Stomach Deformities Recognition Using Rank-Based Deep Features Selection

Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient’s deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complet...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical systems Ročník 43; číslo 12; s. 329
Hlavní autoři: Khan, Muhammad Attique, Sharif, Muhammad, Akram, Tallha, Yasmin, Mussarat, Nayak, Ramesh Sunder
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2019
Springer Nature B.V
Témata:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient’s deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust features selection. The ulcer abnormalities from WCE videos are initially extracted through a proposed color features based low level and high-level saliency (CFbLHS) estimation method. Later, DenseNet CNN model is utilized and through transfer learning (TL) features are computed prior to feature optimization using Kapur’s entropy. A parallel fusion methodology is opted for the selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in 21.15 s.
AbstractList Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient’s deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust features selection. The ulcer abnormalities from WCE videos are initially extracted through a proposed color features based low level and high-level saliency (CFbLHS) estimation method. Later, DenseNet CNN model is utilized and through transfer learning (TL) features are computed prior to feature optimization using Kapur’s entropy. A parallel fusion methodology is opted for the selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in 21.15 s.
Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient's deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust features selection. The ulcer abnormalities from WCE videos are initially extracted through a proposed color features based low level and high-level saliency (CFbLHS) estimation method. Later, DenseNet CNN model is utilized and through transfer learning (TL) features are computed prior to feature optimization using Kapur's entropy. A parallel fusion methodology is opted for the selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in 21.15 s.
Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient's deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust features selection. The ulcer abnormalities from WCE videos are initially extracted through a proposed color features based low level and high-level saliency (CFbLHS) estimation method. Later, DenseNet CNN model is utilized and through transfer learning (TL) features are computed prior to feature optimization using Kapur's entropy. A parallel fusion methodology is opted for the selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in 21.15 s.Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient's deformity during the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust features selection. The ulcer abnormalities from WCE videos are initially extracted through a proposed color features based low level and high-level saliency (CFbLHS) estimation method. Later, DenseNet CNN model is utilized and through transfer learning (TL) features are computed prior to feature optimization using Kapur's entropy. A parallel fusion methodology is opted for the selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in 21.15 s.
ArticleNumber 329
Author Akram, Tallha
Yasmin, Mussarat
Khan, Muhammad Attique
Nayak, Ramesh Sunder
Sharif, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad Attique
  surname: Khan
  fullname: Khan, Muhammad Attique
  organization: Department of CS&E, HITEC University
– sequence: 2
  givenname: Muhammad
  surname: Sharif
  fullname: Sharif, Muhammad
  email: muhammadsharifmalik@yahoo.com
  organization: Department of E&CE, COMSATS University Islamabad
– sequence: 3
  givenname: Tallha
  surname: Akram
  fullname: Akram, Tallha
  organization: Information Science, Canara Engineering College
– sequence: 4
  givenname: Mussarat
  surname: Yasmin
  fullname: Yasmin, Mussarat
  organization: Department of E&CE, COMSATS University Islamabad
– sequence: 5
  givenname: Ramesh Sunder
  surname: Nayak
  fullname: Nayak, Ramesh Sunder
  organization: Department of CS, COMSATS University Islamabad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31676931$$D View this record in MEDLINE/PubMed
BookMark eNp90c1O3DAUBWCrGlQGygN0gyJ1043BN8Z2sqT8S0hITEdiZ9mem2mGxB7sZNG3x8NAKyHByl58x766Z49MfPBIyHdgR8CYOk7AapCUQU3hRErKv5ApCMWprOqHCZkyOKmoEHW1S_ZSWjHGainVV7LLQSpZc5iS69kQeuP-FOfYhNi3Q4upuEcXlj7fgy_mqfXL4t74R_rLJFxkiOviEs0wxkxn2KHbwG9kpzFdwoPXc5_MLy9-n13T27urm7PTW-q4KgeqXNMAs2Ar1UgmrFyAM0ZUZelYgxWU1jmUC2s5B1GhE6quGiUtkyUaIS3fJz-3765jeBoxDbpvk8OuMx7DmHTJAaQApiDTH-_oKozR5-leFDAheJ3V4asabY8LvY5tb-Jf_bajDGALXAwpRWz-EWB604Pe9qBzD3rTg-Y5o95lXDuYzZ6GaNru02S5Tab8i19i_D_0x6FntC-aow
CitedBy_id crossref_primary_10_1049_ipr2_13002
crossref_primary_10_1016_j_patrec_2019_11_034
crossref_primary_10_32604_cmc_2023_031890
crossref_primary_10_3390_s23167170
crossref_primary_10_1109_ACCESS_2023_3290997
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1002_jemt_23578
crossref_primary_10_1038_s41598_021_83788_8
crossref_primary_10_1002_jemt_23447
crossref_primary_10_1016_j_imu_2024_101600
crossref_primary_10_1007_s00521_022_07445_5
crossref_primary_10_20517_2574_1225_2023_102
crossref_primary_10_1016_j_asoc_2023_110239
crossref_primary_10_1109_ACCESS_2020_3010448
crossref_primary_10_1109_ACCESS_2020_3034217
crossref_primary_10_1038_s41598_025_98400_6
crossref_primary_10_1080_23311916_2022_2142072
crossref_primary_10_1038_s41598_025_95002_0
crossref_primary_10_32604_cmc_2021_013191
crossref_primary_10_3390_s22072801
crossref_primary_10_32604_cmc_2021_013217
crossref_primary_10_1007_s11063_021_10481_2
crossref_primary_10_32604_cmc_2021_015916
crossref_primary_10_3390_app13159031
crossref_primary_10_1002_ima_22581
crossref_primary_10_1007_s40747_023_01271_5
crossref_primary_10_3390_diagnostics12112718
crossref_primary_10_1016_j_patrec_2019_12_006
crossref_primary_10_1111_den_13888
crossref_primary_10_1007_s11042_021_10714_5
crossref_primary_10_1063_5_0054161
crossref_primary_10_1016_j_patrec_2019_12_024
crossref_primary_10_32604_cmc_2021_014983
crossref_primary_10_3389_fsurg_2022_894775
crossref_primary_10_3892_ol_2022_13216
crossref_primary_10_1016_j_compbiomed_2023_106726
crossref_primary_10_1002_ima_22965
crossref_primary_10_1371_journal_pone_0302880
crossref_primary_10_32604_cmc_2023_045491
crossref_primary_10_1016_j_eswa_2020_114161
crossref_primary_10_32604_cmc_2021_017101
crossref_primary_10_1007_s00521_022_07895_x
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1007_s40747_021_00328_7
crossref_primary_10_1016_j_asoc_2019_105986
crossref_primary_10_32604_cmc_2023_036141
Cites_doi 10.1038/35013140
10.1166/jmihi.2017.2267
10.3322/caac.21387
10.1586/17474124.2014.952281
10.1007/s10916-019-1413-3
10.1142/S0219519419500556
10.1109/TASE.2016.2610579
10.1049/iet-ipr.2017.0368
10.1166/jmihi.2017.2265
10.1007/s11042-018-7031-0
10.1142/S0219519418500380
10.1007/s10916-014-0025-1
10.1109/TMI.2015.2418534
10.1002/jemt.23009
10.1007/s00521-017-2869-z
10.1109/JBHI.2013.2257819
10.1002/jemt.23238
10.1109/MCE.2019.2923926
10.1088/1361-6560/aad51c
10.1002/jemt.23301
10.1186/s12885-018-4465-8
10.1016/j.compag.2018.04.023
10.1016/j.bspc.2017.09.028
10.1002/jemt.23220
10.1016/j.future.2018.04.065
10.1002/jemt.23275
10.1166/jmihi.2017.2280
10.1007/s10916-019-1428-9
10.1007/s00521-016-2818-2
10.3390/app7101097
10.1109/CVPR.2016.90
10.1007/s11042-019-07875-9
10.1049/iet-its.2018.5069
10.1109/ICCV.2009.5459175
10.1145/3095713.3095731
10.1109/CVPR.2017.243
10.1080/0952813X.2019.1572657
10.1109/ATSIP.2017.8075590
10.1007/s12652-018-1051-5
10.1007/s10044-018-0688-1
10.1007/s00500-018-3424-2
10.1109/CVPR.2015.7298594
10.1007/s00521-019-04369-5
10.1109/TENCON.2017.8228058
10.1016/j.suscom.2019.08.002
10.1109/EMBC.2018.8513012
10.1007/s12652-018-1075-x
10.1109/ICCISci.2019.8716400
10.1007/978-981-13-1927-3_3
10.1007/s10586-017-1584-y
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1466-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database - QC
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
ExternalDocumentID 31676931
10_1007_s10916_019_1466_3
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-7cff10b1b87f605b6d1caa5822c0fe812bcce6dbb33158ec5798f76b062ea56b3
IEDL.DBID K7-
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493655300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Thu Sep 04 20:05:00 EDT 2025
Wed Nov 05 01:13:50 EST 2025
Wed Feb 19 02:30:43 EST 2025
Sat Nov 29 05:35:01 EST 2025
Tue Nov 18 22:09:26 EST 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords WCE
Deep features selection
Saliency estimation
Features fusion
Colorectal cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-7cff10b1b87f605b6d1caa5822c0fe812bcce6dbb33158ec5798f76b062ea56b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31676931
PQID 2311105539
PQPubID 54050
ParticipantIDs proquest_miscellaneous_2311651071
proquest_journals_2311105539
pubmed_primary_31676931
crossref_primary_10_1007_s10916_019_1466_3
crossref_citationtrail_10_1007_s10916_019_1466_3
springer_journals_10_1007_s10916_019_1466_3
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Fan, Xu, Fan, Wei, Li (CR43) 2018; 63
Liaqat, Khan, Shah, Sharif, Yasmin, Fernandes (CR5) 2018; 18
CR39
CR37
CR36
CR35
CR33
CR32
Fernandes, Gurupur, Lin, Martis (CR22) 2017; 7
Rajinikanth, Madhavaraja, Satapathy, Fernandes (CR27) 2017; 7
Chatterjee, Dey, Munshi (CR12) 2018; 40
Sharif, Khan, Iqbal, Azam, Lali, Javed (CR8) 2018; 150
Yuan, Wang, Li, Meng (CR38) 2015; 34
CR9
CR49
CR48
CR46
CR45
CR44
CR42
CR40
Yuan, Li, Meng (CR61) 2017; 14
Amin, Sharif, Yasmin, Fernandes (CR30) 2018; 87
Simonyan, Zisserman (CR18) 2014; arXiv
Raja, Rajinikanth, Fernandes, Satapathy (CR52) 2017; 7
Koulaouzidis, Iakovidis, Karargyris, Plevris (CR47) 2015; 9
Khan, Lali, Rehman, Ishaq, Sharif, Saba (CR31) 2019; 82
Adeel, Khan, Sharif, Azam, Shah, Umer, Wan (CR58) 2019; 24
CR19
Siegel, Miller, Jemal (CR1) 2017; 67
CR17
Yin, Yu, Sohn, Liu, Chandraker (CR50) 2018; arXiv
Iddan, Meron, Glukhovsky, Swain (CR3) 2000; 405
Mergener (CR4) 2008; 4
CR13
CR57
Acharya, Fernandes, WeiKoh, Ciaccio, Fabell, Tanik (CR34) 2019; 43
CR10
CR54
CR53
Khan, Akram, Sharif, Saba, Javed, Lali (CR25) 2019; 82
Fu, Zhang, Mandal, Meng (CR2) 2014; 18
Afza, Khan, Sharif, Rehman (CR26) 2019; 82
Lavanya, Rani (CR55) 2011; 26
Faris, Hassonah, Ala’M, Mirjalili, Aljarah (CR14) 2018; 30
Khan, Nazir, Khan, Saba, Javed, Rehman (CR23) 2019; 82
Fernandes, Rajinikanth, Kadry (CR21) 2019; 8
Saba, Khan, Rehman, Marie-Sainte (CR24) 2019; 43
Rashid, Khan, Sharif, Raza, Sarfraz, Afza (CR51) 2019; 78
CR29
Khan, Sharif, Javed, Akram, Yasmin, Saba (CR56) 2017; 12
CR20
Nasir, Attique Khan, Sharif, Lali, Saba, Iqbal (CR6) 2018; 81
Suman, Hussin, Malik, Ho, Hilmi, Leow (CR59) 2017; 7
Kaur, Saini, Gupta (CR15) 2018; 29
Naz, Muhammad, Yasmin, Sharif, Shah, Fernandes (CR28) 2019; 19
CR60
Khan, Akram, Sharif, Shahzad, Aurangzeb, Alhussein (CR7) 2018; 18
Sainju, Bui, Wahid (CR41) 2014; 38
Nur, Tjandrasa (CR11) 2018; 1108
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (CR16) 2016; arXiv
N Raja (1466_CR52) 2017; 7
A Liaqat (1466_CR5) 2018; 18
UR Acharya (1466_CR34) 2019; 43
X Yin (1466_CR50) 2018; arXiv
1466_CR13
1466_CR57
1466_CR10
1466_CR54
RL Siegel (1466_CR1) 2017; 67
K Simonyan (1466_CR18) 2014; arXiv
1466_CR53
M Nasir (1466_CR6) 2018; 81
FN Iandola (1466_CR16) 2016; arXiv
S Sainju (1466_CR41) 2014; 38
D Lavanya (1466_CR55) 2011; 26
Y Yuan (1466_CR61) 2017; 14
1466_CR19
1466_CR17
S Suman (1466_CR59) 2017; 7
1466_CR40
1466_CR9
1466_CR48
1466_CR45
1466_CR46
1466_CR44
1466_CR42
A Koulaouzidis (1466_CR47) 2015; 9
1466_CR49
M Sharif (1466_CR8) 2018; 150
T Saba (1466_CR24) 2019; 43
SL Fernandes (1466_CR21) 2019; 8
F Afza (1466_CR26) 2019; 82
SL Fernandes (1466_CR22) 2017; 7
1466_CR36
1466_CR37
Y Fu (1466_CR2) 2014; 18
1466_CR35
1466_CR32
1466_CR33
SA Khan (1466_CR23) 2019; 82
S Fan (1466_CR43) 2018; 63
Alishba Adeel (1466_CR58) 2019; 24
1466_CR39
MA Khan (1466_CR56) 2017; 12
V Rajinikanth (1466_CR27) 2017; 7
M Rashid (1466_CR51) 2019; 78
1466_CR60
Y Yuan (1466_CR38) 2015; 34
K Mergener (1466_CR4) 2008; 4
MA Khan (1466_CR7) 2018; 18
N Nur (1466_CR11) 2018; 1108
S Chatterjee (1466_CR12) 2018; 40
1466_CR20
MA Khan (1466_CR31) 2019; 82
1466_CR29
J Amin (1466_CR30) 2018; 87
H Faris (1466_CR14) 2018; 30
T Kaur (1466_CR15) 2018; 29
G Iddan (1466_CR3) 2000; 405
MA Khan (1466_CR25) 2019; 82
I Naz (1466_CR28) 2019; 19
References_xml – ident: CR45
– volume: 24
  start-page: 100349
  year: 2019
  ident: CR58
  article-title: Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 405
  start-page: 417
  year: 2000
  ident: CR3
  article-title: Wireless capsule endoscopy
  publication-title: Nature
  doi: 10.1038/35013140
– volume: 7
  start-page: 1825
  year: 2017
  end-page: 1829
  ident: CR52
  article-title: Segmentation of breast thermal images using Kapur's entropy and hidden Markov random field
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2017.2267
– ident: CR49
– ident: CR39
– volume: 67
  start-page: 7
  year: 2017
  end-page: 30
  ident: CR1
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21387
– volume: 9
  start-page: 217
  year: 2015
  end-page: 235
  ident: CR47
  article-title: Optimizing lesion detection in small-bowel capsule endoscopy: From present problems to future solutions
  publication-title: Expert review of gastroenterology & hepatology
  doi: 10.1586/17474124.2014.952281
– volume: 43
  start-page: 289
  year: 2019
  ident: CR24
  article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1413-3
– volume: 4
  start-page: 107
  year: 2008
  ident: CR4
  article-title: Update on the use of capsule endoscopy
  publication-title: Gastroenterol. Hepatol.
– volume: 1108
  start-page: 012110
  year: 2018
  ident: CR11
  article-title: Exudate Segmentation in Retinal Images of Diabetic Retinopathy Using Saliency Method Based on Region
  publication-title: Journal of Physics: Conference Series
– volume: 19
  year: 2019
  ident: CR28
  article-title: Robust discrimination of leukocytes protuberant types for early diagnosis of leukemia
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519419500556
– volume: 14
  start-page: 149
  year: 2017
  end-page: 159
  ident: CR61
  article-title: WCE abnormality detection based on saliency and adaptive locality-constrained linear coding
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2610579
– ident: CR35
– ident: CR29
– ident: CR54
– volume: arXiv
  start-page: 1409.1556
  year: 2014
  ident: CR18
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint
– ident: CR42
– ident: CR46
– ident: CR19
– volume: 12
  start-page: 200
  year: 2017
  end-page: 209
  ident: CR56
  article-title: License number plate recognition system using entropy-based features selection approach with SVM
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2017.0368
– volume: 7
  start-page: 1837
  year: 2017
  end-page: 1840
  ident: CR27
  article-title: Otsu's multi-thresholding and active contour snake model to segment dermoscopy images
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2017.2265
– volume: 78
  start-page: 15751
  year: 2019
  end-page: 15777
  ident: CR51
  article-title: Object detection and classification: A joint selection and fusion strategy of deep convolutional neural network and SIFT point features
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-7031-0
– ident: CR9
– ident: CR57
– volume: 18
  start-page: 1850038
  year: 2018
  ident: CR5
  article-title: Automated ulcer and bleeding classification from Wce images using multiple features fusion and selection
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519418500380
– ident: CR32
– volume: 38
  start-page: 25
  year: 2014
  ident: CR41
  article-title: Automated bleeding detection in capsule endoscopy videos using statistical features and region growing
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0025-1
– ident: CR60
– ident: CR36
– volume: 34
  start-page: 2046
  year: 2015
  end-page: 2057
  ident: CR38
  article-title: Saliency based ulcer detection for wireless capsule endoscopy diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2418534
– volume: 81
  start-page: 528
  year: 2018
  end-page: 543
  ident: CR6
  article-title: An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23009
– volume: 29
  start-page: 193
  year: 2018
  end-page: 206
  ident: CR15
  article-title: A novel feature selection method for brain tumor MR image classification based on the fisher criterion and parameter-free bat optimization
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-017-2869-z
– volume: 18
  start-page: 636
  year: 2014
  end-page: 642
  ident: CR2
  article-title: Computer-aided bleeding detection in WCE video
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2013.2257819
– volume: 82
  start-page: 909
  year: 2019
  end-page: 922
  ident: CR31
  article-title: Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23238
– ident: CR37
– ident: CR53
– volume: 8
  start-page: 31
  year: 2019
  end-page: 36
  ident: CR21
  article-title: A hybrid framework to evaluate breast abnormality using infrared thermal images
  publication-title: IEEE Consumer Electronics Magazine
  doi: 10.1109/MCE.2019.2923926
– volume: arXiv
  start-page: 1803.09014
  year: 2018
  ident: CR50
  article-title: Feature transfer learning for deep face recognition with long-tail data
  publication-title: arXiv preprint
– ident: CR10
– ident: CR33
– volume: 26
  start-page: 1
  year: 2011
  end-page: 4
  ident: CR55
  article-title: Performance evaluation of decision tree classifiers on medical datasets
  publication-title: Int. J. Comput. Appl.
– volume: 63
  year: 2018
  ident: CR43
  article-title: Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aad51c
– ident: CR40
– volume: 82
  start-page: 1471
  year: 2019
  end-page: 1488
  ident: CR26
  article-title: Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23301
– volume: 18
  start-page: 638
  year: 2018
  ident: CR7
  article-title: An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification
  publication-title: BMC Cancer
  doi: 10.1186/s12885-018-4465-8
– ident: CR44
– ident: CR48
– volume: 150
  start-page: 220
  year: 2018
  end-page: 234
  ident: CR8
  article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.023
– ident: CR17
– volume: 40
  start-page: 252
  year: 2018
  end-page: 262
  ident: CR12
  article-title: Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions
  publication-title: Biomedical signal processing and control
  doi: 10.1016/j.bspc.2017.09.028
– ident: CR13
– volume: 82
  start-page: 741
  year: 2019
  end-page: 763
  ident: CR25
  article-title: Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23220
– volume: 87
  start-page: 290
  year: 2018
  end-page: 297
  ident: CR30
  article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.065
– volume: 82
  start-page: 1256
  year: 2019
  end-page: 1266
  ident: CR23
  article-title: Lungs nodule detection framework from computed tomography images using support vector machine
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23275
– volume: 7
  start-page: 1841
  year: 2017
  end-page: 1850
  ident: CR22
  article-title: A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2017.2280
– volume: arXiv
  start-page: 1602.07360
  year: 2016
  ident: CR16
  article-title: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size
  publication-title: arXiv preprint
– volume: 43
  start-page: 302
  year: 2019
  ident: CR34
  article-title: Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1428-9
– volume: 30
  start-page: 2355
  year: 2018
  end-page: 2369
  ident: CR14
  article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-016-2818-2
– ident: CR20
– volume: 7
  start-page: 1097
  year: 2017
  ident: CR59
  article-title: Feature selection and classification of ulcerated lesions using statistical analysis for WCE images
  publication-title: Appl. Sci.
  doi: 10.3390/app7101097
– volume: 78
  start-page: 15751
  year: 2019
  ident: 1466_CR51
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-7031-0
– volume: 26
  start-page: 1
  year: 2011
  ident: 1466_CR55
  publication-title: Int. J. Comput. Appl.
– volume: 9
  start-page: 217
  year: 2015
  ident: 1466_CR47
  publication-title: Expert review of gastroenterology & hepatology
  doi: 10.1586/17474124.2014.952281
– ident: 1466_CR46
– volume: 43
  start-page: 289
  year: 2019
  ident: 1466_CR24
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1413-3
– ident: 1466_CR42
– ident: 1466_CR17
  doi: 10.1109/CVPR.2016.90
– ident: 1466_CR32
  doi: 10.1007/s11042-019-07875-9
– ident: 1466_CR13
– volume: 29
  start-page: 193
  year: 2018
  ident: 1466_CR15
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-017-2869-z
– volume: 82
  start-page: 1471
  year: 2019
  ident: 1466_CR26
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23301
– volume: 7
  start-page: 1097
  year: 2017
  ident: 1466_CR59
  publication-title: Appl. Sci.
  doi: 10.3390/app7101097
– ident: 1466_CR57
  doi: 10.1049/iet-its.2018.5069
– volume: 18
  start-page: 636
  year: 2014
  ident: 1466_CR2
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2013.2257819
– volume: 7
  start-page: 1825
  year: 2017
  ident: 1466_CR52
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2017.2267
– ident: 1466_CR48
  doi: 10.1109/ICCV.2009.5459175
– volume: 12
  start-page: 200
  year: 2017
  ident: 1466_CR56
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2017.0368
– volume: 7
  start-page: 1837
  year: 2017
  ident: 1466_CR27
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2017.2265
– volume: 82
  start-page: 909
  year: 2019
  ident: 1466_CR31
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23238
– ident: 1466_CR40
  doi: 10.1145/3095713.3095731
– ident: 1466_CR49
  doi: 10.1109/CVPR.2017.243
– volume: 63
  year: 2018
  ident: 1466_CR43
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aad51c
– ident: 1466_CR20
– ident: 1466_CR33
  doi: 10.1080/0952813X.2019.1572657
– volume: 82
  start-page: 741
  year: 2019
  ident: 1466_CR25
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23220
– volume: 30
  start-page: 2355
  year: 2018
  ident: 1466_CR14
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-016-2818-2
– volume: 1108
  start-page: 012110
  year: 2018
  ident: 1466_CR11
  publication-title: Journal of Physics: Conference Series
– ident: 1466_CR39
  doi: 10.1109/ATSIP.2017.8075590
– ident: 1466_CR10
  doi: 10.1007/s12652-018-1051-5
– ident: 1466_CR54
  doi: 10.1007/s10044-018-0688-1
– volume: 19
  year: 2019
  ident: 1466_CR28
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519419500556
– volume: 18
  start-page: 638
  year: 2018
  ident: 1466_CR7
  publication-title: BMC Cancer
  doi: 10.1186/s12885-018-4465-8
– ident: 1466_CR53
  doi: 10.1007/s00500-018-3424-2
– volume: 8
  start-page: 31
  year: 2019
  ident: 1466_CR21
  publication-title: IEEE Consumer Electronics Magazine
  doi: 10.1109/MCE.2019.2923926
– volume: 82
  start-page: 1256
  year: 2019
  ident: 1466_CR23
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23275
– volume: 14
  start-page: 149
  year: 2017
  ident: 1466_CR61
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2610579
– volume: 405
  start-page: 417
  year: 2000
  ident: 1466_CR3
  publication-title: Nature
  doi: 10.1038/35013140
– ident: 1466_CR19
  doi: 10.1109/CVPR.2015.7298594
– ident: 1466_CR44
– ident: 1466_CR29
  doi: 10.1007/s00521-019-04369-5
– volume: 150
  start-page: 220
  year: 2018
  ident: 1466_CR8
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.04.023
– volume: 38
  start-page: 25
  year: 2014
  ident: 1466_CR41
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0025-1
– volume: arXiv
  start-page: 1803.09014
  year: 2018
  ident: 1466_CR50
  publication-title: arXiv preprint
– volume: 7
  start-page: 1841
  year: 2017
  ident: 1466_CR22
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2017.2280
– ident: 1466_CR60
  doi: 10.1109/TENCON.2017.8228058
– volume: 81
  start-page: 528
  year: 2018
  ident: 1466_CR6
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23009
– volume: 4
  start-page: 107
  year: 2008
  ident: 1466_CR4
  publication-title: Gastroenterol. Hepatol.
– volume: arXiv
  start-page: 1602.07360
  year: 2016
  ident: 1466_CR16
  publication-title: arXiv preprint
– volume: 18
  start-page: 1850038
  year: 2018
  ident: 1466_CR5
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519418500380
– volume: 24
  start-page: 100349
  year: 2019
  ident: 1466_CR58
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2019.08.002
– volume: 87
  start-page: 290
  year: 2018
  ident: 1466_CR30
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.065
– volume: 43
  start-page: 302
  year: 2019
  ident: 1466_CR34
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1428-9
– volume: 67
  start-page: 7
  year: 2017
  ident: 1466_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21387
– volume: arXiv
  start-page: 1409.1556
  year: 2014
  ident: 1466_CR18
  publication-title: arXiv preprint
– ident: 1466_CR45
  doi: 10.1109/EMBC.2018.8513012
– ident: 1466_CR9
  doi: 10.1007/s12652-018-1075-x
– ident: 1466_CR36
  doi: 10.1109/ICCISci.2019.8716400
– volume: 40
  start-page: 252
  year: 2018
  ident: 1466_CR12
  publication-title: Biomedical signal processing and control
  doi: 10.1016/j.bspc.2017.09.028
– volume: 34
  start-page: 2046
  year: 2015
  ident: 1466_CR38
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2418534
– ident: 1466_CR35
  doi: 10.1007/978-981-13-1927-3_3
– ident: 1466_CR37
  doi: 10.1007/s10586-017-1584-y
SSID ssj0009667
Score 2.4535692
Snippet Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient’s deformity during the review time. Among set of...
Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient's deformity during the review time. Among set of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Abnormalities
Artificial neural networks
Capsule Endoscopy - methods
Classification
Colorectal cancer
Computed tomography
Computer simulation
Endoscopy
Entropy
Feature extraction
Feature recognition
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Hemorrhage - diagnosis
Hemorrhage - diagnostic imaging
Humans
Image & Signal Processing
Image classification
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Magnetic resonance imaging
Medicine
Medicine & Public Health
Neural networks
Neural Networks, Computer
Optimization
Physicians
Recent Advances in Deep Learning for Biomedical Signal Processing
Statistics for Life Sciences
Stomach Diseases - diagnosis
Stomach Diseases - diagnostic imaging
Stomach Ulcer - diagnostic imaging
Transfer learning
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50FRHE-6gXEXxSAu2mTZtHT_ZBF9lV8a00R1HUdtnD3--kx67iAfraTNOQyWS-6VwAh9rlKkmVptowTn0eaSo0MoSxpvSEVjoq6hbcX4XtdvTwIG6qPO5BHe1euySLm_pDshtCGTR9BUXp5pRNwwxqu8hKY6d7P6m0y3mZI-1H1FYfr12Z303xWRl9QZhfvKOF0rlc-tdyl2GxwpjkpDwUKzBlslWYu6686KuwUP6rI2UK0hq0usP8NVGP5NxYCFvUWCWdOrIoz0gRV0A6SfZMT1HraSQ0PWLR4witddIteukg4TrcXV7cnrVo1WGBKhY2hzRUaeq50pNRmKJdI7n2VJIECBqUmxrU_VIpw7WUjHlBZFQQiigNuXR50yQBl2wDGlmemS0giEN8fI7zIUDxAiV9JVyf-doClFQkDrj1VseqKj9uu2C8xJPCyXbHYtwxa4_wmDlwNH6lV9be-I14t-ZfXInhIEbw6tkOoEw4cDAeRgGyXpEkM_mopOF4M4WeA5sl38dfs2UCuGA4clwzeTL5j0vZ_hP1Dsw3i1NiQ2R2oTHsj8wezKq34dOgv1-c7XdGw_Bh
  priority: 102
  providerName: Springer Nature
Title Stomach Deformities Recognition Using Rank-Based Deep Features Selection
URI https://link.springer.com/article/10.1007/s10916-019-1466-3
https://www.ncbi.nlm.nih.gov/pubmed/31676931
https://www.proquest.com/docview/2311105539
https://www.proquest.com/docview/2311651071
Volume 43
WOSCitedRecordID wos000493655300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDaFJaMCAURhVkHgCWYvjxE6e0AabJsGqKh1VxUsUf0SgQdKtLX8_d07SCk3shZd7iC-OlTuff-ez7wDe2lCasjKWWScki2VqWWZRIEJEmmfW2NTnLZh-UaNROptl427DbdEdq-xtojfUtjG0R36EOIRTMUeRfZhfM6oaRdHVroTGFuzwKOKk558V2yTdlbK9Lh2njBKR91HN9uocAiN0pDOGtkIy8fe6dAts3gqU-vXn7NH_jvwx7HXIMzhuVeUJ3HP1Pjy46GLr-_Cw3cEL2otJT-F8smx-leZ78MkRsPWZV4O8P2_U1IE_bRDkZX3FTnAttMjo5gFhyhX68MHEV9hBxmfw9ez08uM56-ouMCNUtGTKVBUPNdepqtDb0dJyU5YJQgkTVg4RgTbGSau1EDxJnUlUllZK6lBGrkykFs9hu25q9wICRCcxPsf-ELbwxOjYZGEsYkuwpcrKAYT9Xy9Ml5ScamP8LDbplElQBQqKvBRZiAG8W78ybzNy3MV82Muk6CbnotgIZABv1s04rShWUtauWbU8Eu2V4gM4aFVg_TVKHiAzgS3ve53YdP7Poby8eyivYDfy2kgnZQ5he3mzcq_hvvm9_LG4GcKWyqdEZ8rTdAg7J6ejcT70Go_0IrwkGo2JKqLj5BvSfDL9A4oJA-o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigS4lEKXVrASHABWU3ixI4PVQWUaqtuV6gPtLc0fkRUbZPtPkD8KX5jx3GyK1TRWw9c44nz8OeZz57xDMA7E3CdF9pQYxmnMU8NlQYHhLFIhdJok9Z5C773RL-fDgby2wL8ac_CuLDKVifWitpU2u2RbyAPCV0xRya3hpfUVY1y3tW2hIaHxZ79_QuXbOPN3W0c3_dRtPP16EuXNlUFqGYimlChiyIMVKhSUSCXV9yEOs8TNJQ6KCzaO6W15UYpxsIktToRMi0EVwGPbJ5wxbDfO3AX9bhwIWRiIOZJfjn3x7PjlLrE560X1R_VQyKGC3dJUTdxyv62g9fI7TXHbG3vdh7_b3_qCTxqmDX55KfCU1iw5TLc329iB5bhod-hJP7g1TPoHk6qi1z_INvWEfc6syw5aOOpqpLU0RTkIC_P6Ge09QYF7ZA4zjwdoehhXUEIBVfg-Fa-6zksllVpV4Eg-4rxOvaHtCxMtIq1DGIWG0fLCpl3IGhHOdNN0nVX--M8m6eLdsDIEBhuFcYz1oEPs1uGPuPITcLrLQayRvmMszkAOvB21oxqw_mC8tJWUy_DUR-LsAMvPORmT3PJEbhk2PKxxeC883--ysubX-UNLHWP9ntZb7e_twYPonomuKigdVicjKb2FdzTPyen49Hrek4ROLltaF4B_MxZjw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4tW4SQKlqgj6VQXKlcqCySOHHiQ1W1bFcg6GrFo0K9pPEjooIm23206l_rr-s4TnZVoXLjwDWeOA9_Hn_jGc8AvNYeV1muNNWGcRryRFOhcUAYC6QvtNJJlbfg83Hc7ycXF2LQgj_NWRgbVtnoxEpR61LZPfI95CG-LebIxF5eh0UMur13wx_UVpCyntamnIaDyJH5_QvNt_Hbwy6O9U4Q9D6e7R_QusIAVSwOJjRWee570pdJnCOvl1z7KssiXDSVlxtc-6RShmspGfOjxKgoFkkec-nxwGQRlwz7XYAHMdqY1vAbRF_mCX85d0e1w4TaJOiNR9Ud20NShka8oKinOGX_rok3iO4NJ2219vUe3ee_9hhWasZN3rspsgotU6zB0qc6pmANHrqdS-IOZK3Dwemk_J6pS9I1ltBXGWfJSRNnVRakirIgJ1lxRT8gB9AoaIbEcunpCEVPq8pCKPgEzu_ku55CuygL8xwIsrIQr2N_SNf8SMlQCS9kobZ0LRdZB7xmxFNVJ2O3NUGu03kaaQuSFEFirTOesg7szm4ZukwktwlvNnhIa6U0Tudg6MCrWTOqE-sjygpTTp0MRz0d-x145uA3e5pNmsAFw5Y3DR7nnf_3VTZuf5VtWEJEpseH_aMXsBxUk8IGC21CezKami1YVD8n38ajl9X0IvD1rpH5F5UWYoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomach+Deformities+Recognition+Using+Rank-Based+Deep+Features+Selection&rft.jtitle=Journal+of+medical+systems&rft.au=Khan%2C+Muhammad+Attique&rft.au=Sharif%2C+Muhammad&rft.au=Tallha%2C+Akram&rft.au=Mussarat%2C+Yasmin&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=12&rft_id=info:doi/10.1007%2Fs10916-019-1466-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon