Topological data analysis: Concepts, computation, and applications in chemical engineering

A primary hypothesis that drives scientific and engineering studies is that data has structure. The dominant paradigms for describing such structure are statistics (e.g., moments, correlation functions) and signal processing (e.g., convolutional neural nets, Fourier series). Topological Data Analysi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 146; s. 107202
Hlavní autoři: Smith, Alexander D., Dłotko, Paweł, Zavala, Victor M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2021
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A primary hypothesis that drives scientific and engineering studies is that data has structure. The dominant paradigms for describing such structure are statistics (e.g., moments, correlation functions) and signal processing (e.g., convolutional neural nets, Fourier series). Topological Data Analysis (TDA) is a field of mathematics that analyzes data from a fundamentally different perspective. TDA represents datasets as geometric objects and provides dimensionality reduction techniques that project such objects onto low-dimensional descriptors. The key properties of these descriptors (also known as topological features) are that they provide multiscale information and that they are stable under perturbations (e.g., noise, translation, and rotation). In this work, we review the key mathematical concepts and methods of TDA and present different applications in chemical engineering.
ISSN:0098-1354
1873-4375
DOI:10.1016/j.compchemeng.2020.107202