Colorectal Cancer Diagnostic Algorithm Based on Sub-Patch Weight Color Histogram in Combination of Improved Least Squares Support Vector Machine for Pathological Image
In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color his...
Uloženo v:
| Vydáno v: | Journal of medical systems Ročník 43; číslo 9; s. 306 - 9 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0148-5598, 1573-689X, 1573-689X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms. |
|---|---|
| AbstractList | In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms.In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms. In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is proposed, which has good approximation ability for complex pathological image. Our proposed algorithm combines wavelet kernel SVM with color histogram to classify pathological image. Firstly, the pathological image is divided into non-overlapping sub-patches, and the features of sub-patch histogram are extracted. Then, the global and local features are fused by the sub-patch weighting algorithm. Then, the RelicfF based forward selection algorithm is used to integrate color features and texture features so as to enhance the characterization capabilities of the tumor cell. Finally, Morlet wavelet kernel-based least squares support vector machine method is adopted to enhance the generalization ability of the model for small sample with non-linear and high-dimensional pattern classification problems. Experimental results show that the proposed pathological diagnostic algorithm can gain higher accuracy compared with existing comparison algorithms. |
| ArticleNumber | 306 |
| Author | Chen, Yingsheng Yi, Fei Chen, Yan Yang, Kai Zhou, Bi |
| Author_xml | – sequence: 1 givenname: Kai surname: Yang fullname: Yang, Kai organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science, Shanghai University of Traditional Chinese Medicine – sequence: 2 givenname: Bi surname: Zhou fullname: Zhou, Bi organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science – sequence: 3 givenname: Fei surname: Yi fullname: Yi, Fei organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science – sequence: 4 givenname: Yan surname: Chen fullname: Chen, Yan organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science – sequence: 5 givenname: Yingsheng surname: Chen fullname: Chen, Yingsheng email: chengyingsheng@hotmail.com organization: Department of Radiological Intervention, Shanghai Sixth People’s Hospital East Campus Affiliated to Shanghai University of Medicine & Health Science, Shanghai University of Traditional Chinese Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31410693$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFB2CDLLFhE_BPYifLMqV0pEEglb-d5ThO4iqxp7aDxBP1NbnTaYVUCVa2rr5z7tE9J-jIB28ReknJW0qIfJcoaagoCG0KWrKmqJ-gFa0kL0Td_DxCK0LLuqiqpj5GJyldE0IaIeQzdMxpSYlo-ArdrsMUojVZT3itvbERnzs9-JCyM_hsGkJ0eZzxe51sh4PHV0tbfNHZjPiHdcOY8Z0BvnQphyHqGTsPo7l1XmcHfOjxZt7F8AvkW6tTxlc3i442gdNuF2LG32E7OHzSZnTe4h7-sGAE28EZiLWZ9WCfo6e9npJ9cf-eom8XH76uL4vt54-b9dm2MFyyXEjOGik7yjvDDWUd0aKp-7rtOtMzLVvT077iFdykq9q2tbLmwmrBZCVpDyN-it4cfCHyzWJTVrNLxk6T9jYsSTEGK6ggVQno60fodViih3R7iglWciGAenVPLe1sO7WLbtbxt3qoAAB5AEwMKUXbK-Py3e1y1G5SlKh92epQtoKy1b5sVYOSPlI-mP9Pww6aBKwfbPwb-t-iP8MovWo |
| CitedBy_id | crossref_primary_10_1038_s41598_021_93746_z crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_3389_fgene_2022_842127 crossref_primary_10_1108_DTA_06_2024_0647 crossref_primary_10_1016_j_bbe_2021_09_003 crossref_primary_10_1016_j_optlaseng_2022_107225 crossref_primary_10_3390_math11244937 crossref_primary_10_3748_wjg_v27_i18_2122 |
| Cites_doi | 10.1007/978-3-642-23672-3_10 10.1023/A:1025667309714 10.1007/s10916-009-9299-0 10.1046/j.1460-9568.2000.00109.x 10.1007/s10586-018-2026-1 10.1007/s10916-018-1116-1 10.1109/ICICTA.2011.223 10.2174/1871527315666161024142036 10.1016/j.jbi.2010.12.003 10.1109/IranianMVIP.2011.6121589 10.1007/s12032-010-9663-4 10.1088/1742-6596/787/1/012008 10.1109/NSSMIC.2012.6551903 10.1016/S1532-0464(02)00501-4 10.1007/s11548-014-0991-2 10.1016/j.media.2012.08.003 10.1136/jcp.50.4.358 10.1109/ICBBE.2010.5514710 10.1016/j.engappai.2006.01.011 10.1109/TITB.2003.822952 10.1080/00032719.2014.915410 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
| DOI | 10.1007/s10916-019-1429-8 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 9 |
| ExternalDocumentID | 31410693 10_1007_s10916_019_1429_8 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China (No.81571773, 81781771943) grantid: (No.81571773, 81781771943) |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-732977d13dc3c12d0a698f8bddcf2a7bcf1f535559d5bbbe7836ea627571fd5b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480763400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Fri Sep 05 14:45:51 EDT 2025 Tue Nov 04 22:23:59 EST 2025 Wed Feb 19 02:32:14 EST 2025 Tue Nov 18 21:58:09 EST 2025 Sat Nov 29 05:35:01 EST 2025 Fri Feb 21 02:37:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Pathological image Colon cancer Morlet wavelet Diagnostic Color histogram Support vector machine RelicfF strategy Sub-patch weight |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-732977d13dc3c12d0a698f8bddcf2a7bcf1f535559d5bbbe7836ea627571fd5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31410693 |
| PQID | 2272624366 |
| PQPubID | 54050 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2273216054 proquest_journals_2272624366 pubmed_primary_31410693 crossref_citationtrail_10_1007_s10916_019_1429_8 crossref_primary_10_1007_s10916_019_1429_8 springer_journals_10_1007_s10916_019_1429_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Shi, W., Dongkai, J., Ke, W., Application of modified wavelet features and multi-class sphere SVM to pathological vocal detection[C]. Seventh International Conference on Natural Computation. IEEE, pp:1290-1298, 2011. Xia, Kai Jian, H. S. Yin, and J. Q. Wang. "A novel improved deep convolutional neural network model for medical image fusion." Cluster Computing, 23(20):1-13, 2018. BerettaLSantanielloImplementing ReliefF filters to extract meaningful features from genetic lifetime datasets[J]J. Biomed. Inform.201144236136910.1016/j.jbi.2010.12.003 Wang, C., Guan, Y., Zuo, C., et al., Value of the texture feature for solitary pulmonary nodules and mass lesions based on PET/CT[C]. International Conference on Bioinformatics & Biomedical Engineering. 2010. ThonNHaasCARauchUThe chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats.[J]Eur. J. Neurosci.20101272547255810.1046/j.1460-9568.2000.00109.x Malekian, V., Mokhtari, M., Sadri, S., et al., Detection of collagenous colitis based on histopathology image segmentation of colon[C]// Iranian Conference on Machine Vision & Image Processing. IEEE, 2011. WangHHuangGApplication of support vector machine in cancer diagnosis[J]Med. Oncol.2011281 Supplement6136181:CAS:528:DC%2BC3MXhs1Kru7vI10.1007/s12032-010-9663-4 Song, B., Zhang, G., Wang, H., et al., A feasibility study of high order texture features with application to pathological diagnosis of colon lesions for CT Colonography[C]. Nuclear Science Symposium & Medical Imaging Conference. IEEE, 2013. RamellaGiulianaSanniti di BajaGabriellaColor Histogram-Based Image SegmentationComputer Analysis of Images and Patterns2011Berlin, HeidelbergSpringer Berlin Heidelberg768310.1007/978-3-642-23672-3_10 Xia K J, Yin H S, Zhang Y D. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm[J]. Journal of Medical Systems, 2019, 43(1):2. LiSFevensTKrzy AkAAutomatic clinical image segmentation using pathological modeling, PCA and SVM[J]Eng. Appl. Artif. Intell.200619440341010.1016/j.engappai.2006.01.011 KandeGBSubbaiahPVSavithriTSUnsupervised fuzzy based vessel segmentation in pathological digital fundus images[J]J. Med. Syst.201034584985810.1007/s10916-009-9299-0 Cataldo, S. D., Ficarra, E., and Macii, E., Automated discrimination of pathological regions in tissue images: Unsupervised clustering vs. supervised SVM classification[C]. International Joint Conference on Biomedical Engineering Systems and Technologies. Springer, Berlin, Heidelberg, pp:2100-2111, 2008. JinYFayadLLaineAFContrast enhancement by multi-scale adaptive histogram equalization[J]Proc. SPIE Int. Soc. Opt. Eng.20014478206213 Hong, Y., Wei, H, and Zeng-Li, L., Research for the colon cancer based on the EMD and LS-SVM[C]. Fourth International Conference on Intelligent Computation Technology & Automation. IEEE Computer Society, 24(7):329-331, 2011. TamakiToruYoshimutaJunkiKawakamiMisatoRaytchevBisserKanedaKazufumiYoshidaShigetoTakemuraYoshitoOnjiKeiichiMiyakiRieTanakaShinjiComputer-aided colorectal tumor classification in NBI endoscopy using local featuresMedical Image Analysis20131717810010.1016/j.media.2012.08.003 Mizaku, A, and Land, W. H., Biomolecular feature selection of colorectal cancer microarray data using GA-SVM hybrid and noise perturbation to address overfitting[J]. Dissertations & Theses -Gradworks, 12(1):64-76, 2009. Majhi, B., Dash, R., and Nayak, D. R., Stationary wavelet transform and AdaBoost with SVM based pathological brain detection in MRI scanning[J]. CNS Neurol. Disord. Drug Targets 16(2):32-44, 2017. NoneColorectal cancer pathology reporting: A regional audit[J]J. Clin. Pathol.199750435835810.1136/jcp.50.4.358 Sammouda, M, and Mukai, K., Diagnosis of liver cancer based on the analysis of pathological liver color images[C]. Medical Imaging: Image Processing. International Society for Optics and Photonics, pp:12-21, 2000. Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[C]// Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference. 0. Robnik-ŠIkonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefF[J]Mach. Learn.2003531–2236910.1023/A:1025667309714 ChenHTanCWuHFeasibility of rapid diagnosis of colorectal cancer by near-infrared spectroscopy and support vector machine[J]Anal. Lett.201447152580259310.1080/00032719.2014.915410 Cataldo,Wang S, Huo J, et al. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction[C]// Journal of Physics Conference Series. pp:1-11, 2017. Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[J]. Computer and Computing Technologies in Agriculture IV, 22(12):872-880, 2016. SammoudaMSammoudaRNikiNCancerous nuclei detection on digitized pathological lung color images[J]J. Biomed. Inform.2002352929810.1016/S1532-0464(02)00501-4 ShunjiTJunjiTAtsukoHRole of early phase helical CT images in the evaluation of wall invasion of colorectal cancer: Pathological correlation[J]Nihon Igaku Hōshasen Gakkai Zasshi Nippon Acta Radiologica2000603871:STN:280:DC%2BD3c3gsFarug%3D%3D10741115 Song, B., Zhang, G., Zhu, H., et al., A feasibility study of high order volumetric texture features for computer aided diagnosis of polyps via CT colonography[C]. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). pp:719-724, 2012. SongBZhangGLuHVolumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography[J]Int. J. Comput. Assist. Radiol. Surg.2014961021103110.1007/s11548-014-0991-2 ZhengLWetzelAWGilbertsonJDesign and analysis of a content-based pathology image retrieval system[J]IEEE Trans. Inf. Technol. Biomed.20047424925510.1109/TITB.2003.822952 1429_CR22 L Beretta (1429_CR16) 2011; 44 1429_CR23 GB Kande (1429_CR28) 2010; 34 1429_CR24 1429_CR25 1429_CR21 None (1429_CR12) 1997; 50 S Li (1429_CR6) 2006; 19 Toru Tamaki (1429_CR5) 2013; 17 M Robnik-ŠIkonja (1429_CR15) 2003; 53 L Zheng (1429_CR27) 2004; 7 M Sammouda (1429_CR26) 2002; 35 1429_CR17 T Shunji (1429_CR11) 2000; 60 1429_CR18 Y Jin (1429_CR30) 2001; 4478 1429_CR9 1429_CR13 1429_CR8 1429_CR14 1429_CR7 Giuliana Ramella (1429_CR29) 2011 1429_CR4 1429_CR10 B Song (1429_CR19) 2014; 9 1429_CR1 H Chen (1429_CR3) 2014; 47 N Thon (1429_CR20) 2010; 12 H Wang (1429_CR2) 2011; 28 31713093 - J Med Syst. 2019 Nov 12;43(12):333 |
| References_xml | – reference: Wang, C., Guan, Y., Zuo, C., et al., Value of the texture feature for solitary pulmonary nodules and mass lesions based on PET/CT[C]. International Conference on Bioinformatics & Biomedical Engineering. 2010. – reference: Robnik-ŠIkonjaMKononenkoITheoretical and empirical analysis of ReliefF and RReliefF[J]Mach. Learn.2003531–2236910.1023/A:1025667309714 – reference: RamellaGiulianaSanniti di BajaGabriellaColor Histogram-Based Image SegmentationComputer Analysis of Images and Patterns2011Berlin, HeidelbergSpringer Berlin Heidelberg768310.1007/978-3-642-23672-3_10 – reference: Malekian, V., Mokhtari, M., Sadri, S., et al., Detection of collagenous colitis based on histopathology image segmentation of colon[C]// Iranian Conference on Machine Vision & Image Processing. IEEE, 2011. – reference: Song, B., Zhang, G., Wang, H., et al., A feasibility study of high order texture features with application to pathological diagnosis of colon lesions for CT Colonography[C]. Nuclear Science Symposium & Medical Imaging Conference. IEEE, 2013. – reference: ZhengLWetzelAWGilbertsonJDesign and analysis of a content-based pathology image retrieval system[J]IEEE Trans. Inf. Technol. Biomed.20047424925510.1109/TITB.2003.822952 – reference: Majhi, B., Dash, R., and Nayak, D. R., Stationary wavelet transform and AdaBoost with SVM based pathological brain detection in MRI scanning[J]. CNS Neurol. Disord. Drug Targets 16(2):32-44, 2017. – reference: NoneColorectal cancer pathology reporting: A regional audit[J]J. Clin. Pathol.199750435835810.1136/jcp.50.4.358 – reference: SongBZhangGLuHVolumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography[J]Int. J. Comput. Assist. Radiol. Surg.2014961021103110.1007/s11548-014-0991-2 – reference: TamakiToruYoshimutaJunkiKawakamiMisatoRaytchevBisserKanedaKazufumiYoshidaShigetoTakemuraYoshitoOnjiKeiichiMiyakiRieTanakaShinjiComputer-aided colorectal tumor classification in NBI endoscopy using local featuresMedical Image Analysis20131717810010.1016/j.media.2012.08.003 – reference: JinYFayadLLaineAFContrast enhancement by multi-scale adaptive histogram equalization[J]Proc. SPIE Int. Soc. Opt. Eng.20014478206213 – reference: Shi, W., Dongkai, J., Ke, W., Application of modified wavelet features and multi-class sphere SVM to pathological vocal detection[C]. Seventh International Conference on Natural Computation. IEEE, pp:1290-1298, 2011. – reference: KandeGBSubbaiahPVSavithriTSUnsupervised fuzzy based vessel segmentation in pathological digital fundus images[J]J. Med. Syst.201034584985810.1007/s10916-009-9299-0 – reference: BerettaLSantanielloImplementing ReliefF filters to extract meaningful features from genetic lifetime datasets[J]J. Biomed. Inform.201144236136910.1016/j.jbi.2010.12.003 – reference: Song, B., Zhang, G., Zhu, H., et al., A feasibility study of high order volumetric texture features for computer aided diagnosis of polyps via CT colonography[C]. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). pp:719-724, 2012. – reference: Xia K J, Yin H S, Zhang Y D. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm[J]. Journal of Medical Systems, 2019, 43(1):2. – reference: SammoudaMSammoudaRNikiNCancerous nuclei detection on digitized pathological lung color images[J]J. Biomed. Inform.2002352929810.1016/S1532-0464(02)00501-4 – reference: Mizaku, A, and Land, W. H., Biomolecular feature selection of colorectal cancer microarray data using GA-SVM hybrid and noise perturbation to address overfitting[J]. Dissertations & Theses -Gradworks, 12(1):64-76, 2009. – reference: Sammouda, M, and Mukai, K., Diagnosis of liver cancer based on the analysis of pathological liver color images[C]. Medical Imaging: Image Processing. International Society for Optics and Photonics, pp:12-21, 2000. – reference: Cataldo,Wang S, Huo J, et al. Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction[C]// Journal of Physics Conference Series. pp:1-11, 2017. – reference: Hong, Y., Wei, H, and Zeng-Li, L., Research for the colon cancer based on the EMD and LS-SVM[C]. Fourth International Conference on Intelligent Computation Technology & Automation. IEEE Computer Society, 24(7):329-331, 2011. – reference: LiSFevensTKrzy AkAAutomatic clinical image segmentation using pathological modeling, PCA and SVM[J]Eng. Appl. Artif. Intell.200619440341010.1016/j.engappai.2006.01.011 – reference: Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[J]. Computer and Computing Technologies in Agriculture IV, 22(12):872-880, 2016. – reference: Cataldo, S. D., Ficarra, E., and Macii, E., Automated discrimination of pathological regions in tissue images: Unsupervised clustering vs. supervised SVM classification[C]. International Joint Conference on Biomedical Engineering Systems and Technologies. Springer, Berlin, Heidelberg, pp:2100-2111, 2008. – reference: Xia, Kai Jian, H. S. Yin, and J. Q. Wang. "A novel improved deep convolutional neural network model for medical image fusion." Cluster Computing, 23(20):1-13, 2018. – reference: WangHHuangGApplication of support vector machine in cancer diagnosis[J]Med. Oncol.2011281 Supplement6136181:CAS:528:DC%2BC3MXhs1Kru7vI10.1007/s12032-010-9663-4 – reference: ChenHTanCWuHFeasibility of rapid diagnosis of colorectal cancer by near-infrared spectroscopy and support vector machine[J]Anal. Lett.201447152580259310.1080/00032719.2014.915410 – reference: ThonNHaasCARauchUThe chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats.[J]Eur. J. Neurosci.20101272547255810.1046/j.1460-9568.2000.00109.x – reference: ShunjiTJunjiTAtsukoHRole of early phase helical CT images in the evaluation of wall invasion of colorectal cancer: Pathological correlation[J]Nihon Igaku Hōshasen Gakkai Zasshi Nippon Acta Radiologica2000603871:STN:280:DC%2BD3c3gsFarug%3D%3D10741115 – reference: Jiang, X., Liang, Q., and Shen, T., A new color information entropy retrieval method for pathological cell image[C]// Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference. 0. – ident: 1429_CR4 – start-page: 76 volume-title: Computer Analysis of Images and Patterns year: 2011 ident: 1429_CR29 doi: 10.1007/978-3-642-23672-3_10 – volume: 53 start-page: 23 issue: 1–2 year: 2003 ident: 1429_CR15 publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – volume: 34 start-page: 849 issue: 5 year: 2010 ident: 1429_CR28 publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9299-0 – volume: 12 start-page: 2547 issue: 7 year: 2010 ident: 1429_CR20 publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2000.00109.x – volume: 4478 start-page: 206 year: 2001 ident: 1429_CR30 publication-title: Proc. SPIE Int. Soc. Opt. Eng. – volume: 60 start-page: 87 issue: 3 year: 2000 ident: 1429_CR11 publication-title: Nihon Igaku Hōshasen Gakkai Zasshi Nippon Acta Radiologica – ident: 1429_CR13 doi: 10.1007/s10586-018-2026-1 – ident: 1429_CR23 doi: 10.1007/s10916-018-1116-1 – ident: 1429_CR1 doi: 10.1109/ICICTA.2011.223 – ident: 1429_CR14 – ident: 1429_CR21 – ident: 1429_CR8 doi: 10.2174/1871527315666161024142036 – volume: 44 start-page: 361 issue: 2 year: 2011 ident: 1429_CR16 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2010.12.003 – ident: 1429_CR25 doi: 10.1109/IranianMVIP.2011.6121589 – volume: 28 start-page: 613 issue: 1 Supplement year: 2011 ident: 1429_CR2 publication-title: Med. Oncol. doi: 10.1007/s12032-010-9663-4 – ident: 1429_CR10 doi: 10.1088/1742-6596/787/1/012008 – ident: 1429_CR18 doi: 10.1109/NSSMIC.2012.6551903 – ident: 1429_CR7 – volume: 35 start-page: 92 issue: 2 year: 2002 ident: 1429_CR26 publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(02)00501-4 – ident: 1429_CR9 – ident: 1429_CR24 – volume: 9 start-page: 1021 issue: 6 year: 2014 ident: 1429_CR19 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-0991-2 – volume: 17 start-page: 78 issue: 1 year: 2013 ident: 1429_CR5 publication-title: Medical Image Analysis doi: 10.1016/j.media.2012.08.003 – volume: 50 start-page: 358 issue: 4 year: 1997 ident: 1429_CR12 publication-title: J. Clin. Pathol. doi: 10.1136/jcp.50.4.358 – ident: 1429_CR17 doi: 10.1109/ICBBE.2010.5514710 – ident: 1429_CR22 – volume: 19 start-page: 403 issue: 4 year: 2006 ident: 1429_CR6 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.01.011 – volume: 7 start-page: 249 issue: 4 year: 2004 ident: 1429_CR27 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2003.822952 – volume: 47 start-page: 2580 issue: 15 year: 2014 ident: 1429_CR3 publication-title: Anal. Lett. doi: 10.1080/00032719.2014.915410 – reference: 31713093 - J Med Syst. 2019 Nov 12;43(12):333 |
| SSID | ssj0009667 |
| Score | 2.2790036 |
| Snippet | In order to improve the diagnostic accuracy of colon cancer, a novel classification algorithm based on sub-patch weight color histogram and improved SVM is... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 306 |
| SubjectTerms | Algorithms Cancer Classification Colon Colon cancer Color Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - diagnosis Colorectal Neoplasms - pathology Cytodiagnosis - methods Diagnostic systems Distributed Analytics and Deep Learning in Health Care Feature extraction Health Informatics Health Sciences Histograms Humans Image & Signal Processing Image classification Image Processing, Computer-Assisted - methods Kernels Least squares Magnetic Resonance Imaging - methods Medical diagnosis Medical imaging Medicine Medicine & Public Health Morlet wavelet Pattern Recognition, Automated - methods Statistics for Life Sciences Support Vector Machine Support vector machines Weight |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIISEeBRoAwUNEieQ1cRObOeEykLFoa0qAWVvUWzHtFKbtPvgL_E3mXGSXaGKXrgmHtuSP4_nPYy9tVkQJnWeN9rmPNdFxi3ignuVm7I2wcoYPH5yoI-OzHRaHg8Gt_kQVjnyxMiofefIRr4rhBZK5FKpD5dXnLpGkXd1aKFxm92httmEcz3V66K7SvXp0rnhVIh89Gr2qXMoGKEiXfIMWTI3f79L14TNa47S-P7sP_rfnT9mDwfJE_Z6qDxht5p2k907HHzrm-xBb8GDPjHpKfs9Qb5I_BCJJoSNGXzq4_JwAtg7_4lrLE4v4CO-gx66FpAH8WPk7KfwI9pbIU4AsRAJxYDBWYufLlAVj2iALkBv0kDyA2ohBF-vlpQOBdRqFNUCOIkuBTiMAZ8NoHwNuMCKXyM5csNn7Pv-52-TL3xo68Cd1GLBtRQodPpMeiddJnxaq9IEY713QdTaupCFAsWgovSFtbahPJOmpmrKOgv4ST5nG23XNtsUl5W6tPDKSWVz44yVOAYVyKBkneKzm7B0PNTKDTXPqfXGebWu1kw4qBAHFeGgMgl7tyK57At-3DR4Zzzyarj782p93gl7s_qNt5ZcMXXbdMs4RooMVck8YVs9wlarSQq9VaVM2PsRcuvJ_7mVFzdv5SW7LwjsMTpuh20sZsvmFbvrfi3O5rPX8dr8AbMAHPs priority: 102 providerName: ProQuest |
| Title | Colorectal Cancer Diagnostic Algorithm Based on Sub-Patch Weight Color Histogram in Combination of Improved Least Squares Support Vector Machine for Pathological Image |
| URI | https://link.springer.com/article/10.1007/s10916-019-1429-8 https://www.ncbi.nlm.nih.gov/pubmed/31410693 https://www.proquest.com/docview/2272624366 https://www.proquest.com/docview/2273216054 |
| Volume | 43 |
| WOSCitedRecordID | wos000480763400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1573-689X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: 7RV dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ra9RAcLGtiCA-qtZoPVbwk7KQ7Ca7m4_t2SLYO0Jbz8MvIbub2IM2qffwL_k3ndkkd0pV0C8D2ewLZnZ2ZudFyGsTVVyH1rFSmZjFKomYAbpgTsY6LXRlhHcen5yo8VhPp2nWxXEvem_33iTpOfVPwW4gyoDqm7IImCjTW2QnwWQzqKKfTTaZdqVsY6RjzTD7eG_K_N0Uv15GNyTMG9ZRf-kcP_iv7T4k9zsZkx60RPGI3CrrXXJn1FnRd8m99q2OtiFIj8n3IXBA5HwwaIhUMKfvWg88mIAeXH5p5rPlxRU9hBvP0aamwG1YBjz8gn7yL6vUT0B9yhH09qKzGpquQOn2eKdNRdvHCxh-gsWC6NnXFQY-USwqCgoAnXjjAR15186SgiRNYYE1Z4bhwPeekI_HR-fD96wr4MCsUHzJlOAgXrpIOCtsxF1YyFRX2jhnK14oY6uoSkDgSVKXGGNKjCgpC8ybrKIKmsRTsl03dfkMPbBCGyZOWiFNrK02AvqAqlhJUYRwwQYk7DGZ2y67ORbZuMw3eZkRITkgJEeE5Dogb9ZDrtvUHn_rvN-TR96d8kXOueKSx0LKgLxa_4bziUaXoi6ble8jeARKYxyQvZas1qsJdLKVqQjI256GNpP_cSvP_6n3C3KXIxF6t7h9sr2cr8qX5Lb9tpwt5gOypU4nCKfKQz0gO4dH4-wUvj4oBnAUniPkGUKFMEs-D_yR-wFgpxuj |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggAJ8SivQAEjwQVkkdiJ4xwQKluqVt1drURpewuxndCV2qTdB4hfxI3fyNhOdoUqeuuBa9Z2Hvt5Xv5mBuCViiomQ21omaqYxmkSUYW4oEbEMitkpbgjj-_30-FQHh5moxX43eXCWFplJxOdoDaNtjHyd4ylTLCYC_Hh9IzarlH2dLVroeFhsVv-_IEu2_T9zib-v68Z2_q019umbVcBqnnKZjTlDG0eE3GjuY6YCQuRyUoqY3TFilTpKqoS1MJJZhKlVGnTHMrCFvNNowovcVz3ClxFM4KFjio4Whb5FcKnZ8eS2sLn3SmqT9VDQwwd94xGqAKo_FsPnjNuzx3MOn23ded_-1J34XZrWZMNvxXuwUpZr8H1QcsdWINbPkJJfOLVffjVQ7lv5T1O6lnsT8im5x3iAmTj-Bu-0-zohHxEPW9IUxOUsXSEmuuIHLh4MnELEFdoxXLcyLjGSydq7AOspKmID9ng9L5tkUQ-n81tuhexrVTR7SH77siEDByhtSToPxC8wUIf4XSU9g_gy6V8toewWjd1-djyzkIdJkZoLlQstVQcx6CDXAlehGhWBBB2IMp1W9PdthY5zpfVqC3ucsRdbnGXywDeLKac-oImFw1e7yCWt7Jtmi_xFcDLxc8olexRU1GXzdyN4SxCVzkO4JFH9OJu3FKLRcYDeNtBfLn4Px_lycWP8gJubO8N-nl_Z7j7FG4yu9EcE3AdVmeTefkMrunvs_F08txtWQJfLxv5fwBFoXuB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZqQEJcBIzDASPACspbYieM8ILS1q5jWVRWXsbcQ28lWaUu2XkD8Iv4Dv47jOGmFJva2B15T27n0s8_tO-cAvFJBwaSvDc1jFdIwjgKqEBfUiFAmmSwUr8njh4N4OJRHR8loBX63uTCWVtmeifVBbSptfeRbjMVMsJALsVU0tIhRr__-_ILaDlI20tq203AQ2c9__kDzbfpur4f_9WvG-rufux9o02GAah6zGY05Q_3HBNxorgNm_EwkspDKGF2wLFa6CIoIJXKUmEgplduUhzyzhX3joMBLHNe9AasxR6OnA6s7u8PRx2XJXyFcsnYoqS2D3sZUXeIeqmVoxic0QIFA5d9S8ZKqeylMW0u__t3_-bvdgzuNzk223Sa5Dyt5uQ5rBw2rYB1uO98lcSlZD-BXFyWClQQ4qWt3xYT0HCMRFyDbp8f4TrOTM7KDGoAhVUnw9KUjlGkn5GvtaSb1AqQuwWLZb2Rc4qUzNXauV1IVxDlzcPrANk8iny7mNhGM2CaraBCRwzqYQg5qqmtO0LIgeIOFpMLpKAcewpdr-WyPoFNWZf7YMtJ87UdGaC5UKLVUHMeg6VwInvmocHjgt4BKdVPt3TYdOU2XdaotBlPEYGoxmEoP3iymnLtSJ1cN3mzhljan3jRdYs2Dl4uf8byyQaiszKt5PYazAI3o0IMNh-7F3bglHYuEe_C2hfty8X8-ypOrH-UFrCHg08HecP8p3GJ2z9UUwU3ozCbz_Bnc1N9n4-nkebN_CXy7buj_ATJxhZk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorectal+Cancer+Diagnostic+Algorithm+Based+on+Sub-Patch+Weight+Color+Histogram+in+Combination+of+Improved+Least+Squares+Support+Vector+Machine+for+Pathological+Image&rft.jtitle=Journal+of+medical+systems&rft.au=Yang%2C+Kai&rft.au=Zhou%2C+Bi&rft.au=Yi%2C+Fei&rft.au=Chen%2C+Yan&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=9&rft_id=info:doi/10.1007%2Fs10916-019-1429-8&rft.externalDocID=10_1007_s10916_019_1429_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |