Integrated constraint based clustering algorithm for high dimensional data
Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. Howev...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 142; s. 478 - 485 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
22.10.2014
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. However, these constraint based algorithms use constraints to help accomplish only one of the three essential tasks. In this paper, we propose an integrated constraint based clustering (ICBC) algorithm for high dimensional data, which exploits constraints to accomplish all the three essential tasks. Firstly we generalize the dimension selection technique of CDCDD algorithm such that dimension selection and dimension weighting could be accomplished simultaneously. Then we propose a novel constraint based data assignment method which assigns all the data points to their corresponding clusters based on the selected dimensions and dimension weights. Finally we use an optimization technique to iteratively refine the initial dimension weights and centroids, and reassign data accordingly till convergence. Experimental results on both synthetic data sets and real data sets show that our proposed ICBC algorithm outperforms typical unsupervised algorithms and other constraint based algorithms in terms of accuracy. ICBC also outperforms the other algorithms that implement dimension selection in terms of efficiency and scalability.
•Exploit constraints to accomplish the three essential tasks for high-dimensional data clustering.•Point out that constraints are necessary to break the circular-dependency.•Firstly implement both dimension selection and dimension weighting. |
|---|---|
| AbstractList | Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. However, these constraint based algorithms use constraints to help accomplish only one of the three essential tasks. In this paper, we propose an integrated constraint based clustering (ICBC) algorithm for high dimensional data, which exploits constraints to accomplish all the three essential tasks. Firstly we generalize the dimension selection technique of CDCDD algorithm such that dimension selection and dimension weighting could be accomplished simultaneously. Then we propose a novel constraint based data assignment method which assigns all the data points to their corresponding clusters based on the selected dimensions and dimension weights. Finally we use an optimization technique to iteratively refine the initial dimension weights and centroids, and reassign data accordingly till convergence. Experimental results on both synthetic data sets and real data sets show that our proposed ICBC algorithm outperforms typical unsupervised algorithms and other constraint based algorithms in terms of accuracy. ICBC also outperforms the other algorithms that implement dimension selection in terms of efficiency and scalability. Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such task is challenging. To meet the challenge of high dimensional data clustering, constraints have been employed in several previous works. However, these constraint based algorithms use constraints to help accomplish only one of the three essential tasks. In this paper, we propose an integrated constraint based clustering (ICBC) algorithm for high dimensional data, which exploits constraints to accomplish all the three essential tasks. Firstly we generalize the dimension selection technique of CDCDD algorithm such that dimension selection and dimension weighting could be accomplished simultaneously. Then we propose a novel constraint based data assignment method which assigns all the data points to their corresponding clusters based on the selected dimensions and dimension weights. Finally we use an optimization technique to iteratively refine the initial dimension weights and centroids, and reassign data accordingly till convergence. Experimental results on both synthetic data sets and real data sets show that our proposed ICBC algorithm outperforms typical unsupervised algorithms and other constraint based algorithms in terms of accuracy. ICBC also outperforms the other algorithms that implement dimension selection in terms of efficiency and scalability. •Exploit constraints to accomplish the three essential tasks for high-dimensional data clustering.•Point out that constraints are necessary to break the circular-dependency.•Firstly implement both dimension selection and dimension weighting. |
| Author | Liu, Xinyue Li, Menggang |
| Author_xml | – sequence: 1 givenname: Xinyue surname: Liu fullname: Liu, Xinyue email: xyliu_dlut@163.com organization: School of Software, Dalian University of Technology, Dalian 116620, China – sequence: 2 givenname: Menggang surname: Li fullname: Li, Menggang email: morganli@vip.sina.com organization: China Center for Industrial Security Research, Beijing Jiaotong University, Beijing 100044, China |
| BookMark | eNqFkEtLxDAUhYMoODP6D1x06aY1j-kjLgQZfIwMuNF1SJPbToY2GZNU8N_bUlcuFA5cuJxzuPdbolPrLCB0RXBGMCluDpmFQbk-o5isMzyKsBO0IFVJ04pWxSlaYE7zlDJCz9EyhAPGpCSUL9DL1kZovYygE-VsiF4aG5NahmnRDSGCN7ZNZNc6b-K-Txrnk71p94k2PdhgnJVdomWUF-iskV2Ay5-5Qu-PD2-b53T3-rTd3O9SxUoa07JmlcQ1V-OtTIHkkGveYFXlEmOuS054A7nMCS8kq0ErVTU0V-tKqxKYJmyFrufeo3cfA4QoehMUdJ204IYgSJ7zoqC8mqzr2aq8C8FDI47e9NJ_CYLFhE4cxIxOTOgEHkXYGLv9FVMmyji-OuHp_gvfzWEYGXwa8CIoA1aBNh5UFNqZvwu-AcR-kG8 |
| CitedBy_id | crossref_primary_10_1007_s00521_015_2145_z crossref_primary_10_1016_j_knosys_2018_11_027 crossref_primary_10_1016_j_asoc_2021_107177 crossref_primary_10_1016_j_jocs_2018_04_016 crossref_primary_10_3390_en8099365 crossref_primary_10_1007_s00521_016_2468_4 crossref_primary_10_1007_s10489_017_0979_z crossref_primary_10_1016_j_neucom_2015_07_034 crossref_primary_10_1016_j_ejor_2017_02_013 |
| Cites_doi | 10.1145/312129.312199 10.1145/304182.304188 10.1111/j.1467-9868.2004.02059.x 10.1137/1.9781611972795.3 10.1145/1497577.1497578 10.1016/S0893-6080(02)00084-9 10.1137/1.9781611972719.7 10.1016/j.patrec.2009.09.011 10.1137/1.9781611972740.58 10.14778/1687627.1687770 10.1109/ICDM.2007.49 10.1145/342009.335383 10.1109/ICDM.2010.15 10.14778/1453856.1453871 10.1109/TPAMI.2010.215 10.1016/j.infsof.2003.07.003 10.1016/j.patcog.2006.12.016 10.1145/276304.276314 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.neucom.2014.04.013 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 485 |
| ExternalDocumentID | 10_1016_j_neucom_2014_04_013 S0925231214005694 |
| GrantInformation_xml | – fundername: Doctoral Fund of Ministry of Education of China grantid: 20120041110046 – fundername: National Science Foundation of China grantid: 6127237461300190 – fundername: New Century Excellent Talents in University (NCET) of China grantid: NCET-11-0056 – fundername: Central Universities of China grantid: DUT11ZD107 – fundername: Key Project of Chinese Ministry of Education grantid: 313011 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c372t-7b38a0b9c0143cea9e5d9f0c85a009d7919fe5a5196a3bedcc8f25c48dc7e3d13 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340341400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Sep 27 21:35:57 EDT 2025 Sat Nov 29 07:12:20 EST 2025 Tue Nov 18 22:26:21 EST 2025 Fri Feb 23 02:27:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Subspace clustering Constraint based clustering High dimensional data |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-7b38a0b9c0143cea9e5d9f0c85a009d7919fe5a5196a3bedcc8f25c48dc7e3d13 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1559662981 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1559662981 crossref_primary_10_1016_j_neucom_2014_04_013 crossref_citationtrail_10_1016_j_neucom_2014_04_013 elsevier_sciencedirect_doi_10_1016_j_neucom_2014_04_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-22 |
| PublicationDateYYYYMMDD | 2014-10-22 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | S. Basu, I. Dadidson, K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC, 2008. C. Bohm, K. Kailing, H.-P. Kriegel, P. Kroger, Densigy connected clustering with local subspace preferences, in: Proceedings of the ICDM׳04, 2004. A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007 C. Cheng, A. Fu, Y. Zhang, Entropy-Based subspace clustering for mining numerical data, in: Proceedings of the SIGKDD׳99, 1999, pp. 84–93. H. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans. Knowl. Disc. Data, 3 (2009), Article 1. Xu (bib22) 2002; 15 C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the SDM׳04, 2004. L. Xu, A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving, Pattern Recognit. 40 (2007) 2129–2153. R. Agrawal, J. Gehrke, D. Gunopulos, et al., Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of the ACM SIGMOD׳98, 1998, pp. 94–105. Woo, Lee, Kim (bib21) 2004; 46 Friedman, Meulman (bib14) 2004; 4 C. Aggarwal, C. Procopiuc, J. Wolf, et al., Fast algorithms for projected clustering, in: Proceedings of the ACM SIGMOD׳99, 1999, pp. 61–72. Bar-Hillel, Hertz, Shental (bib7) 2005; 6 E. Müller, S. Günnemann, I. Assent, T. Seidl, Evaluating clustering in subspace projections of high dimensional data, in: Proceedings of the VLDB,09, 2009, pp. 1270–1281. H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: Proceedings of the SDM׳01, 2001. K. Bache, M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2013 H. Cevilkalp, J. Verbeek, F. Jurie, et al., Semi-supervised dimensionality reduction using pairwise equivalence constraints, in: Proceedings of the CVTA׳08, 2008. . Zeng, Cheung (bib24) 2011; 33 I. Assent, M. Krieger, E. Muller, et al., DUSC: dimensionality unbiased subspace clustering, in: Proceedings of the ICDM׳07, 2007. X.C. Zhang, Y. Wu, Q. Qiu, Constraint based dimension correlation and distance divergence for clustering high-dimensional data, in: Proceedings of the ICDM׳10, 2010. C. Aggarwal, P. Yu, Finding generalized projected clusters in high dimensional space, in: Proceedings of the SIGMOD׳00, 2000. Jain (bib19) 2010; 31 E. Fromont, A. Prado, C. Robardet, 2009. Constraint based subspace clustering, in: Proceedings of the SDM׳09, 2009. H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB׳04, 2008, pp. 90–101. Parsons, Haque, Liu (bib20) 2010 Woo (10.1016/j.neucom.2014.04.013_bib21) 2004; 46 Zeng (10.1016/j.neucom.2014.04.013_bib24) 2011; 33 Parsons (10.1016/j.neucom.2014.04.013_bib20) 2010 10.1016/j.neucom.2014.04.013_bib1 Jain (10.1016/j.neucom.2014.04.013_bib19) 2010; 31 10.1016/j.neucom.2014.04.013_bib2 10.1016/j.neucom.2014.04.013_bib3 10.1016/j.neucom.2014.04.013_bib4 10.1016/j.neucom.2014.04.013_bib5 10.1016/j.neucom.2014.04.013_bib6 10.1016/j.neucom.2014.04.013_bib8 10.1016/j.neucom.2014.04.013_bib9 10.1016/j.neucom.2014.04.013_bib12 10.1016/j.neucom.2014.04.013_bib11 10.1016/j.neucom.2014.04.013_bib10 10.1016/j.neucom.2014.04.013_bib16 10.1016/j.neucom.2014.04.013_bib15 10.1016/j.neucom.2014.04.013_bib13 10.1016/j.neucom.2014.04.013_bib18 10.1016/j.neucom.2014.04.013_bib17 Friedman (10.1016/j.neucom.2014.04.013_bib14) 2004; 4 Xu (10.1016/j.neucom.2014.04.013_bib22) 2002; 15 10.1016/j.neucom.2014.04.013_bib23 Bar-Hillel (10.1016/j.neucom.2014.04.013_bib7) 2005; 6 10.1016/j.neucom.2014.04.013_bib25 |
| References_xml | – volume: 6 start-page: 937 year: 2005 end-page: 965 ident: bib7 article-title: Learning a mahalanobis metric from equivalence constraints publication-title: J. Mach. Learn. Res. – reference: H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: Proceedings of the SDM׳01, 2001. – reference: H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB׳04, 2008, pp. 90–101. – volume: 46 start-page: 255 year: 2004 end-page: 271 ident: bib21 article-title: FINDIT publication-title: Inf. Softw. Technol. – reference: C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the SDM׳04, 2004. – reference: E. Fromont, A. Prado, C. Robardet, 2009. Constraint based subspace clustering, in: Proceedings of the SDM׳09, 2009. – reference: L. Xu, A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving, Pattern Recognit. 40 (2007) 2129–2153. – reference: K. Bache, M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2013, 〈 – reference: C. Bohm, K. Kailing, H.-P. Kriegel, P. Kroger, Densigy connected clustering with local subspace preferences, in: Proceedings of the ICDM׳04, 2004. – reference: H. Cevilkalp, J. Verbeek, F. Jurie, et al., Semi-supervised dimensionality reduction using pairwise equivalence constraints, in: Proceedings of the CVTA׳08, 2008. – reference: 〉. – reference: E. Müller, S. Günnemann, I. Assent, T. Seidl, Evaluating clustering in subspace projections of high dimensional data, in: Proceedings of the VLDB,09, 2009, pp. 1270–1281. – start-page: 90 year: 2010 end-page: 105 ident: bib20 article-title: Subspace clustering for high dimensional data publication-title: SIGKDD Explor. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib19 article-title: Data clustering publication-title: Pattern Recognit. Lett. – reference: H. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans. Knowl. Disc. Data, 3 (2009), Article 1. – volume: 15 start-page: 1125 year: 2002 end-page: 1151 ident: bib22 article-title: BYY harmony learning, structural RPCL, and topological self-organizing on mixture models publication-title: Neural Netw. – reference: C. Aggarwal, C. Procopiuc, J. Wolf, et al., Fast algorithms for projected clustering, in: Proceedings of the ACM SIGMOD׳99, 1999, pp. 61–72. – reference: C. Aggarwal, P. Yu, Finding generalized projected clusters in high dimensional space, in: Proceedings of the SIGMOD׳00, 2000. – reference: I. Assent, M. Krieger, E. Muller, et al., DUSC: dimensionality unbiased subspace clustering, in: Proceedings of the ICDM׳07, 2007. – reference: S. Basu, I. Dadidson, K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC, 2008. – volume: 33 start-page: 1532 year: 2011 end-page: 2547 ident: bib24 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: X.C. Zhang, Y. Wu, Q. Qiu, Constraint based dimension correlation and distance divergence for clustering high-dimensional data, in: Proceedings of the ICDM׳10, 2010. – reference: R. Agrawal, J. Gehrke, D. Gunopulos, et al., Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of the ACM SIGMOD׳98, 1998, pp. 94–105. – reference: C. Cheng, A. Fu, Y. Zhang, Entropy-Based subspace clustering for mining numerical data, in: Proceedings of the SIGKDD׳99, 1999, pp. 84–93. – volume: 4 start-page: 815 year: 2004 end-page: 849 ident: bib14 article-title: Clustering objects on subsets of attributes (with discussion) publication-title: J. R. Stat. Soc.: Ser. B Stat. Methodol. – reference: A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007, 〈 – ident: 10.1016/j.neucom.2014.04.013_bib11 doi: 10.1145/312129.312199 – ident: 10.1016/j.neucom.2014.04.013_bib1 doi: 10.1145/304182.304188 – ident: 10.1016/j.neucom.2014.04.013_bib10 – volume: 4 start-page: 815 year: 2004 ident: 10.1016/j.neucom.2014.04.013_bib14 article-title: Clustering objects on subsets of attributes (with discussion) publication-title: J. R. Stat. Soc.: Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2004.02059.x – ident: 10.1016/j.neucom.2014.04.013_bib15 doi: 10.1137/1.9781611972795.3 – ident: 10.1016/j.neucom.2014.04.013_bib16 doi: 10.1145/1497577.1497578 – volume: 15 start-page: 1125 year: 2002 ident: 10.1016/j.neucom.2014.04.013_bib22 article-title: BYY harmony learning, structural RPCL, and topological self-organizing on mixture models publication-title: Neural Netw. doi: 10.1016/S0893-6080(02)00084-9 – ident: 10.1016/j.neucom.2014.04.013_bib6 – ident: 10.1016/j.neucom.2014.04.013_bib18 doi: 10.1137/1.9781611972719.7 – ident: 10.1016/j.neucom.2014.04.013_bib8 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.neucom.2014.04.013_bib19 article-title: Data clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – start-page: 90 year: 2010 ident: 10.1016/j.neucom.2014.04.013_bib20 article-title: Subspace clustering for high dimensional data publication-title: SIGKDD Explor. – ident: 10.1016/j.neucom.2014.04.013_bib13 doi: 10.1137/1.9781611972740.58 – ident: 10.1016/j.neucom.2014.04.013_bib17 doi: 10.14778/1687627.1687770 – ident: 10.1016/j.neucom.2014.04.013_bib4 doi: 10.1109/ICDM.2007.49 – ident: 10.1016/j.neucom.2014.04.013_bib2 doi: 10.1145/342009.335383 – ident: 10.1016/j.neucom.2014.04.013_bib25 doi: 10.1109/ICDM.2010.15 – ident: 10.1016/j.neucom.2014.04.013_bib12 doi: 10.14778/1453856.1453871 – volume: 33 start-page: 1532 issue: 8 year: 2011 ident: 10.1016/j.neucom.2014.04.013_bib24 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.215 – volume: 46 start-page: 255 year: 2004 ident: 10.1016/j.neucom.2014.04.013_bib21 article-title: FINDIT publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2003.07.003 – ident: 10.1016/j.neucom.2014.04.013_bib23 doi: 10.1016/j.patcog.2006.12.016 – volume: 6 start-page: 937 year: 2005 ident: 10.1016/j.neucom.2014.04.013_bib7 article-title: Learning a mahalanobis metric from equivalence constraints publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2014.04.013_bib5 – ident: 10.1016/j.neucom.2014.04.013_bib3 doi: 10.1145/276304.276314 – ident: 10.1016/j.neucom.2014.04.013_bib9 |
| SSID | ssj0017129 |
| Score | 2.1658823 |
| Snippet | Dimension selection, dimension weighting and data assignment are three circular dependent essential tasks for high dimensional data clustering and each such... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 478 |
| SubjectTerms | Algorithms Centroids Clustering Constraint based clustering Convergence Data points High dimensional data Subspace clustering Tasks Weighting |
| Title | Integrated constraint based clustering algorithm for high dimensional data |
| URI | https://dx.doi.org/10.1016/j.neucom.2014.04.013 https://www.proquest.com/docview/1559662981 |
| Volume | 142 |
| WOSCitedRecordID | wos000340341400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbu4e97Hus-0KDvQUN27It6TGMjrWUMlgHeROyrGQpqVMSe3T__e4k2d4aRrfBIJggbFnR_XJ3Oul-R8hbbsDIl5ligruS5YU1rErlnKXGla4opMmCpE_E6amczdSnSKiw9eUERNPIqyt1-V9FDW0gbEyd_QtxD51CA3wHocMVxA7XPxL8UU8AgflqyA8La_92gtYKGlYdEiP4xMTVYr1Ztl8v_EFDZC2e1Mj0H1g6JjFnbXBcPYmH9SUgYnBheoFd1QioIZhwsuxQZrNl871zY6OPurpmsTDRTsYwQ5qjfs7GRelu_ksIImYFAw8x3OeCCpUi88npv-jYQKEVtWQeqvZEg5uHmj07ujyEFc7fNa7Dgz04KM9KG3JXr7Fkf8ah4EhgwQg-ncpvk_1MFAp09f706HB2PGwtiTQLBIxx6H0-pT_0t_uu3_kr1yy3d0fOHpB7cR1Bp0H-D8kt1zwi9_saHTSq7MfkeIQDHeFAPRzoCAc6wIECHCjCgf4EB4pweEK-fDg8e_-RxfoZzHKRtUxUXJqkUhY5HK0zyhW1midWFgY861qoVM1dYcCHLw2vXG2tnGeFzWVtheN1yp-SvWbduGeEJq7MTWVrAwvYHLxCZSy6yjmX1ogqqQ8I72dJ20gujz9opftThOc6zK3GudUJfFJ-QNjw1GUgV7nhftELQEcHMTh-GjBzw5Nvenlp0J-4KWYat-62GrflS1BWMn3-z72_IHfHv8xLstduOveK3LHf2uV28zoC8AcKspkC |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+constraint+based+clustering+algorithm+for+high+dimensional+data&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Xinyue&rft.au=Li%2C+Menggang&rft.date=2014-10-22&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=142&rft.spage=478&rft.epage=485&rft_id=info:doi/10.1016%2Fj.neucom.2014.04.013&rft.externalDocID=S0925231214005694 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |