Integrated constraint based clustering algorithm for high dimensional data

Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. Howev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 142; s. 478 - 485
Hlavní autoři: Liu, Xinyue, Li, Menggang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 22.10.2014
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. However, these constraint based algorithms use constraints to help accomplish only one of the three essential tasks. In this paper, we propose an integrated constraint based clustering (ICBC) algorithm for high dimensional data, which exploits constraints to accomplish all the three essential tasks. Firstly we generalize the dimension selection technique of CDCDD algorithm such that dimension selection and dimension weighting could be accomplished simultaneously. Then we propose a novel constraint based data assignment method which assigns all the data points to their corresponding clusters based on the selected dimensions and dimension weights. Finally we use an optimization technique to iteratively refine the initial dimension weights and centroids, and reassign data accordingly till convergence. Experimental results on both synthetic data sets and real data sets show that our proposed ICBC algorithm outperforms typical unsupervised algorithms and other constraint based algorithms in terms of accuracy. ICBC also outperforms the other algorithms that implement dimension selection in terms of efficiency and scalability. •Exploit constraints to accomplish the three essential tasks for high-dimensional data clustering.•Point out that constraints are necessary to break the circular-dependency.•Firstly implement both dimension selection and dimension weighting.
AbstractList Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. However, these constraint based algorithms use constraints to help accomplish only one of the three essential tasks. In this paper, we propose an integrated constraint based clustering (ICBC) algorithm for high dimensional data, which exploits constraints to accomplish all the three essential tasks. Firstly we generalize the dimension selection technique of CDCDD algorithm such that dimension selection and dimension weighting could be accomplished simultaneously. Then we propose a novel constraint based data assignment method which assigns all the data points to their corresponding clusters based on the selected dimensions and dimension weights. Finally we use an optimization technique to iteratively refine the initial dimension weights and centroids, and reassign data accordingly till convergence. Experimental results on both synthetic data sets and real data sets show that our proposed ICBC algorithm outperforms typical unsupervised algorithms and other constraint based algorithms in terms of accuracy. ICBC also outperforms the other algorithms that implement dimension selection in terms of efficiency and scalability.
Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. However, these constraint based algorithms use constraints to help accomplish only one of the three essential tasks. In this paper, we propose an integrated constraint based clustering (ICBC) algorithm for high dimensional data, which exploits constraints to accomplish all the three essential tasks. Firstly we generalize the dimension selection technique of CDCDD algorithm such that dimension selection and dimension weighting could be accomplished simultaneously. Then we propose a novel constraint based data assignment method which assigns all the data points to their corresponding clusters based on the selected dimensions and dimension weights. Finally we use an optimization technique to iteratively refine the initial dimension weights and centroids, and reassign data accordingly till convergence. Experimental results on both synthetic data sets and real data sets show that our proposed ICBC algorithm outperforms typical unsupervised algorithms and other constraint based algorithms in terms of accuracy. ICBC also outperforms the other algorithms that implement dimension selection in terms of efficiency and scalability. •Exploit constraints to accomplish the three essential tasks for high-dimensional data clustering.•Point out that constraints are necessary to break the circular-dependency.•Firstly implement both dimension selection and dimension weighting.
Author Liu, Xinyue
Li, Menggang
Author_xml – sequence: 1
  givenname: Xinyue
  surname: Liu
  fullname: Liu, Xinyue
  email: xyliu_dlut@163.com
  organization: School of Software, Dalian University of Technology, Dalian 116620, China
– sequence: 2
  givenname: Menggang
  surname: Li
  fullname: Li, Menggang
  email: morganli@vip.sina.com
  organization: China Center for Industrial Security Research, Beijing Jiaotong University, Beijing 100044, China
BookMark eNqFkEtLxDAUhYMoODP6D1x06aY1j-kjLgQZfIwMuNF1SJPbToY2GZNU8N_bUlcuFA5cuJxzuPdbolPrLCB0RXBGMCluDpmFQbk-o5isMzyKsBO0IFVJ04pWxSlaYE7zlDJCz9EyhAPGpCSUL9DL1kZovYygE-VsiF4aG5NahmnRDSGCN7ZNZNc6b-K-Txrnk71p94k2PdhgnJVdomWUF-iskV2Ay5-5Qu-PD2-b53T3-rTd3O9SxUoa07JmlcQ1V-OtTIHkkGveYFXlEmOuS054A7nMCS8kq0ErVTU0V-tKqxKYJmyFrufeo3cfA4QoehMUdJ204IYgSJ7zoqC8mqzr2aq8C8FDI47e9NJ_CYLFhE4cxIxOTOgEHkXYGLv9FVMmyji-OuHp_gvfzWEYGXwa8CIoA1aBNh5UFNqZvwu-AcR-kG8
CitedBy_id crossref_primary_10_1007_s00521_015_2145_z
crossref_primary_10_1016_j_knosys_2018_11_027
crossref_primary_10_1016_j_asoc_2021_107177
crossref_primary_10_1016_j_jocs_2018_04_016
crossref_primary_10_3390_en8099365
crossref_primary_10_1007_s00521_016_2468_4
crossref_primary_10_1007_s10489_017_0979_z
crossref_primary_10_1016_j_neucom_2015_07_034
crossref_primary_10_1016_j_ejor_2017_02_013
Cites_doi 10.1145/312129.312199
10.1145/304182.304188
10.1111/j.1467-9868.2004.02059.x
10.1137/1.9781611972795.3
10.1145/1497577.1497578
10.1016/S0893-6080(02)00084-9
10.1137/1.9781611972719.7
10.1016/j.patrec.2009.09.011
10.1137/1.9781611972740.58
10.14778/1687627.1687770
10.1109/ICDM.2007.49
10.1145/342009.335383
10.1109/ICDM.2010.15
10.14778/1453856.1453871
10.1109/TPAMI.2010.215
10.1016/j.infsof.2003.07.003
10.1016/j.patcog.2006.12.016
10.1145/276304.276314
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2014.04.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 485
ExternalDocumentID 10_1016_j_neucom_2014_04_013
S0925231214005694
GrantInformation_xml – fundername: Doctoral Fund of Ministry of Education of China
  grantid: 20120041110046
– fundername: National Science Foundation of China
  grantid: 6127237461300190
– fundername: New Century Excellent Talents in University (NCET) of China
  grantid: NCET-11-0056
– fundername: Central Universities of China
  grantid: DUT11ZD107
– fundername: Key Project of Chinese Ministry of Education
  grantid: 313011
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-7b38a0b9c0143cea9e5d9f0c85a009d7919fe5a5196a3bedcc8f25c48dc7e3d13
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340341400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Sep 27 21:35:57 EDT 2025
Sat Nov 29 07:12:20 EST 2025
Tue Nov 18 22:26:21 EST 2025
Fri Feb 23 02:27:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subspace clustering
Constraint based clustering
High dimensional data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-7b38a0b9c0143cea9e5d9f0c85a009d7919fe5a5196a3bedcc8f25c48dc7e3d13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1559662981
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1559662981
crossref_primary_10_1016_j_neucom_2014_04_013
crossref_citationtrail_10_1016_j_neucom_2014_04_013
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_04_013
PublicationCentury 2000
PublicationDate 2014-10-22
PublicationDateYYYYMMDD 2014-10-22
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-22
  day: 22
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S. Basu, I. Dadidson, K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC, 2008.
C. Bohm, K. Kailing, H.-P. Kriegel, P. Kroger, Densigy connected clustering with local subspace preferences, in: Proceedings of the ICDM׳04, 2004.
A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007
C. Cheng, A. Fu, Y. Zhang, Entropy-Based subspace clustering for mining numerical data, in: Proceedings of the SIGKDD׳99, 1999, pp. 84–93.
H. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans. Knowl. Disc. Data, 3 (2009), Article 1.
Xu (bib22) 2002; 15
C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the SDM׳04, 2004.
L. Xu, A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving, Pattern Recognit. 40 (2007) 2129–2153.
R. Agrawal, J. Gehrke, D. Gunopulos, et al., Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of the ACM SIGMOD׳98, 1998, pp. 94–105.
Woo, Lee, Kim (bib21) 2004; 46
Friedman, Meulman (bib14) 2004; 4
C. Aggarwal, C. Procopiuc, J. Wolf, et al., Fast algorithms for projected clustering, in: Proceedings of the ACM SIGMOD׳99, 1999, pp. 61–72.
Bar-Hillel, Hertz, Shental (bib7) 2005; 6
E. Müller, S. Günnemann, I. Assent, T. Seidl, Evaluating clustering in subspace projections of high dimensional data, in: Proceedings of the VLDB,09, 2009, pp. 1270–1281.
H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: Proceedings of the SDM׳01, 2001.
K. Bache, M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2013
H. Cevilkalp, J. Verbeek, F. Jurie, et al., Semi-supervised dimensionality reduction using pairwise equivalence constraints, in: Proceedings of the CVTA׳08, 2008.
.
Zeng, Cheung (bib24) 2011; 33
I. Assent, M. Krieger, E. Muller, et al., DUSC: dimensionality unbiased subspace clustering, in: Proceedings of the ICDM׳07, 2007.
X.C. Zhang, Y. Wu, Q. Qiu, Constraint based dimension correlation and distance divergence for clustering high-dimensional data, in: Proceedings of the ICDM׳10, 2010.
C. Aggarwal, P. Yu, Finding generalized projected clusters in high dimensional space, in: Proceedings of the SIGMOD׳00, 2000.
Jain (bib19) 2010; 31
E. Fromont, A. Prado, C. Robardet, 2009. Constraint based subspace clustering, in: Proceedings of the SDM׳09, 2009.
H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB׳04, 2008, pp. 90–101.
Parsons, Haque, Liu (bib20) 2010
Woo (10.1016/j.neucom.2014.04.013_bib21) 2004; 46
Zeng (10.1016/j.neucom.2014.04.013_bib24) 2011; 33
Parsons (10.1016/j.neucom.2014.04.013_bib20) 2010
10.1016/j.neucom.2014.04.013_bib1
Jain (10.1016/j.neucom.2014.04.013_bib19) 2010; 31
10.1016/j.neucom.2014.04.013_bib2
10.1016/j.neucom.2014.04.013_bib3
10.1016/j.neucom.2014.04.013_bib4
10.1016/j.neucom.2014.04.013_bib5
10.1016/j.neucom.2014.04.013_bib6
10.1016/j.neucom.2014.04.013_bib8
10.1016/j.neucom.2014.04.013_bib9
10.1016/j.neucom.2014.04.013_bib12
10.1016/j.neucom.2014.04.013_bib11
10.1016/j.neucom.2014.04.013_bib10
10.1016/j.neucom.2014.04.013_bib16
10.1016/j.neucom.2014.04.013_bib15
10.1016/j.neucom.2014.04.013_bib13
10.1016/j.neucom.2014.04.013_bib18
10.1016/j.neucom.2014.04.013_bib17
Friedman (10.1016/j.neucom.2014.04.013_bib14) 2004; 4
Xu (10.1016/j.neucom.2014.04.013_bib22) 2002; 15
10.1016/j.neucom.2014.04.013_bib23
Bar-Hillel (10.1016/j.neucom.2014.04.013_bib7) 2005; 6
10.1016/j.neucom.2014.04.013_bib25
References_xml – volume: 6
  start-page: 937
  year: 2005
  end-page: 965
  ident: bib7
  article-title: Learning a mahalanobis metric from equivalence constraints
  publication-title: J. Mach. Learn. Res.
– reference: H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: Proceedings of the SDM׳01, 2001.
– reference: H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB׳04, 2008, pp. 90–101.
– volume: 46
  start-page: 255
  year: 2004
  end-page: 271
  ident: bib21
  article-title: FINDIT
  publication-title: Inf. Softw. Technol.
– reference: C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the SDM׳04, 2004.
– reference: E. Fromont, A. Prado, C. Robardet, 2009. Constraint based subspace clustering, in: Proceedings of the SDM׳09, 2009.
– reference: L. Xu, A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving, Pattern Recognit. 40 (2007) 2129–2153.
– reference: K. Bache, M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2013, 〈
– reference: C. Bohm, K. Kailing, H.-P. Kriegel, P. Kroger, Densigy connected clustering with local subspace preferences, in: Proceedings of the ICDM׳04, 2004.
– reference: H. Cevilkalp, J. Verbeek, F. Jurie, et al., Semi-supervised dimensionality reduction using pairwise equivalence constraints, in: Proceedings of the CVTA׳08, 2008.
– reference: 〉.
– reference: E. Müller, S. Günnemann, I. Assent, T. Seidl, Evaluating clustering in subspace projections of high dimensional data, in: Proceedings of the VLDB,09, 2009, pp. 1270–1281.
– start-page: 90
  year: 2010
  end-page: 105
  ident: bib20
  article-title: Subspace clustering for high dimensional data
  publication-title: SIGKDD Explor.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib19
  article-title: Data clustering
  publication-title: Pattern Recognit. Lett.
– reference: H. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans. Knowl. Disc. Data, 3 (2009), Article 1.
– volume: 15
  start-page: 1125
  year: 2002
  end-page: 1151
  ident: bib22
  article-title: BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
  publication-title: Neural Netw.
– reference: C. Aggarwal, C. Procopiuc, J. Wolf, et al., Fast algorithms for projected clustering, in: Proceedings of the ACM SIGMOD׳99, 1999, pp. 61–72.
– reference: C. Aggarwal, P. Yu, Finding generalized projected clusters in high dimensional space, in: Proceedings of the SIGMOD׳00, 2000.
– reference: I. Assent, M. Krieger, E. Muller, et al., DUSC: dimensionality unbiased subspace clustering, in: Proceedings of the ICDM׳07, 2007.
– reference: S. Basu, I. Dadidson, K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC, 2008.
– volume: 33
  start-page: 1532
  year: 2011
  end-page: 2547
  ident: bib24
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: X.C. Zhang, Y. Wu, Q. Qiu, Constraint based dimension correlation and distance divergence for clustering high-dimensional data, in: Proceedings of the ICDM׳10, 2010.
– reference: R. Agrawal, J. Gehrke, D. Gunopulos, et al., Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of the ACM SIGMOD׳98, 1998, pp. 94–105.
– reference: C. Cheng, A. Fu, Y. Zhang, Entropy-Based subspace clustering for mining numerical data, in: Proceedings of the SIGKDD׳99, 1999, pp. 84–93.
– volume: 4
  start-page: 815
  year: 2004
  end-page: 849
  ident: bib14
  article-title: Clustering objects on subsets of attributes (with discussion)
  publication-title: J. R. Stat. Soc.: Ser. B Stat. Methodol.
– reference: A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007, 〈
– ident: 10.1016/j.neucom.2014.04.013_bib11
  doi: 10.1145/312129.312199
– ident: 10.1016/j.neucom.2014.04.013_bib1
  doi: 10.1145/304182.304188
– ident: 10.1016/j.neucom.2014.04.013_bib10
– volume: 4
  start-page: 815
  year: 2004
  ident: 10.1016/j.neucom.2014.04.013_bib14
  article-title: Clustering objects on subsets of attributes (with discussion)
  publication-title: J. R. Stat. Soc.: Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2004.02059.x
– ident: 10.1016/j.neucom.2014.04.013_bib15
  doi: 10.1137/1.9781611972795.3
– ident: 10.1016/j.neucom.2014.04.013_bib16
  doi: 10.1145/1497577.1497578
– volume: 15
  start-page: 1125
  year: 2002
  ident: 10.1016/j.neucom.2014.04.013_bib22
  article-title: BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00084-9
– ident: 10.1016/j.neucom.2014.04.013_bib6
– ident: 10.1016/j.neucom.2014.04.013_bib18
  doi: 10.1137/1.9781611972719.7
– ident: 10.1016/j.neucom.2014.04.013_bib8
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.neucom.2014.04.013_bib19
  article-title: Data clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 90
  year: 2010
  ident: 10.1016/j.neucom.2014.04.013_bib20
  article-title: Subspace clustering for high dimensional data
  publication-title: SIGKDD Explor.
– ident: 10.1016/j.neucom.2014.04.013_bib13
  doi: 10.1137/1.9781611972740.58
– ident: 10.1016/j.neucom.2014.04.013_bib17
  doi: 10.14778/1687627.1687770
– ident: 10.1016/j.neucom.2014.04.013_bib4
  doi: 10.1109/ICDM.2007.49
– ident: 10.1016/j.neucom.2014.04.013_bib2
  doi: 10.1145/342009.335383
– ident: 10.1016/j.neucom.2014.04.013_bib25
  doi: 10.1109/ICDM.2010.15
– ident: 10.1016/j.neucom.2014.04.013_bib12
  doi: 10.14778/1453856.1453871
– volume: 33
  start-page: 1532
  issue: 8
  year: 2011
  ident: 10.1016/j.neucom.2014.04.013_bib24
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.215
– volume: 46
  start-page: 255
  year: 2004
  ident: 10.1016/j.neucom.2014.04.013_bib21
  article-title: FINDIT
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2003.07.003
– ident: 10.1016/j.neucom.2014.04.013_bib23
  doi: 10.1016/j.patcog.2006.12.016
– volume: 6
  start-page: 937
  year: 2005
  ident: 10.1016/j.neucom.2014.04.013_bib7
  article-title: Learning a mahalanobis metric from equivalence constraints
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2014.04.013_bib5
– ident: 10.1016/j.neucom.2014.04.013_bib3
  doi: 10.1145/276304.276314
– ident: 10.1016/j.neucom.2014.04.013_bib9
SSID ssj0017129
Score 2.1658823
Snippet Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 478
SubjectTerms Algorithms
Centroids
Clustering
Constraint based clustering
Convergence
Data points
High dimensional data
Subspace clustering
Tasks
Weighting
Title Integrated constraint based clustering algorithm for high dimensional data
URI https://dx.doi.org/10.1016/j.neucom.2014.04.013
https://www.proquest.com/docview/1559662981
Volume 142
WOSCitedRecordID wos000340341400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbu4e97Hus-0KDvQUN27It6TGMjrWUMlgHeROyrGQpqVMSe3T__e4k2d4aRrfBIJggbFnR_XJ3Oul-R8hbbsDIl5ligruS5YU1rErlnKXGla4opMmCpE_E6amczdSnSKiw9eUERNPIqyt1-V9FDW0gbEyd_QtxD51CA3wHocMVxA7XPxL8UU8AgflqyA8La_92gtYKGlYdEiP4xMTVYr1Ztl8v_EFDZC2e1Mj0H1g6JjFnbXBcPYmH9SUgYnBheoFd1QioIZhwsuxQZrNl871zY6OPurpmsTDRTsYwQ5qjfs7GRelu_ksIImYFAw8x3OeCCpUi88npv-jYQKEVtWQeqvZEg5uHmj07ujyEFc7fNa7Dgz04KM9KG3JXr7Fkf8ah4EhgwQg-ncpvk_1MFAp09f706HB2PGwtiTQLBIxx6H0-pT_0t_uu3_kr1yy3d0fOHpB7cR1Bp0H-D8kt1zwi9_saHTSq7MfkeIQDHeFAPRzoCAc6wIECHCjCgf4EB4pweEK-fDg8e_-RxfoZzHKRtUxUXJqkUhY5HK0zyhW1midWFgY861qoVM1dYcCHLw2vXG2tnGeFzWVtheN1yp-SvWbduGeEJq7MTWVrAwvYHLxCZSy6yjmX1ogqqQ8I72dJ20gujz9opftThOc6zK3GudUJfFJ-QNjw1GUgV7nhftELQEcHMTh-GjBzw5Nvenlp0J-4KWYat-62GrflS1BWMn3-z72_IHfHv8xLstduOveK3LHf2uV28zoC8AcKspkC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+constraint+based+clustering+algorithm+for+high+dimensional+data&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Xinyue&rft.au=Li%2C+Menggang&rft.date=2014-10-22&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=142&rft.spage=478&rft.epage=485&rft_id=info:doi/10.1016%2Fj.neucom.2014.04.013&rft.externalDocID=S0925231214005694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon