, USA, 2003, pp. 20–29. 〈 – reference: M. Rabbat, R. Nowak, Decentralized source localization and tracking [wireless sensor networks], in: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'04), vol. 3, 2004, pp. iii–921–4. 〈 – reference: A. Nedic, A. Ozdaglar, Convex Optimization in Signal Processing and Communications, Cambridge University Press, Ch. Cooperative Distributed Multi-Agent Optimization, 2008, pp. 240–386. – reference: T. Panigrahi, G. Panda, B. Mulgrew, B. Majhi, Maximum lilkelihood source localization in wireless sensor network using particle swarm optimization, in: Proceedings International Conference on electronics Systems (ICES), 2011, pp. 111–115. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. 〈 – reference: . – reference: B. Johansson, C. Carretti, M. Johansson, On distributed optimization using peer-to-peer communications in wireless sensor networks, in: Proceedings of the 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON'08, 2008, pp. 497–505. 〈 – volume: 22 start-page: 54 year: 2005 end-page: 69 ident: bib4 article-title: Locating the nodes: cooperative localization in wireless sensor networks publication-title: IEEE Signal Process. Mag. – volume: 49 start-page: 2353 year: 2013 end-page: 2368 ident: bib11 article-title: Channel-aware tracking in multi-hop wireless sensor networks with quantized measurements publication-title: IEEE Trans. Aerosp. Electron. Syst. – reference: P. Cheong, A. Rabbachin, J.P. Montillet, K. Yu, I. Oppermann, Synchronization, toa and position estimation for low-complexity ldr uwb devices, in: Proceedings of 2005 IEEE International Conference on Ultra-Wideband, 2005, pp. 480–484. 〈 – volume: 54 start-page: 4519 year: 2006 end-page: 4528 ident: bib10 article-title: Target location estimation in sensor networks with quantized data publication-title: IEEE Trans. Signal Process. – volume: 61 start-page: 194 year: 2013 end-page: 205 ident: bib36 article-title: Distributed average consensus with quantization refinement publication-title: IEEE Trans. Signal Process. – volume: 60 start-page: 3619 year: 2011 end-page: 3628 ident: bib8 article-title: Real-time estimation of sensor node's position using particle swarm optimization with log-barrier constraint publication-title: IEEE Trans. Instrum. Meas. – reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Evolutionary Computation Proceedings, 1998, IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on, 1998, pp. 69–73. 〈 – volume: 2 start-page: 351 year: 2004 end-page: 367 ident: bib1 article-title: Wireless sensor and actor networks: research challenges publication-title: Ad Hoc Netw. – volume: 60 start-page: 4350 year: 2012 end-page: 4359 ident: bib17 article-title: Distributed, robust acoustic source localization in a wireless sensor network publication-title: IEEE Trans. Signal Process. – ident: 10.1016/j.sigpro.2016.12.003_bib7 doi: 10.1109/GLOCOM.2009.5425268 – ident: 10.1016/j.sigpro.2016.12.003_bib13 doi: 10.1109/GLOCOM.2002.1188058 – ident: 10.1016/j.sigpro.2016.12.003_bib3 doi: 10.1109/ICU.2005.1570035 – volume: 59 start-page: 4035 issue: 8 year: 2011 ident: 10.1016/j.sigpro.2016.12.003_bib6 article-title: Linear least squares approach for accurate received signal strength based source localization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2152400 – volume: 19 start-page: 1787 year: 2008 ident: 10.1016/j.sigpro.2016.12.003_bib39 article-title: Average consensus on networks with quantized communication publication-title: Int. J. Non-Linear Robust. Control doi: 10.1002/rnc.1396 – ident: 10.1016/j.sigpro.2016.12.003_bib20 doi: 10.1109/CDC.2008.4738860 – volume: 61 start-page: 194 issue: 1 year: 2013 ident: 10.1016/j.sigpro.2016.12.003_bib36 article-title: Distributed average consensus with quantization refinement publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2223692 – volume: 7 start-page: 28 issue: 5 year: 2000 ident: 10.1016/j.sigpro.2016.12.003_bib14 article-title: Gps-less low-cost outdoor localization for very small devices publication-title: IEEE Pers. Commun. doi: 10.1109/98.878533 – volume: 1 start-page: 1 year: 2012 ident: 10.1016/j.sigpro.2016.12.003_bib18 article-title: A practical approach for outdoors distributed target localization in wireless sensor networks publication-title: EURASIP J. Adv. Signal Process. 2012 – volume: 57 start-page: 2365 issue: 6 year: 2009 ident: 10.1016/j.sigpro.2016.12.003_bib30 article-title: Distributed LMS for consensus-based in-network adaptive processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016226 – volume: 57 start-page: 1190 issue: 3 year: 2009 ident: 10.1016/j.sigpro.2016.12.003_bib12 article-title: Channel aware target localization with quantized data in wireless sensor networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2009893 – volume: 52 start-page: 2508 issue: 6 year: 2006 ident: 10.1016/j.sigpro.2016.12.003_bib38 article-title: Randomized gossip algorithms publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.874516 – volume: 49 start-page: 2353 issue: 4 year: 2013 ident: 10.1016/j.sigpro.2016.12.003_bib11 article-title: Channel-aware tracking in multi-hop wireless sensor networks with quantized measurements publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.6621821 – volume: 51 start-page: 2137 issue: 8 year: 2003 ident: 10.1016/j.sigpro.2016.12.003_bib5 article-title: Relative location estimation in wireless sensor networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2003.814469 – ident: 10.1016/j.sigpro.2016.12.003_bib19 doi: 10.1109/CDC.2010.5717526 – volume: 24 start-page: 1567 issue: 8 year: 2013 ident: 10.1016/j.sigpro.2016.12.003_bib2 article-title: High-accuracy tdoa-based localization without time synchronization publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2012.248 – ident: 10.1016/j.sigpro.2016.12.003_bib24 doi: 10.1145/1947940.1947969 – volume: 2 start-page: 385 issue: 4 year: 2012 ident: 10.1016/j.sigpro.2016.12.003_bib34 article-title: Distributed bearing estimation technique using diffusion particle swarm optimisation algorithm publication-title: Wirel. Sens. Syst. IET doi: 10.1049/iet-wss.2011.0107 – ident: 10.1016/j.sigpro.2016.12.003_bib32 doi: 10.1109/SAHCN.2008.66 – ident: 10.1016/j.sigpro.2016.12.003_bib21 doi: 10.1109/ACSSC.2010.5757776 – volume: 22 start-page: 54 issue: 4 year: 2005 ident: 10.1016/j.sigpro.2016.12.003_bib22 article-title: Locating the nodes: cooperative localization in wireless sensor networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2005.1458287 – volume: 49 start-page: 1520 issue: 9 year: 2004 ident: 10.1016/j.sigpro.2016.12.003_bib31 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2004.834113 – volume: 2 start-page: 351 issue: 4 year: 2004 ident: 10.1016/j.sigpro.2016.12.003_bib1 article-title: Wireless sensor and actor networks: research challenges publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2004.04.003 – ident: 10.1016/j.sigpro.2016.12.003_bib15 doi: 10.1109/ICASSP.2004.1326696 – ident: 10.1016/j.sigpro.2016.12.003_bib37 – ident: 10.1016/j.sigpro.2016.12.003_bib27 doi: 10.2514/6.2005-1897 – volume: 60 start-page: 3619 issue: 11 year: 2011 ident: 10.1016/j.sigpro.2016.12.003_bib8 article-title: Real-time estimation of sensor node's position using particle swarm optimization with log-barrier constraint publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2135030 – volume: 22 start-page: 54 issue: 4 year: 2005 ident: 10.1016/j.sigpro.2016.12.003_bib4 article-title: Locating the nodes: cooperative localization in wireless sensor networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2005.1458287 – volume: 54 start-page: 3614 issue: 9 year: 2006 ident: 10.1016/j.sigpro.2016.12.003_bib16 article-title: Energy-based sensor network source localization via projection onto convex sets publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.879312 – volume: 60 start-page: 4350 issue: 8 year: 2012 ident: 10.1016/j.sigpro.2016.12.003_bib17 article-title: Distributed, robust acoustic source localization in a wireless sensor network publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2199314 – ident: 10.1016/j.sigpro.2016.12.003_bib9 doi: 10.1145/941350.941354 – volume: 54 start-page: 4519 issue: 12 year: 2006 ident: 10.1016/j.sigpro.2016.12.003_bib10 article-title: Target location estimation in sensor networks with quantized data publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.882082 – volume: 44 start-page: 263 issue: 3 year: 2008 ident: 10.1016/j.sigpro.2016.12.003_bib23 article-title: A survey on wireless position estimation publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-007-9375-z – ident: 10.1016/j.sigpro.2016.12.003_bib25 doi: 10.1007/978-94-015-7744-1 – ident: 10.1016/j.sigpro.2016.12.003_bib28 doi: 10.1109/ICEC.1998.699146 – volume: 9 start-page: 47 year: 2013 ident: 10.1016/j.sigpro.2016.12.003_bib35 article-title: Distributed {DOA} estimation using clustering of sensor nodes and diffusion {PSO} algorithm publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2012.11.001 – ident: 10.1016/j.sigpro.2016.12.003_bib26 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.sigpro.2016.12.003_bib29 doi: 10.1109/CEC.1999.785511 – ident: 10.1016/j.sigpro.2016.12.003_bib33 doi: 10.1017/CBO9780511804458.011 |
| SSID | ssj0001360 |
| Score | 2.2812042 |
| Snippet | In this paper, we propose a distributed gradient algorithm for received signal strength based target localization using only quantized data. The Maximum... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 214 |
| SubjectTerms | Quantization Received signal strength Target localization |
| Title | Distributed target localization using quantized received signal strength |
| URI | https://dx.doi.org/10.1016/j.sigpro.2016.12.003 |
| Volume | 134 |
| WOSCitedRecordID | wos000393243800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLeqwmE7TIxtGh-bfOBWGSVxEjtHBkwMaQgJJlU7LHJsZxRVobAGwf56nr_SSJ22gcQlbdO4dd_75X31fSC0k-UVuMa8Jgml4KBkKiZVHSmimEhzoXgaK2mHTbCTEz4eF6eDwY9QC3M7ZU3D7-6K2bOyGs4Bs03p7CPY3X0onIDnwHQ4Atvh-F-MPzCtcM0UKzAlXZ73yCosX3A5am104LoFkk5-a1O8IjWIPDUyqRy-eqT5Ob_om61n7q2ZqyoI2s7k8dhkgO_6vl2gbP_CC5BTPSHH7eLir-0UvHv7X9InE4Z09fwh5gB6rMvwc4GwpWIYF5vMMxLnbuLbrnbylDMw4DPXg7oTuD58GURm2tO-ias-XhLsLsZwuQukgN9qUvJyG8aN6EKRdemFZ2YrZidgbEY0NSGdlYRlBR-ilb0vh-PjTlfH1NaRd1sPxZU2A3D5u_5svPQMkvM19Mp7EnjPIeA1GuhmHb3s9Zd8g456WMAOC7iPBWyxgDss4IAF7LCAAxbeom-fD8_3j4gfnUEkZcmcMM0SKesIHjJRpcYPVikXquZMxolgVKvceMJVnYhcV1JlOtZUFlSoSMN9Td-hYXPV6PcIc0ULLgotmFYpmI-iADlf6Vyl8JKrYgPRQJNS-r7yZrzJtAwJhJelo2RpKFnGielHu4FIt2rm-qr843oWyF1629DZfCUg5K8rN5-8cgu9WIB_Gw3nN63-gFbl7Xzy6-ajh9IDkoiN_g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+target+localization+using+quantized+received+signal+strength&rft.jtitle=Signal+processing&rft.au=Li%2C+Zeyuan&rft.au=Chung%2C+Pei-Jung&rft.au=Mulgrew%2C+Bernard&rft.date=2017-05-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=134&rft.spage=214&rft.epage=223&rft_id=info:doi/10.1016%2Fj.sigpro.2016.12.003&rft.externalDocID=S0165168416303450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |