Refining understanding of corporate failure through a topological data analysis mapping of Altman’s Z-score model

•Introduce Topological Data Analysis Ball Mapper for examining creditworthiness.•Example taken from seminal Altman (1968) Z-Score model and ratios therefrom.•Failing firms shown to only occupy a subset of the “distress zone” of risky Z-Scores.•Visualizing data cloud removes the perceived “black box”...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 156; s. 113475
Hlavní autori: Qiu, Wanling, Rudkin, Simon, Dłotko, Paweł
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.10.2020
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Introduce Topological Data Analysis Ball Mapper for examining creditworthiness.•Example taken from seminal Altman (1968) Z-Score model and ratios therefrom.•Failing firms shown to only occupy a subset of the “distress zone” of risky Z-Scores.•Visualizing data cloud removes the perceived “black box” of data science.•Practitioners can quickly see how credit seekers place and review credit accordingly. Corporate failure resonates widely, leaving practitioners searching for understanding of default risk. Managers seek to steer away from trouble, credit providers to avoid risky loans and investors to mitigate losses. Applying Topological Data Analysis tools, this paper explores whether failing firms from the United States organise neatly along the five predictors of default proposed by the Z-score models. Each firm is represented as a point in a five-dimensional point cloud, each dimension being one of the five predictors. Visualising that cloud using Ball Mapper reveals failing firms are not always located in similar regions of the point cloud, that is they are not concentrated in an easily split out area of the space. As new modelling approaches vie to better predict firm failure, often using black boxes to deliver potentially over-fitting models, a timely reminder is sounded on the importance of evidencing the identification process. Value is added to the understanding of where in the parameter space failure occurs, and how firms might act to move away from financial distress. Further, lenders may find opportunity amongst subsets of firms that are traditionally considered to be in danger of bankruptcy, but which the Ball Mapper plots developed herein clarify actually sit in characteristic spaces where failure has not occurred.
AbstractList Corporate failure resonates widely, leaving practitioners searching for understanding of default risk. Managers seek to steer away from trouble, credit providers to avoid risky loans and investors to mitigate losses. Applying Topological Data Analysis tools, this paper explores whether failing firms from the United States organise neatly along the five predictors of default proposed by the Z-score models. Each firm is represented as a point in a five-dimensional point cloud, each dimension being one of the five predictors. Visualising that cloud using Ball Mapper reveals failing firms are not always located in similar regions of the point cloud, that is they are not concentrated in an easily split out area of the space. As new modelling approaches vie to better predict firm failure, often using black boxes to deliver potentially over-fitting models, a timely reminder is sounded on the importance of evidencing the identification process. Value is added to the understanding of where in the parameter space failure occurs, and how firms might act to move away from financial distress. Further, lenders may find opportunity amongst subsets of firms that are traditionally considered to be in danger of bankruptcy, but which the Ball Mapper plots developed herein clarify actually sit in characteristic spaces where failure has not occurred.
•Introduce Topological Data Analysis Ball Mapper for examining creditworthiness.•Example taken from seminal Altman (1968) Z-Score model and ratios therefrom.•Failing firms shown to only occupy a subset of the “distress zone” of risky Z-Scores.•Visualizing data cloud removes the perceived “black box” of data science.•Practitioners can quickly see how credit seekers place and review credit accordingly. Corporate failure resonates widely, leaving practitioners searching for understanding of default risk. Managers seek to steer away from trouble, credit providers to avoid risky loans and investors to mitigate losses. Applying Topological Data Analysis tools, this paper explores whether failing firms from the United States organise neatly along the five predictors of default proposed by the Z-score models. Each firm is represented as a point in a five-dimensional point cloud, each dimension being one of the five predictors. Visualising that cloud using Ball Mapper reveals failing firms are not always located in similar regions of the point cloud, that is they are not concentrated in an easily split out area of the space. As new modelling approaches vie to better predict firm failure, often using black boxes to deliver potentially over-fitting models, a timely reminder is sounded on the importance of evidencing the identification process. Value is added to the understanding of where in the parameter space failure occurs, and how firms might act to move away from financial distress. Further, lenders may find opportunity amongst subsets of firms that are traditionally considered to be in danger of bankruptcy, but which the Ball Mapper plots developed herein clarify actually sit in characteristic spaces where failure has not occurred.
ArticleNumber 113475
Author Rudkin, Simon
Qiu, Wanling
Dłotko, Paweł
Author_xml – sequence: 1
  givenname: Wanling
  surname: Qiu
  fullname: Qiu, Wanling
  email: wanling.qiu@liverpool.ac.uk
  organization: School of Management, University of Liverpool, United Kingdom
– sequence: 2
  givenname: Simon
  surname: Rudkin
  fullname: Rudkin, Simon
  email: p.t.dlotko@swansea.ac.uk
  organization: Economics Department, Swansea University, United Kingdom
– sequence: 3
  givenname: Paweł
  surname: Dłotko
  fullname: Dłotko, Paweł
  email: s.t.rudkin@swansea.ac.uk
  organization: Mathematics Department, Swansea University, United Kingdom
BookMark eNp9kLtqHDEUhoVxwGsnL5BK4HrWkuYiLbgxxpeAIRCcJo04I51Za5mVxpLGZju_Rl4vTxIt68qFC3HQ4f9-pO-UHPvgkZDvnC05493FZonpFZaCibLgdSPbI7LgStZVJ1f1MVmwVSurhsvmhJymtGGMS8bkgqRfODjv_JrO3mJMGbzd38JATYhTiJCRDuDGOSLNTzHM6ycKNIcpjGHtDIzUQgYKHsZdcoluYZreC67GvAX_7-1von-qVOqQboPF8Sv5MsCY8Nv7PCO_b28er--rh593P66vHipTS5ErKVoumpUdumalamMVWg449NgPpkfFUVrVWpDCyI51yvTltKYX0AuuDOvqM3J-6J1ieJ4xZb0JcywPTVo0tZKiZOqSEoeUiSGliIOeottC3GnO9F6u3ui9XL2Xqw9yC6Q-QMZlyC74HIusz9HLA4rl6y8Oo07GoTdoXUSTtQ3uM_w_y-eawA
CitedBy_id crossref_primary_10_1080_00343404_2023_2204123
crossref_primary_10_1016_j_physa_2024_129785
crossref_primary_10_1080_10618600_2024_2343321
crossref_primary_10_3233_IDA_216228
crossref_primary_10_1016_j_micron_2024_103731
crossref_primary_10_61347_psa_v3i1_77
crossref_primary_10_1016_j_jfds_2023_100107
crossref_primary_10_1002_for_3143
crossref_primary_10_1080_23311975_2025_2451127
crossref_primary_10_3390_jrfm18080465
crossref_primary_10_1080_14697688_2025_2544762
crossref_primary_10_1111_fire_12420
crossref_primary_10_3389_fenvs_2022_967418
crossref_primary_10_1109_ACCESS_2025_3528373
crossref_primary_10_1016_j_eswa_2022_116726
crossref_primary_10_1016_j_frl_2024_105839
crossref_primary_10_1016_j_frl_2025_107125
Cites_doi 10.1111/jifm.12053
10.1016/j.eswa.2019.112827
10.1016/j.eswa.2016.01.015
10.1257/jep.31.2.87
10.1073/pnas.1102826108
10.2307/2490171
10.1016/j.physa.2017.09.028
10.1016/j.eswa.2018.05.026
10.1111/j.1468-0394.2012.00642.x
10.1016/j.eswa.2019.07.033
10.2307/2490395
10.1111/j.1540-6261.1968.tb00843.x
10.1007/s00454-008-9053-2
10.32614/CRAN.package.BallMapper
10.1016/j.eswa.2016.04.001
10.1016/j.eswa.2017.07.036
10.1023/A:1022627411411
10.1016/j.eswa.2017.04.006
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 15, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113475
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113475
S0957417420302992
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c372t-7251249df64983cd8ed1aefbebfcbe81e7d85da72c76068cb68c5cb2ab218c063
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542130000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Jul 13 04:55:04 EDT 2025
Tue Nov 18 21:04:28 EST 2025
Sat Nov 29 07:06:55 EST 2025
Fri Feb 23 02:47:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bankruptcy prediction
Topological data analysis
Data visualization
Credit scoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-7251249df64983cd8ed1aefbebfcbe81e7d85da72c76068cb68c5cb2ab218c063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417420302992
PQID 2438720633
PQPubID 2045477
ParticipantIDs proquest_journals_2438720633
crossref_primary_10_1016_j_eswa_2020_113475
crossref_citationtrail_10_1016_j_eswa_2020_113475
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113475
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Barboza, Kimura, Altman (b0025) 2017; 83
Ziba, Tomczak, Tomczak (b0130) 2016; 58
Altman (b0005) 1968; 23
Altman, Iwanicz-Drozdowska, Laitinen, Suvas (b0020) 2017; 28
Petropoulos, Chatzis, Xanthopoulos (b0110) 2016; 53
Pearson, P., Muellner, D., & Singh, G. (2015). TDAmapper: Analyze High-Dimensional Data Using Discrete Morse Theory. R package version 1.0.
Choi, Son, Kim (b0045) 2018; 110
Dlotko, P. (2019). BallMapper: Create a Ball Mapper graph of the input data. R package version 0.1.0.
Altman (b0010) 1983
Cawley, Talbot (b0040) 2010; 11
Vejdemo-Johansson, M., Carlsson, G., Lum, P.Y., Lehman, A., Singh, G., & Ishkhanov, T. (2012). The topology of politics: voting connectivity in the us house of representatives. In NIPS 2012 Workshop on Algebraic Topology and Machine Learning.
Beaver (b0030) 1966; 4
Gidea, Katz (b0070) 2018; 491
Mullainathan, Spiess (b0085) 2017; 31
Son, Hyun, Phan, Hwang (b0120) 2019; 138
Singh, Mémoli, Carlsson (b0115) 2007
Beaver (b0035) 1968; 43
Li, Sun, Li, Yan (b0075) 2012; 30
Altman, Iwanicz-Drozdowska, Laitinen, Suvas (b0015) 2017; 28
Niyogi, Smale, Weinberger (b0095) 2008; 39
De Bock (b0055) 2017; 90
Ohlson (b0100) 1980; 18
Nicolau, Levine, Carlsson (b0090) 2011; 107
Dłotko, P. (2019). Ball mapper: a shape summary for topological data analysis. arXiv preprint arXiv:1901.07410.
Liu, Xie, Zhao, Xie, Liu (b0080) 2019; 138
Cortes, Vapenik (b0050) 1995; 20
Nicolau (10.1016/j.eswa.2020.113475_b0090) 2011; 107
Altman (10.1016/j.eswa.2020.113475_b0010) 1983
10.1016/j.eswa.2020.113475_b0060
10.1016/j.eswa.2020.113475_b0065
Cawley (10.1016/j.eswa.2020.113475_b0040) 2010; 11
Beaver (10.1016/j.eswa.2020.113475_b0030) 1966; 4
Li (10.1016/j.eswa.2020.113475_b0075) 2012; 30
Petropoulos (10.1016/j.eswa.2020.113475_b0110) 2016; 53
Choi (10.1016/j.eswa.2020.113475_b0045) 2018; 110
Gidea (10.1016/j.eswa.2020.113475_b0070) 2018; 491
Son (10.1016/j.eswa.2020.113475_b0120) 2019; 138
Singh (10.1016/j.eswa.2020.113475_b0115) 2007
Cortes (10.1016/j.eswa.2020.113475_b0050) 1995; 20
Ohlson (10.1016/j.eswa.2020.113475_b0100) 1980; 18
Beaver (10.1016/j.eswa.2020.113475_b0035) 1968; 43
Liu (10.1016/j.eswa.2020.113475_b0080) 2019; 138
Niyogi (10.1016/j.eswa.2020.113475_b0095) 2008; 39
Altman (10.1016/j.eswa.2020.113475_b0020) 2017; 28
Altman (10.1016/j.eswa.2020.113475_b0005) 1968; 23
De Bock (10.1016/j.eswa.2020.113475_b0055) 2017; 90
10.1016/j.eswa.2020.113475_b0125
Altman (10.1016/j.eswa.2020.113475_b0015) 2017; 28
Barboza (10.1016/j.eswa.2020.113475_b0025) 2017; 83
Mullainathan (10.1016/j.eswa.2020.113475_b0085) 2017; 31
10.1016/j.eswa.2020.113475_b0105
Ziba (10.1016/j.eswa.2020.113475_b0130) 2016; 58
References_xml – volume: 30
  start-page: 385
  year: 2012
  end-page: 397
  ident: b0075
  article-title: Forecasting business failure using two-stage ensemble of multivariate discriminant analysis and logistic regression
  publication-title: Expert Systems
– volume: 23
  start-page: 589
  year: 1968
  end-page: 609
  ident: b0005
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: The Journal of Finance
– volume: 107
  start-page: 7265
  year: 2011
  end-page: 7270
  ident: b0090
  article-title: Topology based data analysis identifies a group of breast cancers with a unique mutational profile and excellent survival
  publication-title: Proceedings of the National Academy of Sciences
– volume: 18
  start-page: 109
  year: 1980
  end-page: 131
  ident: b0100
  article-title: Financial ratios and the probabilistic prediction of bankruptcy
  publication-title: Journal of Accounting Research
– volume: 58
  start-page: 93
  year: 2016
  end-page: 101
  ident: b0130
  article-title: Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction
  publication-title: Expert Systems with Applications
– volume: 28
  start-page: 131
  year: 2017
  end-page: 171
  ident: b0020
  article-title: Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z-score model
  publication-title: Journal of International Financial Management & Accounting
– volume: 4
  start-page: 71
  year: 1966
  end-page: 111
  ident: b0030
  article-title: Financial ratios as predictors of failure
  publication-title: Journal of Accounting Research
– volume: 110
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0045
  article-title: Predicting financial distress of contractors in the construction industry using ensemble learning
  publication-title: Expert Systems with Applications
– volume: 43
  start-page: 113
  year: 1968
  end-page: 122
  ident: b0035
  article-title: Alternative accounting measures as predictors of failure
  publication-title: The Accounting Review
– volume: 53
  start-page: 87
  year: 2016
  end-page: 105
  ident: b0110
  article-title: A novel corporate credit rating system based on student’s-t hidden Markov models
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 87
  year: 2017
  end-page: 106
  ident: b0085
  article-title: Machine learning: an applied econometric approach
  publication-title: Journal of Economic Perspectives
– volume: 138
  year: 2019
  ident: b0120
  article-title: Data analytic approach for bankruptcy prediction
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0050
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 138
  year: 2019
  ident: b0080
  article-title: Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment
  publication-title: Expert Systems with Applications
– reference: Pearson, P., Muellner, D., & Singh, G. (2015). TDAmapper: Analyze High-Dimensional Data Using Discrete Morse Theory. R package version 1.0.
– volume: 83
  start-page: 405
  year: 2017
  end-page: 417
  ident: b0025
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Systems with Applications
– volume: 28
  start-page: 131
  year: 2017
  end-page: 171
  ident: b0015
  article-title: Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z-score model
  publication-title: Journal of International Financial Management & Accounting
– reference: Vejdemo-Johansson, M., Carlsson, G., Lum, P.Y., Lehman, A., Singh, G., & Ishkhanov, T. (2012). The topology of politics: voting connectivity in the us house of representatives. In NIPS 2012 Workshop on Algebraic Topology and Machine Learning.
– reference: Dlotko, P. (2019). BallMapper: Create a Ball Mapper graph of the input data. R package version 0.1.0.
– volume: 90
  start-page: 23
  year: 2017
  end-page: 30
  ident: b0055
  article-title: The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles
  publication-title: Expert Systems with Applications
– year: 1983
  ident: b0010
  article-title: Corporate financial distress: A complete guide to predicting, avoiding, and dealing with bankruptcy
– reference: Dłotko, P. (2019). Ball mapper: a shape summary for topological data analysis. arXiv preprint arXiv:1901.07410.
– start-page: 91
  year: 2007
  end-page: 100
  ident: b0115
  article-title: Topological methods for the analysis of high dimensional data sets and 3d object recognition
  publication-title: SPBG
– volume: 39
  start-page: 419
  year: 2008
  end-page: 441
  ident: b0095
  article-title: Finding the homology of submanifolds with high confidence from random samples
  publication-title: Discrete & Computational Geometry
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  ident: b0040
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: Journal of Machine Learning Research
– volume: 491
  start-page: 820
  year: 2018
  end-page: 834
  ident: b0070
  article-title: Topological data analysis of financial time series: Landscapes of crashes
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 11
  start-page: 2079
  issue: Jul
  year: 2010
  ident: 10.1016/j.eswa.2020.113475_b0040
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: Journal of Machine Learning Research
– year: 1983
  ident: 10.1016/j.eswa.2020.113475_b0010
– ident: 10.1016/j.eswa.2020.113475_b0125
– volume: 28
  start-page: 131
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2020.113475_b0020
  article-title: Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z-score model
  publication-title: Journal of International Financial Management & Accounting
  doi: 10.1111/jifm.12053
– volume: 138
  year: 2019
  ident: 10.1016/j.eswa.2020.113475_b0080
  article-title: Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112827
– volume: 53
  start-page: 87
  year: 2016
  ident: 10.1016/j.eswa.2020.113475_b0110
  article-title: A novel corporate credit rating system based on student’s-t hidden Markov models
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.015
– volume: 31
  start-page: 87
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2020.113475_b0085
  article-title: Machine learning: an applied econometric approach
  publication-title: Journal of Economic Perspectives
  doi: 10.1257/jep.31.2.87
– volume: 107
  start-page: 7265
  year: 2011
  ident: 10.1016/j.eswa.2020.113475_b0090
  article-title: Topology based data analysis identifies a group of breast cancers with a unique mutational profile and excellent survival
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1102826108
– volume: 4
  start-page: 71
  year: 1966
  ident: 10.1016/j.eswa.2020.113475_b0030
  article-title: Financial ratios as predictors of failure
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490171
– volume: 491
  start-page: 820
  year: 2018
  ident: 10.1016/j.eswa.2020.113475_b0070
  article-title: Topological data analysis of financial time series: Landscapes of crashes
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2017.09.028
– volume: 110
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113475_b0045
  article-title: Predicting financial distress of contractors in the construction industry using ensemble learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.05.026
– volume: 30
  start-page: 385
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2020.113475_b0075
  article-title: Forecasting business failure using two-stage ensemble of multivariate discriminant analysis and logistic regression
  publication-title: Expert Systems
  doi: 10.1111/j.1468-0394.2012.00642.x
– volume: 138
  year: 2019
  ident: 10.1016/j.eswa.2020.113475_b0120
  article-title: Data analytic approach for bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.07.033
– ident: 10.1016/j.eswa.2020.113475_b0060
– volume: 18
  start-page: 109
  year: 1980
  ident: 10.1016/j.eswa.2020.113475_b0100
  article-title: Financial ratios and the probabilistic prediction of bankruptcy
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490395
– volume: 23
  start-page: 589
  issue: 4
  year: 1968
  ident: 10.1016/j.eswa.2020.113475_b0005
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– volume: 39
  start-page: 419
  issue: 1–3
  year: 2008
  ident: 10.1016/j.eswa.2020.113475_b0095
  article-title: Finding the homology of submanifolds with high confidence from random samples
  publication-title: Discrete & Computational Geometry
  doi: 10.1007/s00454-008-9053-2
– ident: 10.1016/j.eswa.2020.113475_b0105
– ident: 10.1016/j.eswa.2020.113475_b0065
  doi: 10.32614/CRAN.package.BallMapper
– volume: 43
  start-page: 113
  year: 1968
  ident: 10.1016/j.eswa.2020.113475_b0035
  article-title: Alternative accounting measures as predictors of failure
  publication-title: The Accounting Review
– volume: 58
  start-page: 93
  year: 2016
  ident: 10.1016/j.eswa.2020.113475_b0130
  article-title: Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.04.001
– volume: 90
  start-page: 23
  year: 2017
  ident: 10.1016/j.eswa.2020.113475_b0055
  article-title: The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.07.036
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.eswa.2020.113475_b0050
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– volume: 83
  start-page: 405
  year: 2017
  ident: 10.1016/j.eswa.2020.113475_b0025
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.006
– volume: 28
  start-page: 131
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2020.113475_b0015
  article-title: Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z-score model
  publication-title: Journal of International Financial Management & Accounting
  doi: 10.1111/jifm.12053
– start-page: 91
  year: 2007
  ident: 10.1016/j.eswa.2020.113475_b0115
  article-title: Topological methods for the analysis of high dimensional data sets and 3d object recognition
SSID ssj0017007
Score 2.4918246
Snippet •Introduce Topological Data Analysis Ball Mapper for examining creditworthiness.•Example taken from seminal Altman (1968) Z-Score model and ratios...
Corporate failure resonates widely, leaving practitioners searching for understanding of default risk. Managers seek to steer away from trouble, credit...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113475
SubjectTerms Bankruptcy
Bankruptcy prediction
Credit scoring
Data analysis
Data visualization
Default
Failure analysis
Loans
Mapping
Three dimensional models
Topological data analysis
Topology
Title Refining understanding of corporate failure through a topological data analysis mapping of Altman’s Z-score model
URI https://dx.doi.org/10.1016/j.eswa.2020.113475
https://www.proquest.com/docview/2438720633
Volume 156
WOSCitedRecordID wos000542130000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcuvBGFgnygp1WqxE7WznFVioBDhWiRVlwix7HRlm02atLHsbf-Bv4ev4Rx_Mh2ERUgcdhoFW2c3Z0v48_jmfkQei2BpRImkqiiSWkWKCU8UhMSxQqmUylkLPKyF5tgBwd8Nss_jkbXvhbmfMHqml9e5s1_NTWcA2Ob0tm_MHcYFE7AezA6HMHscPwjw39Suhd96BVuh7qVPn3cdi1WYy3mJh09qPQIoKBNcIMma3QsfLeSE9E0boDpojMBU5cfkbfjL1Fr2mBaPZ0bQX7TQblzfaJ9Bd3KXnmIt87P-iw_YRp2fA27P0El7HB-MuQJvNnZy3Y4WXbflpb8Xih7ZjV0AetUkwmSDfE0X1MzJDDZwCSL0sRq9-wq65Y5o9GEWS3F4LdtR_Jf5gAbjjjeVe2FaSxFet2a1OqzrPXWPjQ3M_ci4OtgYoa5fJOwLAcPvzl9vz_7EDakWGwr7_2Xc_VXNlVw_U6_4zhrs31PYY4eoHtu7YGnFjMP0UjVj9B9r-uBnZt_jFoPIXwDQnipcYAQdhDCDkJY4BUIYQMh7CGEHYTMABZCP66-t9iBB_fgeYI-v90_2nsXOXGOSFJGuogZYpzmlZ6kOaey4qpKhNKlKrUsFU8Uq3hWCUYkgzUylyW8MlkSUQKplECMn6KNelmrZwjD-o7Sia5iHacpMFTgkDqhKpbM7OKmegsl_u8spOtcbwRUFoVPUTwujAkKY4LCmmALjcM1je3bcuunM2-lwjFPyygLANWt1217kxbOBbQFSSlnBH4hff6Pw75Ad4fHZRttdKdn6iW6I8-7eXv6ykHzJ-4htJo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refining+understanding+of+corporate+failure+through+a+topological+data+analysis+mapping+of+Altman%E2%80%99s+Z-score+model&rft.jtitle=Expert+systems+with+applications&rft.au=Qiu%2C+Wanling&rft.au=Rudkin%2C+Simon&rft.au=D%C5%82otko%2C+Pawe%C5%82&rft.date=2020-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=156&rft_id=info:doi/10.1016%2Fj.eswa.2020.113475&rft.externalDocID=S0957417420302992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon