Infinite Feature Selection: A Graph-based Feature Filtering Approach
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 12; s. 4396 - 4410 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process. |
|---|---|
| AbstractList | We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process. We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process. |
| Author | Roffo, Giorgio Castellani, Umberto Melzi, Simone Vinciarelli, Alessandro Cristani, Marco |
| Author_xml | – sequence: 1 givenname: Giorgio orcidid: 0000-0003-4170-914X surname: Roffo fullname: Roffo, Giorgio email: Giorgio.Roffo@glasgow.ac.uk organization: School of Computing Science, University of Glasgow, Glasgow, U.K – sequence: 2 givenname: Simone orcidid: 0000-0003-2790-9591 surname: Melzi fullname: Melzi, Simone email: simone.melzi@univr.it organization: Department of Computer Science, University of Verona, Verona, Italy – sequence: 3 givenname: Umberto surname: Castellani fullname: Castellani, Umberto email: umberto.castellani@univr.it organization: Department of Computer Science, University of Verona, Verona, Italy – sequence: 4 givenname: Alessandro orcidid: 0000-0002-9048-0524 surname: Vinciarelli fullname: Vinciarelli, Alessandro email: Alessandro.Vinciarelli@glasgow.ac.uk organization: School of Computing Science, University of Glasgow, Glasgow, U.K – sequence: 5 givenname: Marco orcidid: 0000-0002-0523-6042 surname: Cristani fullname: Cristani, Marco email: marco.cristani@univr.it organization: Department of Computer Science, University of Verona, Verona, Italy |
| BookMark | eNp9kLFOwzAQQC0EoqXwA7BEYmFJsc-OY7NVhUIlEEjAbDnOBYxCUuxk4O9JacXQgcnLe3fnd0T2m7ZBQk4ZnTJG9eXL0-xhOQUKdMopBSX4HhkDkzTVoGGfjCmTkCoFakSOYvyglImM8kMy4pBnNFd6TK6XTeUb32GyQNv1AZNnrNF1vm2ukllyG-zqPS1sxPIPWPi6w-Cbt2S2WoXWuvdjclDZOuLJ9p2Q18XNy_wuvX-8Xc5n96njOXRprgVqV0haQi5FZYGVBRa8BOAgChAImiohsYASmaBS5lXBhRVOWXRVhXxCLjZzh7VfPcbOfProsK5tg20fDQg-WIJpMaDnO-hH24dmuM5ApkFylnE1UGpDudDGGLAyznd2_fkuWF8bRs26tPktbdalzbb0oMKOugr-04bv_6WzjeQR8U_QjGkmFf8BsKqIZw |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2025_111985 crossref_primary_10_1109_TETCI_2024_3398027 crossref_primary_10_1109_TNNLS_2023_3325199 crossref_primary_10_1002_aisy_202500044 crossref_primary_10_1016_j_ins_2022_08_066 crossref_primary_10_1016_j_ins_2023_119526 crossref_primary_10_1109_TKDE_2024_3397878 crossref_primary_10_1007_s13042_024_02385_z crossref_primary_10_1109_JSEN_2023_3346495 crossref_primary_10_1007_s13042_022_01695_4 crossref_primary_10_1016_j_iot_2025_101586 crossref_primary_10_3390_a13110302 crossref_primary_10_1109_TFUZZ_2022_3185285 crossref_primary_10_3390_axioms13010006 crossref_primary_10_1016_j_ins_2023_119241 crossref_primary_10_1109_TII_2025_3534417 crossref_primary_10_1007_s42979_024_03590_x crossref_primary_10_1016_j_apm_2023_08_043 crossref_primary_10_1016_j_ins_2025_122308 crossref_primary_10_1109_TNNLS_2024_3460796 crossref_primary_10_1016_j_swevo_2025_101995 crossref_primary_10_1007_s10489_025_06474_6 crossref_primary_10_1109_TIM_2023_3267351 crossref_primary_10_1186_s12859_024_06017_9 crossref_primary_10_1016_j_knosys_2025_114338 crossref_primary_10_1007_s12559_024_10399_6 crossref_primary_10_1016_j_asoc_2024_111915 crossref_primary_10_1109_TKDE_2022_3222447 crossref_primary_10_1016_j_eswa_2024_126152 crossref_primary_10_1088_1361_6501_ad4734 crossref_primary_10_1080_08839514_2022_2112545 crossref_primary_10_1109_TETCI_2023_3300183 crossref_primary_10_1007_s10044_023_01189_1 crossref_primary_10_1109_TKDE_2024_3428485 crossref_primary_10_1109_ACCESS_2021_3083703 crossref_primary_10_1109_TNNLS_2023_3263684 crossref_primary_10_1080_00207543_2024_2423802 crossref_primary_10_1007_s00521_023_08508_x crossref_primary_10_1016_j_ins_2022_10_093 crossref_primary_10_1109_TFUZZ_2023_3287193 crossref_primary_10_3390_electronics13122405 crossref_primary_10_2478_acss_2022_0002 crossref_primary_10_1016_j_asoc_2025_112716 crossref_primary_10_1016_j_ymssp_2023_110145 crossref_primary_10_1177_18724981251350686 crossref_primary_10_1007_s12559_023_10230_8 crossref_primary_10_1016_j_ins_2022_07_154 crossref_primary_10_1109_TEVC_2025_3533490 crossref_primary_10_1016_j_asoc_2025_113301 crossref_primary_10_1002_int_23074 crossref_primary_10_1186_s13638_023_02292_x crossref_primary_10_1016_j_ins_2022_10_087 crossref_primary_10_1007_s10489_022_03465_9 crossref_primary_10_3390_e26110992 crossref_primary_10_1186_s40537_024_00934_5 crossref_primary_10_1016_j_knosys_2025_114119 crossref_primary_10_1109_ACCESS_2024_3361936 crossref_primary_10_1016_j_knosys_2025_114076 crossref_primary_10_1109_TKDE_2025_3591515 crossref_primary_10_1109_TPAMI_2023_3238011 crossref_primary_10_1177_14759217221134050 crossref_primary_10_3390_bioengineering10070824 crossref_primary_10_32604_cmc_2024_057103 crossref_primary_10_1109_TPAMI_2022_3228824 crossref_primary_10_1109_TPAMI_2023_3311617 crossref_primary_10_1109_JBHI_2023_3269814 crossref_primary_10_1109_TETCI_2022_3225550 crossref_primary_10_1111_jon_12991 crossref_primary_10_1016_j_inffus_2023_101860 crossref_primary_10_1016_j_asoc_2025_113468 crossref_primary_10_1007_s00170_025_15097_7 crossref_primary_10_3390_app11188420 crossref_primary_10_3390_ijms24032597 crossref_primary_10_1109_ACCESS_2021_3135536 crossref_primary_10_1007_s10115_025_02423_4 crossref_primary_10_1109_TIP_2023_3348992 crossref_primary_10_1016_j_compbiomed_2025_109944 crossref_primary_10_1109_ACCESS_2022_3185129 crossref_primary_10_1016_j_fss_2024_108971 crossref_primary_10_1109_TCBB_2023_3314432 crossref_primary_10_1007_s10921_025_01247_0 crossref_primary_10_1016_j_ins_2024_120214 crossref_primary_10_1016_j_neunet_2023_10_020 crossref_primary_10_1109_TCYB_2022_3160244 crossref_primary_10_1007_s11517_023_02982_0 crossref_primary_10_1016_j_knosys_2024_112770 crossref_primary_10_1007_s10515_025_00510_y crossref_primary_10_1016_j_ijar_2024_109218 crossref_primary_10_1016_j_ins_2021_11_063 crossref_primary_10_1016_j_neucom_2025_131572 crossref_primary_10_1016_j_inffus_2025_103544 crossref_primary_10_1007_s13042_023_01775_z crossref_primary_10_1109_TNSRE_2025_3557275 crossref_primary_10_1007_s13042_022_01528_4 crossref_primary_10_1177_14759217211001704 crossref_primary_10_1109_TEVC_2023_3234113 crossref_primary_10_1109_TPAMI_2025_3569279 crossref_primary_10_1109_TAI_2025_3538549 crossref_primary_10_1016_j_patcog_2022_109007 crossref_primary_10_1016_j_patcog_2023_109449 crossref_primary_10_1080_00207543_2024_2403111 crossref_primary_10_1109_TKDE_2024_3419215 crossref_primary_10_1109_TPAMI_2024_3416196 crossref_primary_10_1016_j_eswa_2025_129650 crossref_primary_10_1016_j_marpetgeo_2022_105772 crossref_primary_10_1016_j_ejor_2025_07_014 crossref_primary_10_1109_ACCESS_2025_3583461 crossref_primary_10_1007_s13042_022_01618_3 crossref_primary_10_1016_j_knosys_2022_110246 crossref_primary_10_1038_s41598_024_53141_w crossref_primary_10_3389_fnins_2025_1609547 crossref_primary_10_1177_00202940231173748 crossref_primary_10_1016_j_measurement_2023_112835 crossref_primary_10_1109_TKDE_2022_3220200 crossref_primary_10_1109_TCBBIO_2025_3571424 crossref_primary_10_1016_j_ins_2023_01_046 crossref_primary_10_1016_j_knosys_2025_113062 crossref_primary_10_1016_j_swevo_2025_102118 crossref_primary_10_1016_j_patcog_2025_112084 crossref_primary_10_1016_j_ins_2024_121524 |
| Cites_doi | 10.1007/11744023_6 10.1201/9781584888796 10.1007/978-3-319-61461-8_2 10.1186/1471-2105-8-144 10.1109/TPAMI.2005.159 10.1016/j.imavis.2008.11.007 10.1016/j.csda.2013.07.012 10.1109/TGRS.2009.2039484 10.1109/72.298224 10.1016/j.ins.2014.05.042 10.1109/TPAMI.2013.50 10.1007/s11263-014-0733-5 10.1109/TKDE.2017.2650906 10.1109/TII.2012.2188804 10.1073/pnas.96.12.6745 10.1109/TPAMI.2006.79 10.1214/009053604000000067 10.1109/TCBB.2007.1028 10.1162/neco.2006.18.7.1527 10.1016/j.cviu.2007.09.014 10.1109/ICCV.2001.937550 10.1109/TPAMI.2010.215 10.1016/S1535-6108(02)00030-2 10.1109/ICCV.2017.156 10.1186/1471-2105-10-S1-S52 10.1214/009053607000000929 10.1109/ICME.2017.8019357 10.1109/TCBB.2011.47 10.1088/0264-9381/13/7/034 10.1017/CBO9781139583442 10.1145/1835804.1835848 10.1109/ICCV.2015.478 10.1109/CVPR.2018.00958 10.1016/j.patrec.2007.02.014 10.1023/A:1012487302797 10.1109/ICASSP.2018.8461858 10.1145/2783258.2783345 10.1016/j.compeleceng.2013.11.024 10.1137/140988875 10.1109/TIP.2017.2749145 10.1109/TNN.2008.2005601 10.1007/978-3-319-61461-8 10.1109/ICCV.1999.790410 10.1162/089976602760128018 10.1109/ICCV.2003.1238663 10.1017/CBO9781139020411 10.1109/CVPR.2005.177 10.1126/science.286.5439.531 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2020.3002843 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 4410 |
| ExternalDocumentID | 10_1109_TPAMI_2020_3002843 9119168 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Italian Ministry of Education, Universities and Research – fundername: Engineering and Physical Sciences Research Council grantid: EP/N035305/1 funderid: 10.13039/501100000266 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c372t-794e9cb60d2764fa21dbeb3d22324b24e290846eb2de140667fb34a4c8aecffe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714203900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Sep 28 06:07:17 EDT 2025 Sun Nov 09 05:59:21 EST 2025 Tue Nov 18 22:37:42 EST 2025 Sat Nov 29 05:15:59 EST 2025 Wed Aug 27 02:28:59 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-794e9cb60d2764fa21dbeb3d22324b24e290846eb2de140667fb34a4c8aecffe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4170-914X 0000-0002-9048-0524 0000-0002-0523-6042 0000-0003-2790-9591 |
| OpenAccessLink | http://hdl.handle.net/10281/350454 |
| PMID | 32750789 |
| PQID | 2592631538 |
| PQPubID | 85458 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9119168 proquest_miscellaneous_2430664194 crossref_citationtrail_10_1109_TPAMI_2020_3002843 crossref_primary_10_1109_TPAMI_2020_3002843 proquest_journals_2592631538 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | jakulin (ref36) 2005 ref13 ref12 ref58 ref52 ref10 ref17 ref19 guyon (ref18) 2004 duda (ref57) 2000 ref51 weston (ref50) 2003; 3 ref45 ref47 ref42 ref43 fleuret (ref38) 2004; 5 ref49 kemeny (ref63) 1976 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 zhou (ref56) 2019 guyon (ref72) 2003; 253 ref35 ref34 hubbard (ref61) 2001 yu (ref46) 2012; 9 denil (ref74) 2013 ref75 ref30 guyon (ref44) 2002; 46 ref33 ref2 ref1 bradley (ref11) 1998 lecun (ref73) 2010 ref39 van rooyen (ref53) 2015 yang (ref37) 2000 liu (ref28) 2008 graham (ref59) 1994 yang (ref48) 2011 ref71 ref70 guo (ref41) 2018 gordon (ref14) 2002; 62 zaffalon (ref32) 2002 (ref15) 2002; 1 ref68 ref24 yuan (ref55) 2017; 18 ref67 ref23 ref69 ref64 ref20 ref66 ref22 ref65 ref27 ref29 simonyan (ref21) 2014; abs 1409 1556 guyon (ref25) 2003; 3 he (ref26) 2005 yuan (ref54) 2014 ref60 ref62 gu (ref31) 2012; abs 1202 3725 (ref16) 2007 |
| References_xml | – start-page: 687 year: 2000 ident: ref37 article-title: Data visualization and feature selection: New algorithms for nongaussian data publication-title: Proc Advances Neural Inf Process Syst – ident: ref34 doi: 10.1007/11744023_6 – ident: ref51 doi: 10.1201/9781584888796 – year: 1976 ident: ref63 publication-title: Markov Chains – ident: ref40 doi: 10.1007/978-3-319-61461-8_2 – ident: ref47 doi: 10.1186/1471-2105-8-144 – volume: 3 start-page: 1439 year: 2003 ident: ref50 article-title: Use of the zero-norm with linear models and kernel methods publication-title: J Mach Learn Res – start-page: 507 year: 2005 ident: ref26 article-title: Laplacian score for feature selection publication-title: Proc Advances Neural Inf Process Syst – ident: ref29 doi: 10.1109/TPAMI.2005.159 – year: 2000 ident: ref57 publication-title: Pattern Classification – ident: ref69 doi: 10.1016/j.imavis.2008.11.007 – ident: ref66 doi: 10.1016/j.csda.2013.07.012 – ident: ref68 doi: 10.1109/TGRS.2009.2039484 – ident: ref35 doi: 10.1109/72.298224 – year: 2019 ident: ref56 article-title: Global and quadratic convergence of newton hard-thresholding pursuit – start-page: 2148 year: 2013 ident: ref74 article-title: Predicting parameters in deep learning publication-title: Proc Advances Neural Inf Process Syst – ident: ref71 doi: 10.1016/j.ins.2014.05.042 – ident: ref8 doi: 10.1109/TPAMI.2013.50 – ident: ref19 doi: 10.1007/s11263-014-0733-5 – ident: ref33 doi: 10.1109/TKDE.2017.2650906 – volume: 5 start-page: 1531 year: 2004 ident: ref38 article-title: Fast binary feature selection with conditional mutual information publication-title: J Mach Learn Res – ident: ref67 doi: 10.1109/TII.2012.2188804 – start-page: 127 year: 2014 ident: ref54 article-title: Gradient hard thresholding pursuit for sparsity-constrained optimization publication-title: Proc Int Conf Mach Learn – year: 2001 ident: ref61 publication-title: Vector Calculus Linear Algebra and Differential Forms A Unified Approach – ident: ref12 doi: 10.1073/pnas.96.12.6745 – year: 2008 ident: ref28 publication-title: Computational Methods of Feature Selection – volume: abs 1409 1556 year: 2014 ident: ref21 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – ident: ref20 doi: 10.1109/TPAMI.2006.79 – ident: ref10 doi: 10.1214/009053604000000067 – ident: ref45 doi: 10.1109/TCBB.2007.1028 – ident: ref7 doi: 10.1162/neco.2006.18.7.1527 – ident: ref2 doi: 10.1016/j.cviu.2007.09.014 – ident: ref65 doi: 10.1109/ICCV.2001.937550 – ident: ref9 doi: 10.1109/TPAMI.2010.215 – volume: 1 start-page: 203 year: 2002 ident: ref15 article-title: Gene expression correlates of clinical prostate cancer behavior publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – start-page: 577 year: 2002 ident: ref32 article-title: Robust feature selection using distributions of mutual information publication-title: Proc 18th Conf Uncertainty Artif Intell – start-page: 2232 year: 2018 ident: ref41 article-title: Dependence guided unsupervised feature selection publication-title: Proc AAAI Conf Artif Intell – volume: abs 1202 3725 year: 2012 ident: ref31 article-title: Generalized fisher score for feature selection publication-title: CoRR – ident: ref22 doi: 10.1109/ICCV.2017.156 – ident: ref30 doi: 10.1186/1471-2105-10-S1-S52 – year: 2005 ident: ref36 article-title: Machine learning based on attribute interactions – ident: ref52 doi: 10.1214/009053607000000929 – ident: ref43 doi: 10.1109/ICME.2017.8019357 – year: 1994 ident: ref59 publication-title: Concrete Mathematics A Foundation for Computer Science – volume: 9 start-page: 262 year: 2012 ident: ref46 article-title: Stable gene selection from microarray data via sample weighting publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2011.47 – ident: ref60 doi: 10.1088/0264-9381/13/7/034 – ident: ref62 doi: 10.1017/CBO9781139583442 – ident: ref27 doi: 10.1145/1835804.1835848 – ident: ref23 doi: 10.1109/ICCV.2015.478 – start-page: 1589 year: 2011 ident: ref48 article-title: L2,1-norm regularized discriminative feature selection for unsupervised learning publication-title: Proc Int Joint Artif Intell Conf – ident: ref75 doi: 10.1109/CVPR.2018.00958 – year: 2007 ident: ref16 article-title: GINA digit recognition database IJCNN – start-page: 545 year: 2004 ident: ref18 article-title: Result analysis of the nips 2003 feature selection challenge publication-title: Proc 17th Int Conf Neural Inf Process Syst – ident: ref17 doi: 10.1016/j.patrec.2007.02.014 – volume: 46 start-page: 1 year: 2002 ident: ref44 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 18 start-page: 6027 year: 2017 ident: ref55 article-title: Gradient hard thresholding pursuit publication-title: J Mach Learn Res – ident: ref70 doi: 10.1109/ICASSP.2018.8461858 – volume: 3 start-page: 1157 year: 2003 ident: ref25 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref42 doi: 10.1145/2783258.2783345 – volume: 253 year: 2003 ident: ref72 article-title: Design of experiments of the nips 2003 variable selection benchmark publication-title: NIPS 2003 Workshop on Feature Extraction and Feature Selection – ident: ref24 doi: 10.1016/j.compeleceng.2013.11.024 – start-page: 82 year: 1998 ident: ref11 article-title: Feature selection via concave minimization and support vector machines publication-title: Proc 15th Int Conf Mach Learn – start-page: 10 year: 2015 ident: ref53 article-title: Learning with symmetric label noise: The importance of being unhinged publication-title: Proc Advances Neural Inf Process Syst – ident: ref49 doi: 10.1137/140988875 – ident: ref3 doi: 10.1109/TIP.2017.2749145 – ident: ref58 doi: 10.1109/TNN.2008.2005601 – ident: ref39 doi: 10.1007/978-3-319-61461-8 – ident: ref1 doi: 10.1109/ICCV.1999.790410 – volume: 62 start-page: 4963 year: 2002 ident: ref14 article-title: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma publication-title: Cancer Res – ident: ref6 doi: 10.1162/089976602760128018 – ident: ref5 doi: 10.1109/ICCV.2003.1238663 – year: 2010 ident: ref73 article-title: MNIST handwritten digit database – ident: ref64 doi: 10.1017/CBO9781139020411 – ident: ref4 doi: 10.1109/CVPR.2005.177 – ident: ref13 doi: 10.1126/science.286.5439.531 |
| SSID | ssj0014503 |
| Score | 2.6660361 |
| Snippet | We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4396 |
| SubjectTerms | Computational complexity Correlation Feature extraction Feature selection filter methods Filtration Laplace equations Markov chains Markov processes Mutual information Power series Redundancy |
| Title | Infinite Feature Selection: A Graph-based Feature Filtering Approach |
| URI | https://ieeexplore.ieee.org/document/9119168 https://www.proquest.com/docview/2592631538 https://www.proquest.com/docview/2430664194 |
| Volume | 43 |
| WOSCitedRecordID | wos000714203900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6WCp402qbZpPG26KuelAEFfZW0nQKC9KVffj7ncl2i6AI3gpNS8nMZObrJN8HcEprnkqcUSFlDxdKVarQWGlDqXOnbWx0jKUXm9BPT-lgYJ5bcN6chUFEv_kML_jS9_KLkZvxr7JLw2xkKl2CJa31_KxW0zGQXa-CTBUMRTjBiMUBmchcvj73Hh8ICgpCqIwxJIvnJExsrlnd_Vs-8gIrP1Zln2r6G__7yE1Yr0vKoDf3gS1oYbUNGwu5hqCO3m1Y-8Y9uAM3D1U55IIz4CpwNsbgxUvikJ2ugl5wx0TWIee4ohnQH3JrnZ4OejUT-S689W9fr-_DWlIhdIkW05CiD43LVVQIrWRpRVzkBKcLwYVVLiQKE1FFQnC7QIJeSukyT6SVLrXoyhKTPViuRhXuQ2CZ2i9G5RRVJF0rTcqx71xX5FHSxagN8WJiM1fzjbPsxXvmcUdkMm-XjO2S1XZpw1nzzMecbePP0Ts8_c3IeubbcLSwX1YH5CQjlEdOyct7G06a2xRK3B-xFY5mNEYSflIyNvLg9zcfwqrgLS1-N8sRLE_HMzyGFfc5HU7GHfLKQdrxXvkFi7XZlw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwLdZnBG8aTTabTddbUatFLYIVvIXNZgIFSaW2_n5ntmkQFMFbIJMQdnZ25svsfh_ACa15KrJa-ZQ9rC9VoXxtpPFlktnEhDoJsXBiE0m323x91U8zcFafhUFEt_kMz_nS9fLzgR3zr7ILzWxkqjkL87GUIpyc1qp7BjJ2OshUw1CME5CYHpEJ9EXvqfXYITAoCKMyypAsnxMxtXnC-u7fMpKTWPmxLrtk017932euwUpVVHqtySxYhxksN2B1KtjgVfG7Acvf2Ac34bpTFn0uOT2uA8dD9J6dKA556tJrebdMZe1zlstrg3afm-v0tNequMi34KV907u68ytRBd9GiRj5FH-obaaCXCRKFkaEeUaAOhdcWmVCotAB1SQEuHMk8KVUUmSRNNI2DdqiwGgb5spBiTvgGSb3C1FZRTVJbKRucvRbG4ssiGIMGhBOBza1FeM4C1-8pQ55BDp1fknZL2nllwac1s-8T_g2_rTe5OGvLauRb8D-1H9pFZIfKeE8mpa8wDfguL5NwcQdElPiYEw2khCUkqGWu7-_-QgW73qPD-lDp3u_B0uCN7i4vS37MDcajvEAFuznqP8xPHRz8wvmgNv2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinite+Feature+Selection%3A+A+Graph-based+Feature+Filtering+Approach&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Roffo%2C+Giorgio&rft.au=Melzi%2C+Simone&rft.au=Castellani%2C+Umberto&rft.au=Vinciarelli%2C+Alessandro&rft.date=2021-12-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=43&rft.issue=12&rft.spage=4396&rft_id=info:doi/10.1109%2FTPAMI.2020.3002843&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |