Fate-tracking early coral recruits following bleaching in a remote reef ecosystem

As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion pho...

Full description

Saved in:
Bibliographic Details
Published in:Coral reefs Vol. 44; no. 5; pp. 1651 - 1667
Main Authors: Stratford, John E., Mogg, Andrew O. M., Koldewey, Heather J., Lachs, Liam, Ferrari, Renata, Guest, James, Bayley, Daniel T. I.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025
Springer Nature B.V
Subjects:
ISSN:0722-4028, 1432-0975, 1432-0975
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery ( n  = 1,074 across 72 m 2 ), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.
AbstractList As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015-2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (  = 1,074 across 72 m ), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1-2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies. The online version contains supplementary material available at 10.1007/s00338-025-02732-8.
As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (n = 1,074 across 72 m2), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.
As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery ( n  = 1,074 across 72 m 2 ), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.
As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery ( n = 1,074 across 72 m 2 ), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.
As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015-2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (n = 1,074 across 72 m2), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1-2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015-2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (n = 1,074 across 72 m2), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1-2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.The online version contains supplementary material available at 10.1007/s00338-025-02732-8.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00338-025-02732-8.
Author Stratford, John E.
Guest, James
Bayley, Daniel T. I.
Koldewey, Heather J.
Lachs, Liam
Mogg, Andrew O. M.
Ferrari, Renata
Author_xml – sequence: 1
  givenname: John E.
  surname: Stratford
  fullname: Stratford, John E.
  email: j.stratford2@newcastle.ac.uk
  organization: Centre for Biodiversity and Environment Research, University College London, School of Natural and Environmental Sciences, Newcastle University, Australian Institute of Marine Science
– sequence: 2
  givenname: Andrew O. M.
  surname: Mogg
  fullname: Mogg, Andrew O. M.
  organization: Dunstaffnage Marine Laboratories, Tritonia Scientific Ltd
– sequence: 3
  givenname: Heather J.
  surname: Koldewey
  fullname: Koldewey, Heather J.
  organization: Zoological Society of London, Centre for Ecology and Conservation, University of Exeter, Penryn Campus
– sequence: 4
  givenname: Liam
  surname: Lachs
  fullname: Lachs, Liam
  organization: School of Natural and Environmental Sciences, Newcastle University
– sequence: 5
  givenname: Renata
  surname: Ferrari
  fullname: Ferrari, Renata
  organization: Australian Institute of Marine Science
– sequence: 6
  givenname: James
  surname: Guest
  fullname: Guest, James
  organization: School of Natural and Environmental Sciences, Newcastle University
– sequence: 7
  givenname: Daniel T. I.
  surname: Bayley
  fullname: Bayley, Daniel T. I.
  organization: Centre for Biodiversity and Environment Research, University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41064478$$D View this record in MEDLINE/PubMed
BookMark eNp90c9LwzAUB_AgE_dD_wEPUvDipfqSNE16FHEqDETYPaRpOjvbZiYtsv_e1E4FDx7Ce5DPS0K-czRpbWsQOsdwjQH4jQegVMRAWFicklgcoRlOQgMZZxM0A05InAARUzT3fgsAjGX0BE0TDGmScDFDL0vVmbhzSr9V7SYyytX7SFun6sgZ7fqq81Fp69p-DNt5bZR-HbqqjVQQje1MKKaMjLZ-7zvTnKLjUtXenB3qAq2X9-u7x3j1_PB0d7uKNeWki9OU50UueEFLyoBRjDGBTCV5mmLMAeusBMFUWSQFzkGzjPMCFCGCK1Wmmi7Q1Xjsztn33vhONpXXpq5Va2zvJSUsA5FlLA308g_d2t614XGD4ilPOGNBXRxUnzemkDtXNcrt5fdfBUBGoJ313pnyh2CQQyByDESGQORXIHIYouOQD7jdGPd79z9Tnyvui7M
Cites_doi 10.1371/journal.pone.0175341
10.1111/conl.12587
10.1038/s41598-021-91509-4
10.2307/1939851
10.3354/meps07436
10.1007/s00338-022-02331-x
10.1038/s41598-018-25414-8
10.2307/3565355
10.1371/journal.pone.0088720
10.1111/j.1523-1739.2007.00754.x
10.1111/gcb.13593
10.1002/ecy.3621
10.1111/2041-210X.13476
10.1101/2024.08.15.607490
10.1016/j.tree.2021.07.004
10.1038/s41598-017-16408-z
10.3390/rs12172676
10.1111/ele.13153
10.1007/s00338-013-1114-1
10.1007/s00338-006-0173-y
10.1007/s00227-006-0495-x
10.1371/journal.pone.0277546
10.1579/0044-7447-31.1.40
10.1007/s00338-023-02445-w
10.1146/annurev.ecolsys.28.1.317
10.1111/1365-2664.13179
10.1007/s00338-018-1656-3
10.3354/meps13206
10.4319/lo.1981.26.6.1084
10.1038/s41598-021-02807-w
10.1126/science.1232310
10.59387/WOTJ9184
10.1038/s41559-022-01937-2
10.1016/S0022-0981(96)02622-6
10.1073/pnas.2311661121
10.1038/s41598-022-27207-6
10.1016/j.cub.2024.09.035
10.3390/rs12061011
10.1007/s00338-024-02521-9
10.1016/j.biocon.2024.110771
10.1002/lno.12066
10.1038/srep18289
10.1002/aqc.3215
10.7717/peerj.1643
10.1111/2041-210X.14477
10.1038/s41586-018-0041-2
10.1016/j.ecoinf.2024.102632
10.1038/nature21707
10.1371/journal.pone.0260516
10.1038/s42003-022-04309-5
10.1111/2041-210X.14175
10.1038/s41559-020-1281-8
10.1111/2041-210X.13388
10.1111/rec.13035
10.1007/s00338-021-02184-w
10.1111/1365-2435.14182
10.1038/s42003-023-04758-6
10.1016/j.ecoleng.2019.04.007
10.3389/fmars.2021.662263
10.1111/ele.14332
10.1038/s41598-017-02402-y
10.1007/s00338-016-1518-9
10.1007/s00227-020-03776-w
10.1002/rob.22049
10.1007/s00338-021-02169-9
10.3354/meps13205
10.1371/journal.pone.0242847
10.3929/ethz-b-000240890
10.1007/s00338-019-01821-9
10.1890/12-0495.1
10.7717/peerj.1077
10.3390/jmse7020027
10.1111/brv.12987
10.1007/s00442-022-05196-7
10.1007/s00338-012-0984-y
10.1007/s00338-024-02464-1
10.1016/j.tree.2008.10.008
10.1038/nature22901
10.1017/9781009157896.013
10.1016/j.marenvres.2021.105537
10.1126/science.199.4335.1302
10.1016/j.oneear.2021.07.012
10.1038/s41586-019-1081-y
10.1002/aqc.1248
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7T7
7TN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
7X8
DOI 10.1007/s00338-025-02732-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Oceanography
EISSN 1432-0975
EndPage 1667
ExternalDocumentID 41064478
10_1007_s00338_025_02732_8
Genre Journal Article
GeographicLocations Indian Ocean
Chagos Archipelago
GeographicLocations_xml – name: Chagos Archipelago
– name: Indian Ocean
GrantInformation_xml – fundername: Fondation Bertarelli
  grantid: BPMS 2017-6
  funderid: https://doi.org/10.13039/100009152
– fundername: Natural Environment Research Council
  grantid: NE/S007512/1
  funderid: https://doi.org/10.13039/501100000270
GroupedDBID -DZ
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4R4
5GY
5QI
5VS
67M
67Z
6NX
6TJ
78A
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
MA-
MQGED
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
XJT
YLTOR
Z45
ZCA
ZMTXR
ZOVNA
~02
~A9
~EX
~KM
AAYXX
AFFHD
BANNL
CITATION
NPM
7T7
7TN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
7X8
ID FETCH-LOGICAL-c372t-667bdb87d3f35053111209a4b6611701c9f085afd4d1b0c5977d0a2287aaf6c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001562880000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0722-4028
1432-0975
IngestDate Thu Oct 09 19:00:36 EDT 2025
Wed Nov 26 13:51:23 EST 2025
Sun Oct 12 01:41:06 EDT 2025
Sat Nov 29 07:20:42 EST 2025
Tue Oct 07 10:56:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Reef recovery
Coral bleaching
Chagos Archipelago
Coral recruits
Photogrammetry
Language English
License The Author(s) 2025.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-667bdb87d3f35053111209a4b6611701c9f085afd4d1b0c5977d0a2287aaf6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s00338-025-02732-8
PMID 41064478
PQID 3257674755
PQPubID 54060
PageCount 17
ParticipantIDs proquest_miscellaneous_3259089956
proquest_journals_3257674755
pubmed_primary_41064478
crossref_primary_10_1007_s00338_025_02732_8
springer_journals_10_1007_s00338_025_02732_8
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Journal of the International Coral Reef Society
PublicationTitle Coral reefs
PublicationTitleAbbrev Coral Reefs
PublicationTitleAlternate Coral Reefs
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SB Tebbett (2732_CR83) 2022; 173
A Hernández-Agreda (2732_CR44) 2024
A Fukunaga (2732_CR25) 2020; 12
T Hata (2732_CR40) 2017; 7
CEI Head (2732_CR43) 2019; 38
ID Lange (2732_CR56) 2021; 40
TP Hughes (2732_CR46) 2017; 546
2732_CR50
ID Lange (2732_CR57) 2022; 17
J Morais (2732_CR66) 2022; 36
MW Colgan (2732_CR15) 1987; 68
D Montoya (2732_CR65) 2021; 4
R Yanovski (2732_CR88) 2019; 132
R Babcock (2732_CR2) 1996; 206
JR Guest (2732_CR35) 2014; 33
S Hazraty-Kari (2732_CR42) 2022; 5
T Remmers (2732_CR75) 2024
L Lachs (2732_CR54) 2024
ID Lange (2732_CR58) 2023; 68
2732_CR22
SB Tebbett (2732_CR84) 2023; 7
JM McDevitt-Irwin (2732_CR63) 2024; 298
CJ Randall (2732_CR73) 2020; 635
2732_CR3
DTI Bayley (2732_CR4) 2020; 11
2732_CR61
WM Hamner (2732_CR38) 1981; 26
CJ Randall (2732_CR74) 2021
G Pavoni (2732_CR70) 2022; 39
JR Guest (2732_CR36) 2018; 55
J Morais (2732_CR67) 2024; 27
HL Beyer (2732_CR7) 2018; 11
C Doropoulos (2732_CR18) 2012; 93
C Doropoulos (2732_CR19) 2022; 103
MA Lechene (2732_CR59) 2024; 81
PJ Edmunds (2732_CR20) 2023; 98
SE Leinbach (2732_CR60) 2021; 11
PJ Edmunds (2732_CR21) 2020; 635
C Sheppard (2732_CR80) 2012; 22
A Abelson (2732_CR1) 1997; 28
R Ferrari (2732_CR24) 2021; 36
A Koester (2732_CR52) 2021; 16
ME Brooks (2732_CR10) 2017; 9
Z Gold (2732_CR31) 2018; 37
R Ferrari (2732_CR23) 2017; 7
M Gouezo (2732_CR32) 2023; 14
M Miller (2732_CR64) 2016; 4
JHR Burns (2732_CR11) 2015; 3
CT Perry (2732_CR71) 2015; 5
M Kayal (2732_CR51) 2018; 21
D Tilman (2732_CR85) 1990; 58
NAJ Graham (2732_CR34) 2007; 21
2732_CR72
D Torres-Pulliza (2732_CR86) 2020; 4
GC Young (2732_CR89) 2017; 12
DWdela Cruz (2732_CR17) 2020; 15
L Lachs (2732_CR53) 2023; 6
C Sheppard (2732_CR79) 2008; 362
L Sarribouette (2732_CR77) 2022; 199
C Sheppard (2732_CR78) 2002; 31
GD Gann (2732_CR29) 2019; 27
2732_CR39
J Bouwmeester (2732_CR9) 2023; 13
2732_CR102
T Remmers (2732_CR76) 2024; 43
GC Hays (2732_CR41) 2020; 167
JH Connell (2732_CR16) 1978; 199
2732_CR01
DTI Bayley (2732_CR6) 2019; 29
JP Gilmour (2732_CR30) 2013; 340
A Fukunaga (2732_CR26) 2019; 7
2732_CR81
2732_CR82
Y Nozawa (2732_CR68) 2021; 40
NE Cantin (2732_CR12) 2014; 9
TP Hughes (2732_CR49) 2019; 568
S Mangubhai (2732_CR62) 2007; 26
ID Lange (2732_CR55) 2020; 11
KH Pascoe (2732_CR69) 2021; 11
BM Bolker (2732_CR8) 2009; 24
RR Carlson (2732_CR13) 2024; 121
DTI Bayley (2732_CR5) 2023; 42
AJ Cheal (2732_CR14) 2017; 23
A Fukunaga (2732_CR27) 2020; 12
HM Guzman (2732_CR37) 2007; 151
NS Vogt-Vincent (2732_CR87) 2024; 43
TP Hughes (2732_CR48) 2018; 556
SJ Holbrook (2732_CR45) 2018; 8
C Gallagher (2732_CR28) 2017; 36
NAJ Graham (2732_CR33) 2013; 32
TP Hughes (2732_CR47) 2017; 543
References_xml – volume: 12
  issue: 4
  year: 2017
  ident: 2732_CR89
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0175341
– volume: 11
  issue: 6
  year: 2018
  ident: 2732_CR7
  publication-title: Conserv Lett
  doi: 10.1111/conl.12587
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 2732_CR69
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-91509-4
– volume: 68
  start-page: 1592
  issue: 6
  year: 1987
  ident: 2732_CR15
  publication-title: Ecology
  doi: 10.2307/1939851
– volume: 362
  start-page: 109
  year: 2008
  ident: 2732_CR79
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps07436
– volume: 42
  start-page: 271
  issue: 2
  year: 2023
  ident: 2732_CR5
  publication-title: Coral Reefs
  doi: 10.1007/s00338-022-02331-x
– volume: 8
  start-page: 7338
  issue: 1
  year: 2018
  ident: 2732_CR45
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25414-8
– volume: 58
  start-page: 3
  issue: 1
  year: 1990
  ident: 2732_CR85
  publication-title: Oikos
  doi: 10.2307/3565355
– volume: 9
  issue: 2
  year: 2014
  ident: 2732_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0088720
– volume: 21
  start-page: 1291
  issue: 5
  year: 2007
  ident: 2732_CR34
  publication-title: Conserv Biol
  doi: 10.1111/j.1523-1739.2007.00754.x
– volume: 23
  start-page: 1511
  issue: 4
  year: 2017
  ident: 2732_CR14
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13593
– volume: 103
  start-page: 1
  issue: 3
  year: 2022
  ident: 2732_CR19
  publication-title: Ecology
  doi: 10.1002/ecy.3621
– volume: 11
  start-page: 1410
  issue: 11
  year: 2020
  ident: 2732_CR4
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13476
– ident: 2732_CR82
  doi: 10.1101/2024.08.15.607490
– volume: 36
  start-page: 1093
  issue: 12
  year: 2021
  ident: 2732_CR24
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2021.07.004
– volume: 7
  start-page: 16737
  issue: 1
  year: 2017
  ident: 2732_CR23
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16408-z
– volume: 12
  issue: 17
  year: 2020
  ident: 2732_CR25
  publication-title: Remote Sens
  doi: 10.3390/rs12172676
– volume: 21
  start-page: 1790
  issue: 12
  year: 2018
  ident: 2732_CR51
  publication-title: Ecol Lett
  doi: 10.1111/ele.13153
– volume: 33
  start-page: 45
  issue: 1
  year: 2014
  ident: 2732_CR35
  publication-title: Coral Reefs
  doi: 10.1007/s00338-013-1114-1
– volume: 26
  start-page: 15
  issue: 1
  year: 2007
  ident: 2732_CR62
  publication-title: Coral Reefs
  doi: 10.1007/s00338-006-0173-y
– volume: 151
  start-page: 401
  issue: 2
  year: 2007
  ident: 2732_CR37
  publication-title: Mar Biol
  doi: 10.1007/s00227-006-0495-x
– volume: 17
  issue: 11
  year: 2022
  ident: 2732_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0277546
– volume: 31
  start-page: 40
  issue: 1
  year: 2002
  ident: 2732_CR78
  publication-title: Ambio
  doi: 10.1579/0044-7447-31.1.40
– ident: 2732_CR22
– volume: 43
  start-page: 35
  issue: 1
  year: 2024
  ident: 2732_CR76
  publication-title: Coral Reefs
  doi: 10.1007/s00338-023-02445-w
– volume: 28
  start-page: 317
  year: 1997
  ident: 2732_CR1
  publication-title: Annu Rev Ecol Syst
  doi: 10.1146/annurev.ecolsys.28.1.317
– volume: 55
  start-page: 2865
  issue: 6
  year: 2018
  ident: 2732_CR36
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.13179
– volume: 37
  start-page: 267
  issue: 1
  year: 2018
  ident: 2732_CR31
  publication-title: Coral Reefs
  doi: 10.1007/s00338-018-1656-3
– volume: 635
  start-page: 203
  year: 2020
  ident: 2732_CR73
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps13206
– volume: 26
  start-page: 1084
  issue: 6
  year: 1981
  ident: 2732_CR38
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1981.26.6.1084
– volume: 11
  start-page: 23546
  issue: 1
  year: 2021
  ident: 2732_CR60
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-02807-w
– volume: 340
  start-page: 69
  issue: 6128
  year: 2013
  ident: 2732_CR30
  publication-title: Science
  doi: 10.1126/science.1232310
– ident: 2732_CR81
  doi: 10.59387/WOTJ9184
– volume: 7
  start-page: 71
  issue: 1
  year: 2023
  ident: 2732_CR84
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-022-01937-2
– volume: 206
  start-page: 179
  issue: 1
  year: 1996
  ident: 2732_CR2
  publication-title: J Exp Mar Biol Ecol
  doi: 10.1016/S0022-0981(96)02622-6
– volume: 121
  issue: 4
  year: 2024
  ident: 2732_CR13
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2311661121
– ident: 2732_CR102
– volume: 13
  start-page: 246
  issue: 1
  year: 2023
  ident: 2732_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-27207-6
– year: 2024
  ident: 2732_CR44
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2024.09.035
– ident: 2732_CR01
– volume: 12
  issue: 6
  year: 2020
  ident: 2732_CR27
  publication-title: Remote Sens
  doi: 10.3390/rs12061011
– volume: 43
  start-page: 1037
  issue: 4
  year: 2024
  ident: 2732_CR87
  publication-title: Coral Reefs
  doi: 10.1007/s00338-024-02521-9
– volume: 298
  year: 2024
  ident: 2732_CR63
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2024.110771
– volume: 68
  start-page: S8
  issue: S1
  year: 2023
  ident: 2732_CR58
  publication-title: Limnol Oceanogr
  doi: 10.1002/lno.12066
– volume: 5
  start-page: 18289
  issue: 1
  year: 2015
  ident: 2732_CR71
  publication-title: Sci Rep
  doi: 10.1038/srep18289
– volume: 29
  start-page: 2026
  issue: 12
  year: 2019
  ident: 2732_CR6
  publication-title: Aquat Conserv Mar Freshw Ecosyst
  doi: 10.1002/aqc.3215
– volume: 4
  year: 2016
  ident: 2732_CR64
  publication-title: PeerJ
  doi: 10.7717/peerj.1643
– year: 2024
  ident: 2732_CR75
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.14477
– volume: 556
  start-page: 492
  issue: 7702
  year: 2018
  ident: 2732_CR48
  publication-title: Nature
  doi: 10.1038/s41586-018-0041-2
– volume: 81
  year: 2024
  ident: 2732_CR59
  publication-title: Ecol Inform
  doi: 10.1016/j.ecoinf.2024.102632
– volume: 543
  start-page: 373
  issue: 7645
  year: 2017
  ident: 2732_CR47
  publication-title: Nature
  doi: 10.1038/nature21707
– volume: 16
  issue: 12
  year: 2021
  ident: 2732_CR52
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0260516
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: 2732_CR42
  publication-title: Commun Biol
  doi: 10.1038/s42003-022-04309-5
– volume: 14
  start-page: 2494
  issue: 9
  year: 2023
  ident: 2732_CR32
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.14175
– volume: 4
  start-page: 1495
  issue: 11
  year: 2020
  ident: 2732_CR86
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-020-1281-8
– volume: 11
  start-page: 714
  issue: 6
  year: 2020
  ident: 2732_CR55
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13388
– volume: 27
  start-page: S1
  issue: S1
  year: 2019
  ident: 2732_CR29
  publication-title: Second Edition Restor Ecol
  doi: 10.1111/rec.13035
– volume: 40
  start-page: 1819
  issue: 6
  year: 2021
  ident: 2732_CR56
  publication-title: Coral Reefs
  doi: 10.1007/s00338-021-02184-w
– volume: 36
  start-page: 3148
  issue: 12
  year: 2022
  ident: 2732_CR66
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.14182
– volume: 6
  start-page: 400
  issue: 1
  year: 2023
  ident: 2732_CR53
  publication-title: Commun Biol
  doi: 10.1038/s42003-023-04758-6
– volume: 132
  start-page: 87
  year: 2019
  ident: 2732_CR88
  publication-title: Ecol Eng
  doi: 10.1016/j.ecoleng.2019.04.007
– year: 2021
  ident: 2732_CR74
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2021.662263
– volume: 27
  issue: 1
  year: 2024
  ident: 2732_CR67
  publication-title: Ecol Lett
  doi: 10.1111/ele.14332
– volume: 7
  start-page: 2249
  issue: 1
  year: 2017
  ident: 2732_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02402-y
– ident: 2732_CR61
– volume: 36
  start-page: 51
  issue: 1
  year: 2017
  ident: 2732_CR28
  publication-title: Coral Reefs
  doi: 10.1007/s00338-016-1518-9
– volume: 167
  issue: 11
  year: 2020
  ident: 2732_CR41
  publication-title: Mar Biol
  doi: 10.1007/s00227-020-03776-w
– volume: 39
  start-page: 246
  issue: 3
  year: 2022
  ident: 2732_CR70
  publication-title: J Field Robot
  doi: 10.1002/rob.22049
– volume: 40
  start-page: 1463
  issue: 5
  year: 2021
  ident: 2732_CR68
  publication-title: Coral Reefs
  doi: 10.1007/s00338-021-02169-9
– volume: 635
  start-page: 233
  year: 2020
  ident: 2732_CR21
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps13205
– volume: 15
  issue: 11
  year: 2020
  ident: 2732_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0242847
– ident: 2732_CR39
– ident: 2732_CR72
– volume: 9
  start-page: 378
  issue: 2
  year: 2017
  ident: 2732_CR10
  publication-title: R J
  doi: 10.3929/ethz-b-000240890
– volume: 38
  start-page: 605
  issue: 4
  year: 2019
  ident: 2732_CR43
  publication-title: Coral Reefs
  doi: 10.1007/s00338-019-01821-9
– volume: 93
  start-page: 2131
  issue: 10
  year: 2012
  ident: 2732_CR18
  publication-title: Ecology
  doi: 10.1890/12-0495.1
– volume: 3
  year: 2015
  ident: 2732_CR11
  publication-title: PeerJ
  doi: 10.7717/peerj.1077
– volume: 7
  start-page: 27
  issue: 2
  year: 2019
  ident: 2732_CR26
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse7020027
– volume: 98
  start-page: 1862
  issue: 6
  year: 2023
  ident: 2732_CR20
  publication-title: Biol Rev
  doi: 10.1111/brv.12987
– volume: 199
  start-page: 387
  issue: 2
  year: 2022
  ident: 2732_CR77
  publication-title: Oecologia
  doi: 10.1007/s00442-022-05196-7
– volume: 32
  start-page: 315
  issue: 2
  year: 2013
  ident: 2732_CR33
  publication-title: Coral Reefs
  doi: 10.1007/s00338-012-0984-y
– year: 2024
  ident: 2732_CR54
  publication-title: Coral Reefs
  doi: 10.1007/s00338-024-02464-1
– volume: 24
  start-page: 127
  issue: 3
  year: 2009
  ident: 2732_CR8
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2008.10.008
– volume: 546
  start-page: 82
  issue: 7656
  year: 2017
  ident: 2732_CR46
  publication-title: Nature
  doi: 10.1038/nature22901
– ident: 2732_CR50
  doi: 10.1017/9781009157896.013
– volume: 173
  year: 2022
  ident: 2732_CR83
  publication-title: Mar Environ Res
  doi: 10.1016/j.marenvres.2021.105537
– volume: 199
  start-page: 1302
  issue: 4335
  year: 1978
  ident: 2732_CR16
  publication-title: Science
  doi: 10.1126/science.199.4335.1302
– volume: 4
  start-page: 1083
  issue: 8
  year: 2021
  ident: 2732_CR65
  publication-title: One Earth
  doi: 10.1016/j.oneear.2021.07.012
– ident: 2732_CR3
– volume: 568
  start-page: 387
  issue: 7752
  year: 2019
  ident: 2732_CR49
  publication-title: Nature
  doi: 10.1038/s41586-019-1081-y
– volume: 22
  start-page: 232
  issue: 2
  year: 2012
  ident: 2732_CR80
  publication-title: Aquat Conserv Mar Freshw Ecosyst
  doi: 10.1002/aqc.1248
SSID ssj0005593
Score 2.4506047
Snippet As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1651
SubjectTerms Archipelagoes
Atolls
Biomedical and Life Sciences
Coral bleaching
Coral reefs
Demography
Density
Ecosystem integrity
Freshwater & Marine Ecology
High temperature
High temperature effects
Investigations
Life Sciences
Mortality
Oceanography
Photogrammetry
Recovery
Recruitment
Storm damage
Survival
Title Fate-tracking early coral recruits following bleaching in a remote reef ecosystem
URI https://link.springer.com/article/10.1007/s00338-025-02732-8
https://www.ncbi.nlm.nih.gov/pubmed/41064478
https://www.proquest.com/docview/3257674755
https://www.proquest.com/docview/3259089956
Volume 44
WOSCitedRecordID wos001562880000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1432-0975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005593
  issn: 0722-4028
  databaseCode: RSV
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6tDKRp0gZlY91KZSTewFLb2LH7iBDVnroBFepbZDu2VAmlqE2H-PfcOUkRAh7YUx7sOJbvzneXu_sO4Liv8twp6zn5Hlw4J7kRXnOvqXImpNqEqtmEmkz0bDb6WxeFrZps9yYkGW_qTbEbtR3TnNqvEgYLynELPqK60ySOV9c3T4kdNdSuQjcLvSNdl8q8vsZzdfTCxnwRH41qZ_z1_za8C19qM5OdVXyxBx980YadiwhR_dCGz3-cN0WNVr0Pl2O0OHm5NI5-nDNPoMfMUe0-wwtxuZ6XKxaQYRb3NGxv6wxMNi-YwRlIbY8PHxj6shU09DeYji-m57953WuBu0QNS56myuZWqzwJiSTBHFBRrREW9TdBtrtRQOPMhFzkA9t3hFqX980Q_S1jQuqS77BVLAr_A5gfSDWSuRV97UXAd4YS2SQJqPisTaTqwElz4tldhaiRbbCT45FleGRZPLJMd6DbECWrpWuVJeQloR8kZQeONsMoFxTsMIVfrOOcGNKUaQcOKmJuPifQDxZC4eKnDeWeFn97Lz_fN_0XfBoS8WPmXxe2yuXaH8K2-1fOV8setNRM9yLnPgId0eUG
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NDbRpEozBtkJhRuINLLWNHbuPCLXqtNINqNDeItuxpUoondp0E_9-d07SChUe4CkPdhzLd-e7y919B_C-o_LcKes5-R5cOCe5EV5zr6lyJqTahKrZhJpM9M1N_7ouCls22e5NSDLe1OtiN2o7pjm1XyUMFpTjR7AnUGNRIt-37z82iR011K5CNwu9I12Xyvx5jd_V0ZaNuRUfjWpn-Oz_NnwET2szk32q-OI57PjiGJ4MIkT1r2M4vHLeFDVa9Qv4OkSLk5cL4-jHOfMEeswc1e4zvBAXq1m5ZAEZZn5Pw_ZnnYHJZgUzOAOp7fHhA0NftoKGfgnT4WD6ecTrXgvcJapX8jRVNrda5UlIJAlml4pqjbCovwmy3fUDGmcm5CLv2o4j1Lq8Y3robxkTUpecwG4xL_wZMN-Vqi9zKzrai4Dv9CSySRJQ8VmbSNWCD82JZ7cVoka2xk6OR5bhkWXxyDLdgnZDlKyWrmWWkJeEfpCULXi3Hka5oGCHKfx8FefEkKZMW3BaEXP9OYF-sBAKF__YUG6z-N_38urfpp_D_mj6ZZyNLyaXr-GgR4wQswDbsFsuVv4NPHZ35Wy5eBv59wF9dOcC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xKAghlUJ5hFJYpN7aFUns9W6OCIhagQIIhLhZ-5QiIQclDoh_z8zaCSDooerJh12vrdkZz3yenW8AfjSlc1Yazwl78NRawXXqFfeKKmdCpnSomk3IXk_d3nYuXlXxx9Puk5RkVdNALE1FeXDvwsG08I1akClOrViJjwVtehbmU2oaRHj96ublkEdNuysRciFSUnXZzMdrvHVN7-LNd7nS6IK6K___8l_gcx1-ssNKX1ZhxhdrsHASqauf1mD53Hpd1CzWX-Gyi5EoL4fa0g915okMmVmq6Wf4oRyO--WIBVSkwSMNm7v6ZCbrF0zjDNQCjxcfGGLcijJ6Ha67J9dHv3ndg4HbRLZLnmXSOKOkS0IiyGBbVGyrU4N-najcbSdg0KaDS13LNC2x2bmmbiMO0zpkNtmAuWJQ-C1gviVkRziTNpVPA97TFqg-SUCHaEwiZAN-TqSf31dMG_mUUzmKLEeR5VFkuWrAzmSD8trqRnlC6AnxkRAN2J8Oo71QEkQXfjCOc2KqU2QN2Kw2dvo41CAMDyUu_muyiy-L__1dtv9t-h4sXhx387M_vdNvsNQmPYiHA3dgrhyO_Xf4ZB_K_mi4G1X5GcOY7-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fate-tracking+early+coral+recruits+following+bleaching+in+a+remote+reef+ecosystem&rft.jtitle=Coral+reefs&rft.au=Stratford%2C+John+E&rft.au=Mogg%2C+Andrew+O.+M&rft.au=Koldewey%2C+Heather+J&rft.au=Lachs%2C+Liam&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0722-4028&rft.eissn=1432-0975&rft.volume=44&rft.issue=5&rft.spage=1651&rft.epage=1667&rft_id=info:doi/10.1007%2Fs00338-025-02732-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0722-4028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0722-4028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0722-4028&client=summon