Colorectal Cancer Diagnostic Algorithm Based on Sub-Patch Weight Color Histogram in Combination of Improved Least Squares Support Vector Machine for Pathological Image

In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color his...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems Vol. 43; no. 9; pp. 306 - 9
Main Authors: Yang, Kai, Zhou, Bi, Yi, Fei, Chen, Yan, Chen, Yingsheng
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2019
Springer Nature B.V
Subjects:
ISSN:0148-5598, 1573-689X, 1573-689X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms.
AbstractList In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms.In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms.
In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms.
ArticleNumber 306
Author Chen, Yingsheng
Yi, Fei
Chen, Yan
Yang, Kai
Zhou, Bi
Author_xml – sequence: 1
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science, Shanghai University of Traditional Chinese Medicine
– sequence: 2
  givenname: Bi
  surname: Zhou
  fullname: Zhou, Bi
  organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science
– sequence: 3
  givenname: Fei
  surname: Yi
  fullname: Yi, Fei
  organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science
– sequence: 4
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
  organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science
– sequence: 5
  givenname: Yingsheng
  surname: Chen
  fullname: Chen, Yingsheng
  email: chengyingsheng@hotmail.com
  organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science, Shanghai University of Traditional Chinese Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31410693$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFB2CDLLFhE_BPYifLMqV0pEEglb-d5ThO4iqxp7aDxBP1NbnTaYVUCVa2rr5z7tE9J-jIB28ReknJW0qIfJcoaagoCG0KWrKmqJ-gFa0kL0Td_DxCK0LLuqiqpj5GJyldE0IaIeQzdMxpSYlo-ArdrsMUojVZT3itvbERnzs9-JCyM_hsGkJ0eZzxe51sh4PHV0tbfNHZjPiHdcOY8Z0BvnQphyHqGTsPo7l1XmcHfOjxZt7F8AvkW6tTxlc3i442gdNuF2LG32E7OHzSZnTe4h7-sGAE28EZiLWZ9WCfo6e9npJ9cf-eom8XH76uL4vt54-b9dm2MFyyXEjOGik7yjvDDWUd0aKp-7rtOtMzLVvT077iFdykq9q2tbLmwmrBZCVpDyN-it4cfCHyzWJTVrNLxk6T9jYsSTEGK6ggVQno60fodViih3R7iglWciGAenVPLe1sO7WLbtbxt3qoAAB5AEwMKUXbK-Py3e1y1G5SlKh92epQtoKy1b5sVYOSPlI-mP9Pww6aBKwfbPwb-t-iP8MovWo
CitedBy_id crossref_primary_10_1038_s41598_021_93746_z
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_3389_fgene_2022_842127
crossref_primary_10_1108_DTA_06_2024_0647
crossref_primary_10_1016_j_bbe_2021_09_003
crossref_primary_10_1016_j_optlaseng_2022_107225
crossref_primary_10_3390_math11244937
crossref_primary_10_3748_wjg_v27_i18_2122
Cites_doi 10.1007/978-3-642-23672-3_10
10.1023/A:1025667309714
10.1007/s10916-009-9299-0
10.1046/j.1460-9568.2000.00109.x
10.1007/s10586-018-2026-1
10.1007/s10916-018-1116-1
10.1109/ICICTA.2011.223
10.2174/1871527315666161024142036
10.1016/j.jbi.2010.12.003
10.1109/IranianMVIP.2011.6121589
10.1007/s12032-010-9663-4
10.1088/1742-6596/787/1/012008
10.1109/NSSMIC.2012.6551903
10.1016/S1532-0464(02)00501-4
10.1007/s11548-014-0991-2
10.1016/j.media.2012.08.003
10.1136/jcp.50.4.358
10.1109/ICBBE.2010.5514710
10.1016/j.engappai.2006.01.011
10.1109/TITB.2003.822952
10.1080/00032719.2014.915410
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s10916-019-1429-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 9
ExternalDocumentID 31410693
10_1007_s10916_019_1429_8
Genre Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China (No.81571773, 81781771943)
  grantid: (No.81571773, 81781771943)
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-732977d13dc3c12d0a698f8bddcf2a7bcf1f535559d5bbbe7836ea627571fd5b3
IEDL.DBID 7X7
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480763400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Fri Sep 05 14:45:51 EDT 2025
Tue Nov 04 22:23:59 EST 2025
Wed Feb 19 02:32:14 EST 2025
Tue Nov 18 21:58:09 EST 2025
Sat Nov 29 05:35:01 EST 2025
Fri Feb 21 02:37:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Pathological image
Colon cancer
Morlet wavelet
Diagnostic
Color histogram
Support vector machine
RelicfF strategy
Sub-patch weight
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-732977d13dc3c12d0a698f8bddcf2a7bcf1f535559d5bbbe7836ea627571fd5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31410693
PQID 2272624366
PQPubID 54050
PageCount 9
ParticipantIDs proquest_miscellaneous_2273216054
proquest_journals_2272624366
pubmed_primary_31410693
crossref_citationtrail_10_1007_s10916_019_1429_8
crossref_primary_10_1007_s10916_019_1429_8
springer_journals_10_1007_s10916_019_1429_8
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shi, W., Dongkai, J., Ke, W., Application of modified wavelet features and multi-class sphere SVM to pathological vocal detection[C]. Seventh International Conference on Natural Computation. IEEE, pp:1290-1298, 2011.
Xia, Kai Jian, H. S. Yin, and J. Q. Wang. "A novel improved deep convolutional neural network model for medical image fusion." Cluster Computing, 23(20):1-13, 2018.
BerettaLSantanielloImplementing ReliefF filters to extract meaningful features from genetic lifetime datasets[J]J. Biomed. Inform.201144236136910.1016/j.jbi.2010.12.003
Wang, C., Guan, Y., Zuo, C., et al., Value of the texture feature for solitary pulmonary nodules and mass lesions based on PET/CT[C]. International Conference on Bioinformatics & Biomedical Engineering. 2010.
ThonNHaasCARauchUThe chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats.[J]Eur. J. Neurosci.20101272547255810.1046/j.1460-9568.2000.00109.x
Malekian, V., Mokhtari, M., Sadri, S., et al., Detection of collagenous colitis based on histopathology image segmentation of colon[C]// Iranian Conference on Machine Vision & Image Processing. IEEE, 2011.
WangHHuangGApplication of support vector machine in cancer diagnosis[J]Med. Oncol.2011281 Supplement6136181:CAS:528:DC%2BC3MXhs1Kru7vI10.1007/s12032-010-9663-4
Song, B., Zhang, G., Wang, H., et al., A feasibility study of high order texture features with application to pathological diagnosis of colon lesions for CT Colonography[C]. Nuclear Science Symposium & Medical Imaging Conference. IEEE, 2013.
RamellaGiulianaSanniti di BajaGabriellaColor Histogram-Based Image SegmentationComputer Analysis of Images and Patterns2011Berlin, HeidelbergSpringer Berlin Heidelberg768310.1007/978-3-642-23672-3_10
Xia K J, Yin H S, Zhang Y D. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm[J]. Journal of Medical Systems, 2019, 43(1):2.
LiSFevensTKrzy AkAAutomatic clinical image segmentation using pathological modeling, PCA and SVM[J]Eng. Appl. Artif. Intell.200619440341010.1016/j.engappai.2006.01.011
KandeGBSubbaiahPVSavithriTSUnsupervised fuzzy based vessel segmentation in pathological digital fundus images[J]J. Med. Syst.201034584985810.1007/s10916-009-9299-0
Cataldo, S. D., Ficarra, E., and Macii, E., Automated discrimination of pathological regions in tissue images: Unsupervised clustering vs. supervised SVM classification[C]. International Joint Conference on Biomedical Engineering Systems and Technologies. Springer, Berlin, Heidelberg, pp:2100-2111, 2008.
JinYFayadLLaineAFContrast enhancement by multi-scale adaptive histogram equalization[J]Proc. SPIE Int. Soc. Opt. Eng.20014478206213
Hong, Y., Wei, H, and Zeng-Li, L., Research for the colon cancer based on the EMD and LS-SVM[C]. Fourth International Conference on Intelligent Computation Technology & Automation. IEEE Computer Society, 24(7):329-331, 2011.
TamakiToruYoshimutaJunkiKawakamiMisatoRaytchevBisserKanedaKazufumiYoshidaShigetoTakemuraYoshitoOnjiKeiichiMiyakiRieTanakaShinjiComputer-aided colorectal tumor classification in NBI endoscopy using local featuresMedical Image Analysis20131717810010.1016/j.media.2012.08.003
Mizaku, A, and Land, W. H., Biomolecular feature selection of colorectal cancer microarray data using GA-SVM hybrid and noise perturbation to address overfitting[J]. Dissertations & Theses -Gradworks, 12(1):64-76, 2009.
Majhi, B., Dash, R., and Nayak, D. R., Stationary wavelet transform and AdaBoost with SVM based pathological brain detection in MRI scanning[J]. CNS Neurol. Disord. Drug Targets 16(2):32-44, 2017.
NoneColorectal cancer pathology reporting: A regional audit[J]J. Clin. Pathol.199750435835810.1136/jcp.50.4.358
Sammouda, M, and Mukai, K., Diagnosis of liver cancer based on the analysis of pathological liver color images[C]. Medical Imaging: Image Processing. International Society for Optics and Photonics, pp:12-21, 2000.
Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[C]// Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference. 0.
Robnik-ŠIkonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefF[J]Mach. Learn.2003531–2236910.1023/A:1025667309714
ChenHTanCWuHFeasibility of rapid diagnosis of colorectal cancer by near-infrared spectroscopy and support vector machine[J]Anal. Lett.201447152580259310.1080/00032719.2014.915410
Cataldo,Wang S, Huo J, et al. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction[C]// Journal of Physics Conference Series. pp:1-11, 2017.
Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[J]. Computer and Computing Technologies in Agriculture IV, 22(12):872-880, 2016.
SammoudaMSammoudaRNikiNCancerous nuclei detection on digitized pathological lung color images[J]J. Biomed. Inform.2002352929810.1016/S1532-0464(02)00501-4
ShunjiTJunjiTAtsukoHRole of early phase helical CT images in the evaluation of wall invasion of colorectal cancer: Pathological correlation[J]Nihon Igaku Hōshasen Gakkai Zasshi Nippon Acta Radiologica2000603871:STN:280:DC%2BD3c3gsFarug%3D%3D10741115
Song, B., Zhang, G., Zhu, H., et al., A feasibility study of high order volumetric texture features for computer aided diagnosis of polyps via CT colonography[C]. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). pp:719-724, 2012.
SongBZhangGLuHVolumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography[J]Int. J. Comput. Assist. Radiol. Surg.2014961021103110.1007/s11548-014-0991-2
ZhengLWetzelAWGilbertsonJDesign and analysis of a content-based pathology image retrieval system[J]IEEE Trans. Inf. Technol. Biomed.20047424925510.1109/TITB.2003.822952
1429_CR22
L Beretta (1429_CR16) 2011; 44
1429_CR23
GB Kande (1429_CR28) 2010; 34
1429_CR24
1429_CR25
1429_CR21
None (1429_CR12) 1997; 50
S Li (1429_CR6) 2006; 19
Toru Tamaki (1429_CR5) 2013; 17
M Robnik-ŠIkonja (1429_CR15) 2003; 53
L Zheng (1429_CR27) 2004; 7
M Sammouda (1429_CR26) 2002; 35
1429_CR17
T Shunji (1429_CR11) 2000; 60
1429_CR18
Y Jin (1429_CR30) 2001; 4478
1429_CR9
1429_CR13
1429_CR8
1429_CR14
1429_CR7
Giuliana Ramella (1429_CR29) 2011
1429_CR4
1429_CR10
B Song (1429_CR19) 2014; 9
1429_CR1
H Chen (1429_CR3) 2014; 47
N Thon (1429_CR20) 2010; 12
H Wang (1429_CR2) 2011; 28
31713093 - J Med Syst. 2019 Nov 12;43(12):333
References_xml – reference: Wang, C., Guan, Y., Zuo, C., et al., Value of the texture feature for solitary pulmonary nodules and mass lesions based on PET/CT[C]. International Conference on Bioinformatics & Biomedical Engineering. 2010.
– reference: Robnik-ŠIkonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefF[J]Mach. Learn.2003531–2236910.1023/A:1025667309714
– reference: RamellaGiulianaSanniti di BajaGabriellaColor Histogram-Based Image SegmentationComputer Analysis of Images and Patterns2011Berlin, HeidelbergSpringer Berlin Heidelberg768310.1007/978-3-642-23672-3_10
– reference: Malekian, V., Mokhtari, M., Sadri, S., et al., Detection of collagenous colitis based on histopathology image segmentation of colon[C]// Iranian Conference on Machine Vision & Image Processing. IEEE, 2011.
– reference: Song, B., Zhang, G., Wang, H., et al., A feasibility study of high order texture features with application to pathological diagnosis of colon lesions for CT Colonography[C]. Nuclear Science Symposium & Medical Imaging Conference. IEEE, 2013.
– reference: ZhengLWetzelAWGilbertsonJDesign and analysis of a content-based pathology image retrieval system[J]IEEE Trans. Inf. Technol. Biomed.20047424925510.1109/TITB.2003.822952
– reference: Majhi, B., Dash, R., and Nayak, D. R., Stationary wavelet transform and AdaBoost with SVM based pathological brain detection in MRI scanning[J]. CNS Neurol. Disord. Drug Targets 16(2):32-44, 2017.
– reference: NoneColorectal cancer pathology reporting: A regional audit[J]J. Clin. Pathol.199750435835810.1136/jcp.50.4.358
– reference: SongBZhangGLuHVolumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography[J]Int. J. Comput. Assist. Radiol. Surg.2014961021103110.1007/s11548-014-0991-2
– reference: TamakiToruYoshimutaJunkiKawakamiMisatoRaytchevBisserKanedaKazufumiYoshidaShigetoTakemuraYoshitoOnjiKeiichiMiyakiRieTanakaShinjiComputer-aided colorectal tumor classification in NBI endoscopy using local featuresMedical Image Analysis20131717810010.1016/j.media.2012.08.003
– reference: JinYFayadLLaineAFContrast enhancement by multi-scale adaptive histogram equalization[J]Proc. SPIE Int. Soc. Opt. Eng.20014478206213
– reference: Shi, W., Dongkai, J., Ke, W., Application of modified wavelet features and multi-class sphere SVM to pathological vocal detection[C]. Seventh International Conference on Natural Computation. IEEE, pp:1290-1298, 2011.
– reference: KandeGBSubbaiahPVSavithriTSUnsupervised fuzzy based vessel segmentation in pathological digital fundus images[J]J. Med. Syst.201034584985810.1007/s10916-009-9299-0
– reference: BerettaLSantanielloImplementing ReliefF filters to extract meaningful features from genetic lifetime datasets[J]J. Biomed. Inform.201144236136910.1016/j.jbi.2010.12.003
– reference: Song, B., Zhang, G., Zhu, H., et al., A feasibility study of high order volumetric texture features for computer aided diagnosis of polyps via CT colonography[C]. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). pp:719-724, 2012.
– reference: Xia K J, Yin H S, Zhang Y D. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm[J]. Journal of Medical Systems, 2019, 43(1):2.
– reference: SammoudaMSammoudaRNikiNCancerous nuclei detection on digitized pathological lung color images[J]J. Biomed. Inform.2002352929810.1016/S1532-0464(02)00501-4
– reference: Mizaku, A, and Land, W. H., Biomolecular feature selection of colorectal cancer microarray data using GA-SVM hybrid and noise perturbation to address overfitting[J]. Dissertations & Theses -Gradworks, 12(1):64-76, 2009.
– reference: Sammouda, M, and Mukai, K., Diagnosis of liver cancer based on the analysis of pathological liver color images[C]. Medical Imaging: Image Processing. International Society for Optics and Photonics, pp:12-21, 2000.
– reference: Cataldo,Wang S, Huo J, et al. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction[C]// Journal of Physics Conference Series. pp:1-11, 2017.
– reference: Hong, Y., Wei, H, and Zeng-Li, L., Research for the colon cancer based on the EMD and LS-SVM[C]. Fourth International Conference on Intelligent Computation Technology & Automation. IEEE Computer Society, 24(7):329-331, 2011.
– reference: LiSFevensTKrzy AkAAutomatic clinical image segmentation using pathological modeling, PCA and SVM[J]Eng. Appl. Artif. Intell.200619440341010.1016/j.engappai.2006.01.011
– reference: Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[J]. Computer and Computing Technologies in Agriculture IV, 22(12):872-880, 2016.
– reference: Cataldo, S. D., Ficarra, E., and Macii, E., Automated discrimination of pathological regions in tissue images: Unsupervised clustering vs. supervised SVM classification[C]. International Joint Conference on Biomedical Engineering Systems and Technologies. Springer, Berlin, Heidelberg, pp:2100-2111, 2008.
– reference: Xia, Kai Jian, H. S. Yin, and J. Q. Wang. "A novel improved deep convolutional neural network model for medical image fusion." Cluster Computing, 23(20):1-13, 2018.
– reference: WangHHuangGApplication of support vector machine in cancer diagnosis[J]Med. Oncol.2011281 Supplement6136181:CAS:528:DC%2BC3MXhs1Kru7vI10.1007/s12032-010-9663-4
– reference: ChenHTanCWuHFeasibility of rapid diagnosis of colorectal cancer by near-infrared spectroscopy and support vector machine[J]Anal. Lett.201447152580259310.1080/00032719.2014.915410
– reference: ThonNHaasCARauchUThe chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats.[J]Eur. J. Neurosci.20101272547255810.1046/j.1460-9568.2000.00109.x
– reference: ShunjiTJunjiTAtsukoHRole of early phase helical CT images in the evaluation of wall invasion of colorectal cancer: Pathological correlation[J]Nihon Igaku Hōshasen Gakkai Zasshi Nippon Acta Radiologica2000603871:STN:280:DC%2BD3c3gsFarug%3D%3D10741115
– reference: Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[C]// Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference. 0.
– ident: 1429_CR4
– start-page: 76
  volume-title: Computer Analysis of Images and Patterns
  year: 2011
  ident: 1429_CR29
  doi: 10.1007/978-3-642-23672-3_10
– volume: 53
  start-page: 23
  issue: 1–2
  year: 2003
  ident: 1429_CR15
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 34
  start-page: 849
  issue: 5
  year: 2010
  ident: 1429_CR28
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9299-0
– volume: 12
  start-page: 2547
  issue: 7
  year: 2010
  ident: 1429_CR20
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2000.00109.x
– volume: 4478
  start-page: 206
  year: 2001
  ident: 1429_CR30
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 60
  start-page: 87
  issue: 3
  year: 2000
  ident: 1429_CR11
  publication-title: Nihon Igaku Hōshasen Gakkai Zasshi Nippon Acta Radiologica
– ident: 1429_CR13
  doi: 10.1007/s10586-018-2026-1
– ident: 1429_CR23
  doi: 10.1007/s10916-018-1116-1
– ident: 1429_CR1
  doi: 10.1109/ICICTA.2011.223
– ident: 1429_CR14
– ident: 1429_CR21
– ident: 1429_CR8
  doi: 10.2174/1871527315666161024142036
– volume: 44
  start-page: 361
  issue: 2
  year: 2011
  ident: 1429_CR16
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2010.12.003
– ident: 1429_CR25
  doi: 10.1109/IranianMVIP.2011.6121589
– volume: 28
  start-page: 613
  issue: 1 Supplement
  year: 2011
  ident: 1429_CR2
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-010-9663-4
– ident: 1429_CR10
  doi: 10.1088/1742-6596/787/1/012008
– ident: 1429_CR18
  doi: 10.1109/NSSMIC.2012.6551903
– ident: 1429_CR7
– volume: 35
  start-page: 92
  issue: 2
  year: 2002
  ident: 1429_CR26
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(02)00501-4
– ident: 1429_CR9
– ident: 1429_CR24
– volume: 9
  start-page: 1021
  issue: 6
  year: 2014
  ident: 1429_CR19
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-0991-2
– volume: 17
  start-page: 78
  issue: 1
  year: 2013
  ident: 1429_CR5
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2012.08.003
– volume: 50
  start-page: 358
  issue: 4
  year: 1997
  ident: 1429_CR12
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jcp.50.4.358
– ident: 1429_CR17
  doi: 10.1109/ICBBE.2010.5514710
– ident: 1429_CR22
– volume: 19
  start-page: 403
  issue: 4
  year: 2006
  ident: 1429_CR6
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.01.011
– volume: 7
  start-page: 249
  issue: 4
  year: 2004
  ident: 1429_CR27
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2003.822952
– volume: 47
  start-page: 2580
  issue: 15
  year: 2014
  ident: 1429_CR3
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2014.915410
– reference: 31713093 - J Med Syst. 2019 Nov 12;43(12):333
SSID ssj0009667
Score 2.2790036
Snippet In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Algorithms
Cancer
Classification
Colon
Colon cancer
Color
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - diagnosis
Colorectal Neoplasms - pathology
Cytodiagnosis - methods
Diagnostic systems
Distributed Analytics and Deep Learning in Health Care
Feature extraction
Health Informatics
Health Sciences
Histograms
Humans
Image & Signal Processing
Image classification
Image Processing, Computer-Assisted - methods
Kernels
Least squares
Magnetic Resonance Imaging - methods
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Morlet wavelet
Pattern Recognition, Automated - methods
Statistics for Life Sciences
Support Vector Machine
Support vector machines
Weight
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQQgJ8SivQEGDxAlkaWMnjn0sCxUHWlUqlN6iOE7aldoE9sFf4m8yYye7oAISXB17HGnGn2c8L4CXTrpJllZGaDPJRWZyK6xvpfB5rZxURZU3LjSbKA4OzMmJPRzyuBdjtPvokgxI_VOyG6kyZPpakRKICnMVruVcbIZN9KPjTaVdrWOOdGYEVx8fXZm_I_HrZXRJw7zkHQ2Xzt6d__rdu3B70DFxNwrFPbjSdNtwY3_wom_DrfhWhzEF6T58nxICMvLRoilLwRzfxgg8IoC756f9fLY8u8A3dON57DsktBGHhOFn-Dm8rGIggKHkCEd74ayjoQsyugPfsW8xPl7Q8g_cLAiPvq448Qm5qSgZAHgcnAe4H0I7GyRNGmmDNTLTcsK9B_Bp793H6XsxNHAQtSrkUhRKknrpU-VrVafSTyptTWuc93Urq8LVbdrmpPDk1ufOuYYzSpqK6yYXaUtD6iFsdX3XPAaMs0k78pZ1kLbKTEVYXUhnjSYqCUxGTpb1UN2cm2ycl5u6zMyQkhhSMkNKk8Cr9ZIvsbTH3ybvjOJRDqd8UUpZSC0zpXUCL9af6Xyy06Xqmn4V5iiZktGYJfAoitV6N8VBttqqBF6PMrQh_sdfefJPs5_CTclCGMLidmBrOV81z-B6_W05W8yfh6PzA7WPEvM
  priority: 102
  providerName: Springer Nature
Title Colorectal Cancer Diagnostic Algorithm Based on Sub-Patch Weight Color Histogram in Combination of Improved Least Squares Support Vector Machine for Pathological Image
URI https://link.springer.com/article/10.1007/s10916-019-1429-8
https://www.ncbi.nlm.nih.gov/pubmed/31410693
https://www.proquest.com/docview/2272624366
https://www.proquest.com/docview/2273216054
Volume 43
WOSCitedRecordID wos000480763400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: 7RV
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oK1IQL1VrtC4j-KQMJjNJZvIk7doi6C5hW9fFl5BkEltok3Yv_iX_pufMJLtIsS--HNjs3GC-OXPmXAHeFqLwwyDXPNZ-xEMdJTwxteAmKmUhpMqjqrDFJtR4rGezJO0UbovOrbLniZZRm7YkHfkHIZSIRSjj-OPVNaeqUWRd7Upo3IVtKptNOFcztUm6G8cuXDrUnBKR91ZNFzqHghE-pBMeIEvm-u976YawecNQau-f40f_u_LH8LCTPNmBg8oTuFM1u3B_1NnWd-GB0-AxF5j0FH4PkS8SP8ROQ8LGnH1yfnk4ADu4-IlzLM8u2SHeg4a1DUMexFPk7Gfsu9W3MjsAs4lIyAeMnTf46RKf4hYNrK2ZU2lg969UQoidXK8oHIpRqVF8FrCpNSmwkXX4rBjK1wwnWPNr7I7c8Bl8Oz46HX7mXVkHXkolllxJgUKnCaQpZRkI4-dxomtdGFPWIldFWQd1hGJQlJioKIqK4kyqnLIpq6DGT_I5bDVtU70A5lqjzGQSkkzqPNQ5cnAlikTHOIoHfr-pWdnlPKfSGxfZJlsz4SBDHGSEg0x78G7d5col_Lit8X6_5Vl39hfZZr89eLP-G08tmWLypmpXto0UAT4lQw_2HMLWs0lyvY0T6cH7HnKbwf-5lJe3L-UV7AgCu_WO24et5XxVvYZ75a_l-WI-wGMzmQ7s4bFUD2D78GicTvDXF8WRjvxToiIlqoim0Q-kk5PpH231JqA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQESYikFAgUeElxAVhM7i3NAqEypWnVmNBIFegtxnNCR2qSdBcQv4sZv5NlOZoQqeuuBa8Z-Webz2xeAl4orPwxyyWLpRyyUUcpSXXGmo0IoLpI8KpUdNpEMh_LwMB2twO-uFsakVXY80TJq3RTGR77JecJjHoo4fnd6xszUKBNd7UZoOFjslz9_kMk2fbu3Tf_vK853Phz0dlk7VYAVIuEzlghOOo8OhC5EEXDt53EqK6m0LiqeJ6qogioiKRylOlJKlabMocxNM98kqOiSILpX4CqpEdy3qYKjZZPfOHbl2aFkpvF5F0V1pXqkiJHhnrKARACTf8vBc8rtucCslXc7d_63L3UXbreaNW65o3APVsp6Da4P2tyBNbjlPJToCq_uw68e8X3D72lTz2B_gtsu75AI4NbxN3qn2dEJvic5r7GpkXgsG5HkOsIv1p-MlgDaRismxw3HNV06UWPnYMWmQueyoe19MyIJP57NTbkXmlGqZPbgZxsywYFNaC2R7AekGyzkEW0nbr8Ony7lsz2A1bqpy0eAbjXphDo1mleVhzInCZVwlcqYqHjgdyDKiranuxktcpwtu1Eb3GWEu8zgLpMevF5sOXUNTS5avNFBLGt52zRb4suDF4ufiSuZUFNel83crhE8IFM59OChQ_TibsKkFsep8OBNB_El8X8-yuOLH-U53Ng9GPSz_t5w_wnc5Oag2UzADVidTeblU7hWfJ-Np5Nn9sgifL1s5P8BtHt74Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKaqQEEvZDAUeElxAo8YzXsYHhNqkEVXbKGIpvRmPx6aRWrvNAuIX8R_4dbyZsROhit564OrMPC_55u0LwEvFVTfwM8ki2Q1ZIMOEJbrkTIe5UFzEWVgoO2wiHg7l0VEyWoHfbS2MSatseaJl1LrOjY98k_OYRzwQUbRZNmkRo_7g3dk5MxOkTKS1HafhILJX_PxB5tv07W6f_utXnA92PvXes2bCAMtFzGcsFpz0H-0LnYvc57qbRYkspdI6L3kWq7z0y5AkcpjoUClVmJKHIjONfWO_pEuC6F6D1ViQ0dOB1e2d4ejDsuVvFLli7UAy0wa9jam6wj1Sy8iMT5hPAoHJv6XiBVX3QpjWSr_B7f_5u92BW43OjVvukNyFlaJah7WDJqtgHW463yW6kqx78KtHEsFIAtrUM6dign2XkUgEcOvkG73T7PgUt0kD0FhXSNyXjUimHeMX62lGSwBtCxaT_Ybjii6dqrFzvWJdonPm0PZ9MzwJP57PTSEYmiGrZBDhoQ2m4IFNdS2QLAukGywkFW0nOXAfPl_JZ3sAnaquikeAbjVpizoxOlmZBTIj2RVzlciIqHjQbQGV5k23dzN05CRd9qk2GEwJg6nBYCo9eL3YcuZanVy2eKOFW9pwvWm6xJoHLxY_E78yQaisKuq5XSO4T0Z04MFDh-7F3YRJOo4S4cGbFu5L4v98lMeXP8pzWCPAp_u7w70ncIObM2dTBDegM5vMi6dwPf8-G08nz5rzi_D1qqH_B6BZhfk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorectal+Cancer+Diagnostic+Algorithm+Based+on+Sub-Patch+Weight+Color+Histogram+in+Combination+of+Improved+Least+Squares+Support+Vector+Machine+for+Pathological+Image&rft.jtitle=Journal+of+medical+systems&rft.au=Yang%2C+Kai&rft.au=Zhou%2C+Bi&rft.au=Yi%2C+Fei&rft.au=Chen%2C+Yan&rft.date=2019-09-01&rft.eissn=1573-689X&rft.volume=43&rft.issue=9&rft.spage=306&rft_id=info:doi/10.1007%2Fs10916-019-1429-8&rft_id=info%3Apmid%2F31410693&rft.externalDocID=31410693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon