Infinite Feature Selection: A Graph-based Feature Filtering Approach

We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 12; pp. 4396 - 4410
Main Authors: Roffo, Giorgio, Melzi, Simone, Castellani, Umberto, Vinciarelli, Alessandro, Cristani, Marco
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
AbstractList We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.
Author Roffo, Giorgio
Castellani, Umberto
Melzi, Simone
Vinciarelli, Alessandro
Cristani, Marco
Author_xml – sequence: 1
  givenname: Giorgio
  orcidid: 0000-0003-4170-914X
  surname: Roffo
  fullname: Roffo, Giorgio
  email: Giorgio.Roffo@glasgow.ac.uk
  organization: School of Computing Science, University of Glasgow, Glasgow, U.K
– sequence: 2
  givenname: Simone
  orcidid: 0000-0003-2790-9591
  surname: Melzi
  fullname: Melzi, Simone
  email: simone.melzi@univr.it
  organization: Department of Computer Science, University of Verona, Verona, Italy
– sequence: 3
  givenname: Umberto
  surname: Castellani
  fullname: Castellani, Umberto
  email: umberto.castellani@univr.it
  organization: Department of Computer Science, University of Verona, Verona, Italy
– sequence: 4
  givenname: Alessandro
  orcidid: 0000-0002-9048-0524
  surname: Vinciarelli
  fullname: Vinciarelli, Alessandro
  email: Alessandro.Vinciarelli@glasgow.ac.uk
  organization: School of Computing Science, University of Glasgow, Glasgow, U.K
– sequence: 5
  givenname: Marco
  orcidid: 0000-0002-0523-6042
  surname: Cristani
  fullname: Cristani, Marco
  email: marco.cristani@univr.it
  organization: Department of Computer Science, University of Verona, Verona, Italy
BookMark eNp9kLFOwzAQQC0EoqXwA7BEYmFJsc-OY7NVhUIlEEjAbDnOBYxCUuxk4O9JacXQgcnLe3fnd0T2m7ZBQk4ZnTJG9eXL0-xhOQUKdMopBSX4HhkDkzTVoGGfjCmTkCoFakSOYvyglImM8kMy4pBnNFd6TK6XTeUb32GyQNv1AZNnrNF1vm2ukllyG-zqPS1sxPIPWPi6w-Cbt2S2WoXWuvdjclDZOuLJ9p2Q18XNy_wuvX-8Xc5n96njOXRprgVqV0haQi5FZYGVBRa8BOAgChAImiohsYASmaBS5lXBhRVOWXRVhXxCLjZzh7VfPcbOfProsK5tg20fDQg-WIJpMaDnO-hH24dmuM5ApkFylnE1UGpDudDGGLAyznd2_fkuWF8bRs26tPktbdalzbb0oMKOugr-04bv_6WzjeQR8U_QjGkmFf8BsKqIZw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111985
crossref_primary_10_1109_TETCI_2024_3398027
crossref_primary_10_1109_TNNLS_2023_3325199
crossref_primary_10_1002_aisy_202500044
crossref_primary_10_1016_j_ins_2022_08_066
crossref_primary_10_1016_j_ins_2023_119526
crossref_primary_10_1109_TKDE_2024_3397878
crossref_primary_10_1007_s13042_024_02385_z
crossref_primary_10_1109_JSEN_2023_3346495
crossref_primary_10_1007_s13042_022_01695_4
crossref_primary_10_1016_j_iot_2025_101586
crossref_primary_10_3390_a13110302
crossref_primary_10_1109_TFUZZ_2022_3185285
crossref_primary_10_3390_axioms13010006
crossref_primary_10_1016_j_ins_2023_119241
crossref_primary_10_1109_TII_2025_3534417
crossref_primary_10_1007_s42979_024_03590_x
crossref_primary_10_1016_j_apm_2023_08_043
crossref_primary_10_1016_j_ins_2025_122308
crossref_primary_10_1109_TNNLS_2024_3460796
crossref_primary_10_1016_j_swevo_2025_101995
crossref_primary_10_1007_s10489_025_06474_6
crossref_primary_10_1109_TIM_2023_3267351
crossref_primary_10_1186_s12859_024_06017_9
crossref_primary_10_1016_j_knosys_2025_114338
crossref_primary_10_1007_s12559_024_10399_6
crossref_primary_10_1016_j_asoc_2024_111915
crossref_primary_10_1109_TKDE_2022_3222447
crossref_primary_10_1016_j_eswa_2024_126152
crossref_primary_10_1088_1361_6501_ad4734
crossref_primary_10_1080_08839514_2022_2112545
crossref_primary_10_1109_TETCI_2023_3300183
crossref_primary_10_1007_s10044_023_01189_1
crossref_primary_10_1109_TKDE_2024_3428485
crossref_primary_10_1109_ACCESS_2021_3083703
crossref_primary_10_1109_TNNLS_2023_3263684
crossref_primary_10_1080_00207543_2024_2423802
crossref_primary_10_1007_s00521_023_08508_x
crossref_primary_10_1016_j_ins_2022_10_093
crossref_primary_10_1109_TFUZZ_2023_3287193
crossref_primary_10_3390_electronics13122405
crossref_primary_10_2478_acss_2022_0002
crossref_primary_10_1016_j_asoc_2025_112716
crossref_primary_10_1016_j_ymssp_2023_110145
crossref_primary_10_1177_18724981251350686
crossref_primary_10_1007_s12559_023_10230_8
crossref_primary_10_1016_j_ins_2022_07_154
crossref_primary_10_1109_TEVC_2025_3533490
crossref_primary_10_1016_j_asoc_2025_113301
crossref_primary_10_1002_int_23074
crossref_primary_10_1186_s13638_023_02292_x
crossref_primary_10_1016_j_ins_2022_10_087
crossref_primary_10_1007_s10489_022_03465_9
crossref_primary_10_3390_e26110992
crossref_primary_10_1186_s40537_024_00934_5
crossref_primary_10_1016_j_knosys_2025_114119
crossref_primary_10_1109_ACCESS_2024_3361936
crossref_primary_10_1016_j_knosys_2025_114076
crossref_primary_10_1109_TKDE_2025_3591515
crossref_primary_10_1109_TPAMI_2023_3238011
crossref_primary_10_1177_14759217221134050
crossref_primary_10_3390_bioengineering10070824
crossref_primary_10_32604_cmc_2024_057103
crossref_primary_10_1109_TPAMI_2022_3228824
crossref_primary_10_1109_TPAMI_2023_3311617
crossref_primary_10_1109_JBHI_2023_3269814
crossref_primary_10_1109_TETCI_2022_3225550
crossref_primary_10_1111_jon_12991
crossref_primary_10_1016_j_inffus_2023_101860
crossref_primary_10_1016_j_asoc_2025_113468
crossref_primary_10_1007_s00170_025_15097_7
crossref_primary_10_3390_app11188420
crossref_primary_10_3390_ijms24032597
crossref_primary_10_1109_ACCESS_2021_3135536
crossref_primary_10_1007_s10115_025_02423_4
crossref_primary_10_1109_TIP_2023_3348992
crossref_primary_10_1016_j_compbiomed_2025_109944
crossref_primary_10_1109_ACCESS_2022_3185129
crossref_primary_10_1016_j_fss_2024_108971
crossref_primary_10_1109_TCBB_2023_3314432
crossref_primary_10_1007_s10921_025_01247_0
crossref_primary_10_1016_j_ins_2024_120214
crossref_primary_10_1016_j_neunet_2023_10_020
crossref_primary_10_1109_TCYB_2022_3160244
crossref_primary_10_1007_s11517_023_02982_0
crossref_primary_10_1016_j_knosys_2024_112770
crossref_primary_10_1007_s10515_025_00510_y
crossref_primary_10_1016_j_ijar_2024_109218
crossref_primary_10_1016_j_ins_2021_11_063
crossref_primary_10_1016_j_neucom_2025_131572
crossref_primary_10_1016_j_inffus_2025_103544
crossref_primary_10_1007_s13042_023_01775_z
crossref_primary_10_1109_TNSRE_2025_3557275
crossref_primary_10_1007_s13042_022_01528_4
crossref_primary_10_1177_14759217211001704
crossref_primary_10_1109_TEVC_2023_3234113
crossref_primary_10_1109_TPAMI_2025_3569279
crossref_primary_10_1109_TAI_2025_3538549
crossref_primary_10_1016_j_patcog_2022_109007
crossref_primary_10_1016_j_patcog_2023_109449
crossref_primary_10_1080_00207543_2024_2403111
crossref_primary_10_1109_TKDE_2024_3419215
crossref_primary_10_1109_TPAMI_2024_3416196
crossref_primary_10_1016_j_eswa_2025_129650
crossref_primary_10_1016_j_marpetgeo_2022_105772
crossref_primary_10_1016_j_ejor_2025_07_014
crossref_primary_10_1109_ACCESS_2025_3583461
crossref_primary_10_1007_s13042_022_01618_3
crossref_primary_10_1016_j_knosys_2022_110246
crossref_primary_10_1038_s41598_024_53141_w
crossref_primary_10_3389_fnins_2025_1609547
crossref_primary_10_1177_00202940231173748
crossref_primary_10_1016_j_measurement_2023_112835
crossref_primary_10_1109_TKDE_2022_3220200
crossref_primary_10_1109_TCBBIO_2025_3571424
crossref_primary_10_1016_j_ins_2023_01_046
crossref_primary_10_1016_j_knosys_2025_113062
crossref_primary_10_1016_j_swevo_2025_102118
crossref_primary_10_1016_j_patcog_2025_112084
crossref_primary_10_1016_j_ins_2024_121524
Cites_doi 10.1007/11744023_6
10.1201/9781584888796
10.1007/978-3-319-61461-8_2
10.1186/1471-2105-8-144
10.1109/TPAMI.2005.159
10.1016/j.imavis.2008.11.007
10.1016/j.csda.2013.07.012
10.1109/TGRS.2009.2039484
10.1109/72.298224
10.1016/j.ins.2014.05.042
10.1109/TPAMI.2013.50
10.1007/s11263-014-0733-5
10.1109/TKDE.2017.2650906
10.1109/TII.2012.2188804
10.1073/pnas.96.12.6745
10.1109/TPAMI.2006.79
10.1214/009053604000000067
10.1109/TCBB.2007.1028
10.1162/neco.2006.18.7.1527
10.1016/j.cviu.2007.09.014
10.1109/ICCV.2001.937550
10.1109/TPAMI.2010.215
10.1016/S1535-6108(02)00030-2
10.1109/ICCV.2017.156
10.1186/1471-2105-10-S1-S52
10.1214/009053607000000929
10.1109/ICME.2017.8019357
10.1109/TCBB.2011.47
10.1088/0264-9381/13/7/034
10.1017/CBO9781139583442
10.1145/1835804.1835848
10.1109/ICCV.2015.478
10.1109/CVPR.2018.00958
10.1016/j.patrec.2007.02.014
10.1023/A:1012487302797
10.1109/ICASSP.2018.8461858
10.1145/2783258.2783345
10.1016/j.compeleceng.2013.11.024
10.1137/140988875
10.1109/TIP.2017.2749145
10.1109/TNN.2008.2005601
10.1007/978-3-319-61461-8
10.1109/ICCV.1999.790410
10.1162/089976602760128018
10.1109/ICCV.2003.1238663
10.1017/CBO9781139020411
10.1109/CVPR.2005.177
10.1126/science.286.5439.531
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3002843
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 4410
ExternalDocumentID 10_1109_TPAMI_2020_3002843
9119168
Genre orig-research
GrantInformation_xml – fundername: Italian Ministry of Education, Universities and Research
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N035305/1
  funderid: 10.13039/501100000266
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c372t-794e9cb60d2764fa21dbeb3d22324b24e290846eb2de140667fb34a4c8aecffe3
IEDL.DBID RIE
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714203900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 06:07:17 EDT 2025
Sun Nov 09 05:59:21 EST 2025
Tue Nov 18 22:37:42 EST 2025
Sat Nov 29 05:15:59 EST 2025
Wed Aug 27 02:28:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-794e9cb60d2764fa21dbeb3d22324b24e290846eb2de140667fb34a4c8aecffe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4170-914X
0000-0002-9048-0524
0000-0002-0523-6042
0000-0003-2790-9591
OpenAccessLink http://hdl.handle.net/10281/350454
PMID 32750789
PQID 2592631538
PQPubID 85458
PageCount 15
ParticipantIDs ieee_primary_9119168
proquest_miscellaneous_2430664194
crossref_citationtrail_10_1109_TPAMI_2020_3002843
crossref_primary_10_1109_TPAMI_2020_3002843
proquest_journals_2592631538
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References jakulin (ref36) 2005
ref13
ref12
ref58
ref52
ref10
ref17
ref19
guyon (ref18) 2004
duda (ref57) 2000
ref51
weston (ref50) 2003; 3
ref45
ref47
ref42
ref43
fleuret (ref38) 2004; 5
ref49
kemeny (ref63) 1976
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
zhou (ref56) 2019
guyon (ref72) 2003; 253
ref35
ref34
hubbard (ref61) 2001
yu (ref46) 2012; 9
denil (ref74) 2013
ref75
ref30
guyon (ref44) 2002; 46
ref33
ref2
ref1
bradley (ref11) 1998
lecun (ref73) 2010
ref39
van rooyen (ref53) 2015
yang (ref37) 2000
liu (ref28) 2008
graham (ref59) 1994
yang (ref48) 2011
ref71
ref70
guo (ref41) 2018
gordon (ref14) 2002; 62
zaffalon (ref32) 2002
(ref15) 2002; 1
ref68
ref24
yuan (ref55) 2017; 18
ref67
ref23
ref69
ref64
ref20
ref66
ref22
ref65
ref27
ref29
simonyan (ref21) 2014; abs 1409 1556
guyon (ref25) 2003; 3
he (ref26) 2005
yuan (ref54) 2014
ref60
ref62
gu (ref31) 2012; abs 1202 3725
(ref16) 2007
References_xml – start-page: 687
  year: 2000
  ident: ref37
  article-title: Data visualization and feature selection: New algorithms for nongaussian data
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref34
  doi: 10.1007/11744023_6
– ident: ref51
  doi: 10.1201/9781584888796
– year: 1976
  ident: ref63
  publication-title: Markov Chains
– ident: ref40
  doi: 10.1007/978-3-319-61461-8_2
– ident: ref47
  doi: 10.1186/1471-2105-8-144
– volume: 3
  start-page: 1439
  year: 2003
  ident: ref50
  article-title: Use of the zero-norm with linear models and kernel methods
  publication-title: J Mach Learn Res
– start-page: 507
  year: 2005
  ident: ref26
  article-title: Laplacian score for feature selection
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref29
  doi: 10.1109/TPAMI.2005.159
– year: 2000
  ident: ref57
  publication-title: Pattern Classification
– ident: ref69
  doi: 10.1016/j.imavis.2008.11.007
– ident: ref66
  doi: 10.1016/j.csda.2013.07.012
– ident: ref68
  doi: 10.1109/TGRS.2009.2039484
– ident: ref35
  doi: 10.1109/72.298224
– year: 2019
  ident: ref56
  article-title: Global and quadratic convergence of newton hard-thresholding pursuit
– start-page: 2148
  year: 2013
  ident: ref74
  article-title: Predicting parameters in deep learning
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref71
  doi: 10.1016/j.ins.2014.05.042
– ident: ref8
  doi: 10.1109/TPAMI.2013.50
– ident: ref19
  doi: 10.1007/s11263-014-0733-5
– ident: ref33
  doi: 10.1109/TKDE.2017.2650906
– volume: 5
  start-page: 1531
  year: 2004
  ident: ref38
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J Mach Learn Res
– ident: ref67
  doi: 10.1109/TII.2012.2188804
– start-page: 127
  year: 2014
  ident: ref54
  article-title: Gradient hard thresholding pursuit for sparsity-constrained optimization
  publication-title: Proc Int Conf Mach Learn
– year: 2001
  ident: ref61
  publication-title: Vector Calculus Linear Algebra and Differential Forms A Unified Approach
– ident: ref12
  doi: 10.1073/pnas.96.12.6745
– year: 2008
  ident: ref28
  publication-title: Computational Methods of Feature Selection
– volume: abs 1409 1556
  year: 2014
  ident: ref21
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– ident: ref20
  doi: 10.1109/TPAMI.2006.79
– ident: ref10
  doi: 10.1214/009053604000000067
– ident: ref45
  doi: 10.1109/TCBB.2007.1028
– ident: ref7
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref2
  doi: 10.1016/j.cviu.2007.09.014
– ident: ref65
  doi: 10.1109/ICCV.2001.937550
– ident: ref9
  doi: 10.1109/TPAMI.2010.215
– volume: 1
  start-page: 203
  year: 2002
  ident: ref15
  article-title: Gene expression correlates of clinical prostate cancer behavior
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00030-2
– start-page: 577
  year: 2002
  ident: ref32
  article-title: Robust feature selection using distributions of mutual information
  publication-title: Proc 18th Conf Uncertainty Artif Intell
– start-page: 2232
  year: 2018
  ident: ref41
  article-title: Dependence guided unsupervised feature selection
  publication-title: Proc AAAI Conf Artif Intell
– volume: abs 1202 3725
  year: 2012
  ident: ref31
  article-title: Generalized fisher score for feature selection
  publication-title: CoRR
– ident: ref22
  doi: 10.1109/ICCV.2017.156
– ident: ref30
  doi: 10.1186/1471-2105-10-S1-S52
– year: 2005
  ident: ref36
  article-title: Machine learning based on attribute interactions
– ident: ref52
  doi: 10.1214/009053607000000929
– ident: ref43
  doi: 10.1109/ICME.2017.8019357
– year: 1994
  ident: ref59
  publication-title: Concrete Mathematics A Foundation for Computer Science
– volume: 9
  start-page: 262
  year: 2012
  ident: ref46
  article-title: Stable gene selection from microarray data via sample weighting
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2011.47
– ident: ref60
  doi: 10.1088/0264-9381/13/7/034
– ident: ref62
  doi: 10.1017/CBO9781139583442
– ident: ref27
  doi: 10.1145/1835804.1835848
– ident: ref23
  doi: 10.1109/ICCV.2015.478
– start-page: 1589
  year: 2011
  ident: ref48
  article-title: L2,1-norm regularized discriminative feature selection for unsupervised learning
  publication-title: Proc Int Joint Artif Intell Conf
– ident: ref75
  doi: 10.1109/CVPR.2018.00958
– year: 2007
  ident: ref16
  article-title: GINA digit recognition database IJCNN
– start-page: 545
  year: 2004
  ident: ref18
  article-title: Result analysis of the nips 2003 feature selection challenge
  publication-title: Proc 17th Int Conf Neural Inf Process Syst
– ident: ref17
  doi: 10.1016/j.patrec.2007.02.014
– volume: 46
  start-page: 1
  year: 2002
  ident: ref44
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 18
  start-page: 6027
  year: 2017
  ident: ref55
  article-title: Gradient hard thresholding pursuit
  publication-title: J Mach Learn Res
– ident: ref70
  doi: 10.1109/ICASSP.2018.8461858
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref25
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref42
  doi: 10.1145/2783258.2783345
– volume: 253
  year: 2003
  ident: ref72
  article-title: Design of experiments of the nips 2003 variable selection benchmark
  publication-title: NIPS 2003 Workshop on Feature Extraction and Feature Selection
– ident: ref24
  doi: 10.1016/j.compeleceng.2013.11.024
– start-page: 82
  year: 1998
  ident: ref11
  article-title: Feature selection via concave minimization and support vector machines
  publication-title: Proc 15th Int Conf Mach Learn
– start-page: 10
  year: 2015
  ident: ref53
  article-title: Learning with symmetric label noise: The importance of being unhinged
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref49
  doi: 10.1137/140988875
– ident: ref3
  doi: 10.1109/TIP.2017.2749145
– ident: ref58
  doi: 10.1109/TNN.2008.2005601
– ident: ref39
  doi: 10.1007/978-3-319-61461-8
– ident: ref1
  doi: 10.1109/ICCV.1999.790410
– volume: 62
  start-page: 4963
  year: 2002
  ident: ref14
  article-title: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
  publication-title: Cancer Res
– ident: ref6
  doi: 10.1162/089976602760128018
– ident: ref5
  doi: 10.1109/ICCV.2003.1238663
– year: 2010
  ident: ref73
  article-title: MNIST handwritten digit database
– ident: ref64
  doi: 10.1017/CBO9781139020411
– ident: ref4
  doi: 10.1109/CVPR.2005.177
– ident: ref13
  doi: 10.1126/science.286.5439.531
SSID ssj0014503
Score 2.6660361
Snippet We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4396
SubjectTerms Computational complexity
Correlation
Feature extraction
Feature selection
filter methods
Filtration
Laplace equations
Markov chains
Markov processes
Mutual information
Power series
Redundancy
Title Infinite Feature Selection: A Graph-based Feature Filtering Approach
URI https://ieeexplore.ieee.org/document/9119168
https://www.proquest.com/docview/2592631538
https://www.proquest.com/docview/2430664194
Volume 43
WOSCitedRecordID wos000714203900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2SkEN6aNp80G3T4EJvjZu1JOujt6XJNjk0BJrC3owljWCheMtmt7-_M1qvCbQUejN4JIxGI83zSO8BvLepdr6qZOkcGgIoPpWtibK0odLC116KdiM2Ye7u7Gzm7nfgYrgLg4j58Bl-5Mdcy4-LsOZfZZeO2ci03YVdY8zmrtZQMVB1VkGmDIYinGDE9oLM2F0-3E--3hIUFIRQGWMoFs-RTGxuWN39yX6UBVb-WJXzVjM9_L-PfAHP-5SymGzmwEvYwe4IDrdyDUUfvUfw7An34DFc3XZpzglnwVngeonFtyyJQ376VEyKL0xkXfIeFweD6ZxL69S6mPRM5CfwfXr98Pmm7CUVyiCNWJUUfeiC1-MojFapFVX0BKej4MTKC4XCjSkjIbgdkaCX1iZ5qVoVbIshJZSnsNctOnwFRR2SD6iwTbFSbW19tJY6R5RYO416BNV2YJvQ842z7MWPJuOOsWuyXxr2S9P7ZQQfhjY_N2wb_7Q-5uEfLPuRH8HZ1n9NH5CPDaE8oSUv7yN4N7ymUOL6SNvhYk02ivCTVpVTr__e8xs4EHykJZ9mOYO91XKNb2E__FrNH5fnNCtn9jzPyt_4EtuJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED66rrD2YV3blabtNhf6tnmNJVm29ha2ZQ1rQ2EZ9M1Y0gkCxSlp0t_fO8UxhY3B3gw-CaPTSff5pO8DOC9DbmyWydQYLAig2JDWhZdp6TItbG6lqFdiE8V4XN7empsN-NTdhUHEePgMP_NjrOX7mVvyr7ILw2xkunwBL3OlRLa6rdXVDFQedZAph6EYJyCxviLTNxeTm8H1iMCgIIzKKEOxfI5kavOC9d2f7UhRYuWPdTluNsPd__vMN_C6TSqTwWoW7MEGNvuwuxZsSNr43YedZ-yDB_Bt1IQpp5wJ54HLOSa_oigOeepLMkh-MJV1yruc7wyGUy6uU-tk0HKRv4Xfw--Tr5dpK6qQOlmIRUrxh8ZZ3fei0CrUIvOWALUXnFpZoVCYPuUkBLg9EvjSughWqlq5skYXAspD2GxmDR5BkrtgHSqsg89UnZfWlyV1jigxNxp1D7L1wFauZRxn4Yu7KiKPvqmiXyr2S9X6pQcfuzb3K76Nf1of8PB3lu3I9-B07b-qDcmHinCe0JIX-B6cda8pmLhCUjc4W5KNIgSlVWbU8d97_gCvLifXV9XVaPzzBLYFH3CJZ1tOYXMxX-I72HKPi-nD_H2cm09e7t3o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinite+Feature+Selection%3A+A+Graph-based+Feature+Filtering+Approach&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Roffo%2C+Giorgio&rft.au=Melzi%2C+Simone&rft.au=Castellani%2C+Umberto&rft.au=Vinciarelli%2C+Alessandro&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=12&rft.spage=4396&rft_id=info:doi/10.1109%2FTPAMI.2020.3002843&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon