Fate-tracking early coral recruits following bleaching in a remote reef ecosystem
As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion pho...
Gespeichert in:
| Veröffentlicht in: | Coral reefs Jg. 44; H. 5; S. 1651 - 1667 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0722-4028, 1432-0975, 1432-0975 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (
n
= 1,074 across 72 m
2
), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies. |
|---|---|
| AbstractList | As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015-2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (
= 1,074 across 72 m
), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1-2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.
The online version contains supplementary material available at 10.1007/s00338-025-02732-8. As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (n = 1,074 across 72 m2), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies. As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery ( n = 1,074 across 72 m 2 ), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies. As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015–2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery ( n = 1,074 across 72 m 2 ), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1–2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies. As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015-2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (n = 1,074 across 72 m2), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1-2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is essential for assessing the long-term ecological integrity and functioning of these ecosystems. In this study, we used structure-from-motion photogrammetry to map reefs at Peros Banhos atoll (Chagos Archipelago) in the three years following the 2015-2016 mass coral bleaching event. This approach enabled us to detect and track individual post-bleaching coral recruits underpinning natural recovery (n = 1,074 across 72 m2), and investigate their early survival and growth. In 2017, one year after the bleaching, new recruit density was highest, largely due to comparatively high recruitment in sheltered sites. However, 2018 recruits had higher first-year survival and growth than the 2017 cohort, suggesting a negative legacy effect of high temperatures on reef recovery. Branching coral taxa showed both the highest first-year survival and growth. Interestingly, fine-scale substrate complexity at the onset of recovery was negatively associated with the density of recruits 1-2 years later. Despite favourable conditions that allowed the majority of recruits to survive and grow rapidly, all recruits combined accounted for only 2.39% coral cover three years after the bleaching event. Our results document vital rates during early natural recovery at a remote protected atoll and shed light on the dynamics of coral recruits immediately following mass bleaching. Further, we demonstrate the insight that photogrammetric approaches can provide to reef demographic studies.The online version contains supplementary material available at 10.1007/s00338-025-02732-8.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00338-025-02732-8. |
| Author | Stratford, John E. Guest, James Bayley, Daniel T. I. Koldewey, Heather J. Lachs, Liam Mogg, Andrew O. M. Ferrari, Renata |
| Author_xml | – sequence: 1 givenname: John E. surname: Stratford fullname: Stratford, John E. email: j.stratford2@newcastle.ac.uk organization: Centre for Biodiversity and Environment Research, University College London, School of Natural and Environmental Sciences, Newcastle University, Australian Institute of Marine Science – sequence: 2 givenname: Andrew O. M. surname: Mogg fullname: Mogg, Andrew O. M. organization: Dunstaffnage Marine Laboratories, Tritonia Scientific Ltd – sequence: 3 givenname: Heather J. surname: Koldewey fullname: Koldewey, Heather J. organization: Zoological Society of London, Centre for Ecology and Conservation, University of Exeter, Penryn Campus – sequence: 4 givenname: Liam surname: Lachs fullname: Lachs, Liam organization: School of Natural and Environmental Sciences, Newcastle University – sequence: 5 givenname: Renata surname: Ferrari fullname: Ferrari, Renata organization: Australian Institute of Marine Science – sequence: 6 givenname: James surname: Guest fullname: Guest, James organization: School of Natural and Environmental Sciences, Newcastle University – sequence: 7 givenname: Daniel T. I. surname: Bayley fullname: Bayley, Daniel T. I. organization: Centre for Biodiversity and Environment Research, University College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41064478$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c9LwzAUB_AgE_dD_wEPUvDipfqSNE16FHEqDETYPaRpOjvbZiYtsv_e1E4FDx7Ce5DPS0K-czRpbWsQOsdwjQH4jQegVMRAWFicklgcoRlOQgMZZxM0A05InAARUzT3fgsAjGX0BE0TDGmScDFDL0vVmbhzSr9V7SYyytX7SFun6sgZ7fqq81Fp69p-DNt5bZR-HbqqjVQQje1MKKaMjLZ-7zvTnKLjUtXenB3qAq2X9-u7x3j1_PB0d7uKNeWki9OU50UueEFLyoBRjDGBTCV5mmLMAeusBMFUWSQFzkGzjPMCFCGCK1Wmmi7Q1Xjsztn33vhONpXXpq5Va2zvJSUsA5FlLA308g_d2t614XGD4ilPOGNBXRxUnzemkDtXNcrt5fdfBUBGoJ313pnyh2CQQyByDESGQORXIHIYouOQD7jdGPd79z9Tnyvui7M |
| Cites_doi | 10.1371/journal.pone.0175341 10.1111/conl.12587 10.1038/s41598-021-91509-4 10.2307/1939851 10.3354/meps07436 10.1007/s00338-022-02331-x 10.1038/s41598-018-25414-8 10.2307/3565355 10.1371/journal.pone.0088720 10.1111/j.1523-1739.2007.00754.x 10.1111/gcb.13593 10.1002/ecy.3621 10.1111/2041-210X.13476 10.1101/2024.08.15.607490 10.1016/j.tree.2021.07.004 10.1038/s41598-017-16408-z 10.3390/rs12172676 10.1111/ele.13153 10.1007/s00338-013-1114-1 10.1007/s00338-006-0173-y 10.1007/s00227-006-0495-x 10.1371/journal.pone.0277546 10.1579/0044-7447-31.1.40 10.1007/s00338-023-02445-w 10.1146/annurev.ecolsys.28.1.317 10.1111/1365-2664.13179 10.1007/s00338-018-1656-3 10.3354/meps13206 10.4319/lo.1981.26.6.1084 10.1038/s41598-021-02807-w 10.1126/science.1232310 10.59387/WOTJ9184 10.1038/s41559-022-01937-2 10.1016/S0022-0981(96)02622-6 10.1073/pnas.2311661121 10.1038/s41598-022-27207-6 10.1016/j.cub.2024.09.035 10.3390/rs12061011 10.1007/s00338-024-02521-9 10.1016/j.biocon.2024.110771 10.1002/lno.12066 10.1038/srep18289 10.1002/aqc.3215 10.7717/peerj.1643 10.1111/2041-210X.14477 10.1038/s41586-018-0041-2 10.1016/j.ecoinf.2024.102632 10.1038/nature21707 10.1371/journal.pone.0260516 10.1038/s42003-022-04309-5 10.1111/2041-210X.14175 10.1038/s41559-020-1281-8 10.1111/2041-210X.13388 10.1111/rec.13035 10.1007/s00338-021-02184-w 10.1111/1365-2435.14182 10.1038/s42003-023-04758-6 10.1016/j.ecoleng.2019.04.007 10.3389/fmars.2021.662263 10.1111/ele.14332 10.1038/s41598-017-02402-y 10.1007/s00338-016-1518-9 10.1007/s00227-020-03776-w 10.1002/rob.22049 10.1007/s00338-021-02169-9 10.3354/meps13205 10.1371/journal.pone.0242847 10.3929/ethz-b-000240890 10.1007/s00338-019-01821-9 10.1890/12-0495.1 10.7717/peerj.1077 10.3390/jmse7020027 10.1111/brv.12987 10.1007/s00442-022-05196-7 10.1007/s00338-012-0984-y 10.1007/s00338-024-02464-1 10.1016/j.tree.2008.10.008 10.1038/nature22901 10.1017/9781009157896.013 10.1016/j.marenvres.2021.105537 10.1126/science.199.4335.1302 10.1016/j.oneear.2021.07.012 10.1038/s41586-019-1081-y 10.1002/aqc.1248 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 7T7 7TN 8FD C1K F1W FR3 H95 L.G M7N P64 7X8 |
| DOI | 10.1007/s00338-025-02732-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology Oceanography |
| EISSN | 1432-0975 |
| EndPage | 1667 |
| ExternalDocumentID | 41064478 10_1007_s00338_025_02732_8 |
| Genre | Journal Article |
| GeographicLocations | Indian Ocean Chagos Archipelago |
| GeographicLocations_xml | – name: Chagos Archipelago – name: Indian Ocean |
| GrantInformation_xml | – fundername: Fondation Bertarelli grantid: BPMS 2017-6 funderid: https://doi.org/10.13039/100009152 – fundername: Natural Environment Research Council grantid: NE/S007512/1 funderid: https://doi.org/10.13039/501100000270 |
| GroupedDBID | -DZ -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4R4 5GY 5QI 5VS 67M 67Z 6NX 6TJ 78A 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LK5 LLZTM M2P M4Y M7R MA- MQGED N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 XJT YLTOR Z45 ZCA ZMTXR ZOVNA ~02 ~A9 ~EX ~KM AAYXX AFFHD BANNL CITATION NPM 7T7 7TN 8FD C1K F1W FR3 H95 L.G M7N P64 7X8 |
| ID | FETCH-LOGICAL-c372t-667bdb87d3f35053111209a4b6611701c9f085afd4d1b0c5977d0a2287aaf6c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001562880000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0722-4028 1432-0975 |
| IngestDate | Thu Oct 09 19:00:36 EDT 2025 Wed Nov 26 13:51:23 EST 2025 Sun Oct 12 01:41:06 EDT 2025 Sat Nov 29 07:20:42 EST 2025 Tue Oct 07 10:56:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Reef recovery Coral bleaching Chagos Archipelago Coral recruits Photogrammetry |
| Language | English |
| License | The Author(s) 2025. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-667bdb87d3f35053111209a4b6611701c9f085afd4d1b0c5977d0a2287aaf6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s00338-025-02732-8 |
| PMID | 41064478 |
| PQID | 3257674755 |
| PQPubID | 54060 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3259089956 proquest_journals_3257674755 pubmed_primary_41064478 crossref_primary_10_1007_s00338_025_02732_8 springer_journals_10_1007_s00338_025_02732_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | Journal of the International Coral Reef Society |
| PublicationTitle | Coral reefs |
| PublicationTitleAbbrev | Coral Reefs |
| PublicationTitleAlternate | Coral Reefs |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | SB Tebbett (2732_CR83) 2022; 173 A Hernández-Agreda (2732_CR44) 2024 A Fukunaga (2732_CR25) 2020; 12 T Hata (2732_CR40) 2017; 7 CEI Head (2732_CR43) 2019; 38 ID Lange (2732_CR56) 2021; 40 TP Hughes (2732_CR46) 2017; 546 2732_CR50 ID Lange (2732_CR57) 2022; 17 J Morais (2732_CR66) 2022; 36 MW Colgan (2732_CR15) 1987; 68 D Montoya (2732_CR65) 2021; 4 R Yanovski (2732_CR88) 2019; 132 R Babcock (2732_CR2) 1996; 206 JR Guest (2732_CR35) 2014; 33 S Hazraty-Kari (2732_CR42) 2022; 5 T Remmers (2732_CR75) 2024 L Lachs (2732_CR54) 2024 ID Lange (2732_CR58) 2023; 68 2732_CR22 SB Tebbett (2732_CR84) 2023; 7 JM McDevitt-Irwin (2732_CR63) 2024; 298 CJ Randall (2732_CR73) 2020; 635 2732_CR3 DTI Bayley (2732_CR4) 2020; 11 2732_CR61 WM Hamner (2732_CR38) 1981; 26 CJ Randall (2732_CR74) 2021 G Pavoni (2732_CR70) 2022; 39 JR Guest (2732_CR36) 2018; 55 J Morais (2732_CR67) 2024; 27 HL Beyer (2732_CR7) 2018; 11 C Doropoulos (2732_CR18) 2012; 93 C Doropoulos (2732_CR19) 2022; 103 MA Lechene (2732_CR59) 2024; 81 PJ Edmunds (2732_CR20) 2023; 98 SE Leinbach (2732_CR60) 2021; 11 PJ Edmunds (2732_CR21) 2020; 635 C Sheppard (2732_CR80) 2012; 22 A Abelson (2732_CR1) 1997; 28 R Ferrari (2732_CR24) 2021; 36 A Koester (2732_CR52) 2021; 16 ME Brooks (2732_CR10) 2017; 9 Z Gold (2732_CR31) 2018; 37 R Ferrari (2732_CR23) 2017; 7 M Gouezo (2732_CR32) 2023; 14 M Miller (2732_CR64) 2016; 4 JHR Burns (2732_CR11) 2015; 3 CT Perry (2732_CR71) 2015; 5 M Kayal (2732_CR51) 2018; 21 D Tilman (2732_CR85) 1990; 58 NAJ Graham (2732_CR34) 2007; 21 2732_CR72 D Torres-Pulliza (2732_CR86) 2020; 4 GC Young (2732_CR89) 2017; 12 DWdela Cruz (2732_CR17) 2020; 15 L Lachs (2732_CR53) 2023; 6 C Sheppard (2732_CR79) 2008; 362 L Sarribouette (2732_CR77) 2022; 199 C Sheppard (2732_CR78) 2002; 31 GD Gann (2732_CR29) 2019; 27 2732_CR39 J Bouwmeester (2732_CR9) 2023; 13 2732_CR102 T Remmers (2732_CR76) 2024; 43 GC Hays (2732_CR41) 2020; 167 JH Connell (2732_CR16) 1978; 199 2732_CR01 DTI Bayley (2732_CR6) 2019; 29 JP Gilmour (2732_CR30) 2013; 340 A Fukunaga (2732_CR26) 2019; 7 2732_CR81 2732_CR82 Y Nozawa (2732_CR68) 2021; 40 NE Cantin (2732_CR12) 2014; 9 TP Hughes (2732_CR49) 2019; 568 S Mangubhai (2732_CR62) 2007; 26 ID Lange (2732_CR55) 2020; 11 KH Pascoe (2732_CR69) 2021; 11 BM Bolker (2732_CR8) 2009; 24 RR Carlson (2732_CR13) 2024; 121 DTI Bayley (2732_CR5) 2023; 42 AJ Cheal (2732_CR14) 2017; 23 A Fukunaga (2732_CR27) 2020; 12 HM Guzman (2732_CR37) 2007; 151 NS Vogt-Vincent (2732_CR87) 2024; 43 TP Hughes (2732_CR48) 2018; 556 SJ Holbrook (2732_CR45) 2018; 8 C Gallagher (2732_CR28) 2017; 36 NAJ Graham (2732_CR33) 2013; 32 TP Hughes (2732_CR47) 2017; 543 |
| References_xml | – volume: 12 issue: 4 year: 2017 ident: 2732_CR89 publication-title: PLoS ONE doi: 10.1371/journal.pone.0175341 – volume: 11 issue: 6 year: 2018 ident: 2732_CR7 publication-title: Conserv Lett doi: 10.1111/conl.12587 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 2732_CR69 publication-title: Sci Rep doi: 10.1038/s41598-021-91509-4 – volume: 68 start-page: 1592 issue: 6 year: 1987 ident: 2732_CR15 publication-title: Ecology doi: 10.2307/1939851 – volume: 362 start-page: 109 year: 2008 ident: 2732_CR79 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps07436 – volume: 42 start-page: 271 issue: 2 year: 2023 ident: 2732_CR5 publication-title: Coral Reefs doi: 10.1007/s00338-022-02331-x – volume: 8 start-page: 7338 issue: 1 year: 2018 ident: 2732_CR45 publication-title: Sci Rep doi: 10.1038/s41598-018-25414-8 – volume: 58 start-page: 3 issue: 1 year: 1990 ident: 2732_CR85 publication-title: Oikos doi: 10.2307/3565355 – volume: 9 issue: 2 year: 2014 ident: 2732_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0088720 – volume: 21 start-page: 1291 issue: 5 year: 2007 ident: 2732_CR34 publication-title: Conserv Biol doi: 10.1111/j.1523-1739.2007.00754.x – volume: 23 start-page: 1511 issue: 4 year: 2017 ident: 2732_CR14 publication-title: Glob Change Biol doi: 10.1111/gcb.13593 – volume: 103 start-page: 1 issue: 3 year: 2022 ident: 2732_CR19 publication-title: Ecology doi: 10.1002/ecy.3621 – volume: 11 start-page: 1410 issue: 11 year: 2020 ident: 2732_CR4 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13476 – ident: 2732_CR82 doi: 10.1101/2024.08.15.607490 – volume: 36 start-page: 1093 issue: 12 year: 2021 ident: 2732_CR24 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2021.07.004 – volume: 7 start-page: 16737 issue: 1 year: 2017 ident: 2732_CR23 publication-title: Sci Rep doi: 10.1038/s41598-017-16408-z – volume: 12 issue: 17 year: 2020 ident: 2732_CR25 publication-title: Remote Sens doi: 10.3390/rs12172676 – volume: 21 start-page: 1790 issue: 12 year: 2018 ident: 2732_CR51 publication-title: Ecol Lett doi: 10.1111/ele.13153 – volume: 33 start-page: 45 issue: 1 year: 2014 ident: 2732_CR35 publication-title: Coral Reefs doi: 10.1007/s00338-013-1114-1 – volume: 26 start-page: 15 issue: 1 year: 2007 ident: 2732_CR62 publication-title: Coral Reefs doi: 10.1007/s00338-006-0173-y – volume: 151 start-page: 401 issue: 2 year: 2007 ident: 2732_CR37 publication-title: Mar Biol doi: 10.1007/s00227-006-0495-x – volume: 17 issue: 11 year: 2022 ident: 2732_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0277546 – volume: 31 start-page: 40 issue: 1 year: 2002 ident: 2732_CR78 publication-title: Ambio doi: 10.1579/0044-7447-31.1.40 – ident: 2732_CR22 – volume: 43 start-page: 35 issue: 1 year: 2024 ident: 2732_CR76 publication-title: Coral Reefs doi: 10.1007/s00338-023-02445-w – volume: 28 start-page: 317 year: 1997 ident: 2732_CR1 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.ecolsys.28.1.317 – volume: 55 start-page: 2865 issue: 6 year: 2018 ident: 2732_CR36 publication-title: J Appl Ecol doi: 10.1111/1365-2664.13179 – volume: 37 start-page: 267 issue: 1 year: 2018 ident: 2732_CR31 publication-title: Coral Reefs doi: 10.1007/s00338-018-1656-3 – volume: 635 start-page: 203 year: 2020 ident: 2732_CR73 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps13206 – volume: 26 start-page: 1084 issue: 6 year: 1981 ident: 2732_CR38 publication-title: Limnol Oceanogr doi: 10.4319/lo.1981.26.6.1084 – volume: 11 start-page: 23546 issue: 1 year: 2021 ident: 2732_CR60 publication-title: Sci Rep doi: 10.1038/s41598-021-02807-w – volume: 340 start-page: 69 issue: 6128 year: 2013 ident: 2732_CR30 publication-title: Science doi: 10.1126/science.1232310 – ident: 2732_CR81 doi: 10.59387/WOTJ9184 – volume: 7 start-page: 71 issue: 1 year: 2023 ident: 2732_CR84 publication-title: Nat Ecol Evol doi: 10.1038/s41559-022-01937-2 – volume: 206 start-page: 179 issue: 1 year: 1996 ident: 2732_CR2 publication-title: J Exp Mar Biol Ecol doi: 10.1016/S0022-0981(96)02622-6 – volume: 121 issue: 4 year: 2024 ident: 2732_CR13 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2311661121 – ident: 2732_CR102 – volume: 13 start-page: 246 issue: 1 year: 2023 ident: 2732_CR9 publication-title: Sci Rep doi: 10.1038/s41598-022-27207-6 – year: 2024 ident: 2732_CR44 publication-title: Curr Biol doi: 10.1016/j.cub.2024.09.035 – ident: 2732_CR01 – volume: 12 issue: 6 year: 2020 ident: 2732_CR27 publication-title: Remote Sens doi: 10.3390/rs12061011 – volume: 43 start-page: 1037 issue: 4 year: 2024 ident: 2732_CR87 publication-title: Coral Reefs doi: 10.1007/s00338-024-02521-9 – volume: 298 year: 2024 ident: 2732_CR63 publication-title: Biol Conserv doi: 10.1016/j.biocon.2024.110771 – volume: 68 start-page: S8 issue: S1 year: 2023 ident: 2732_CR58 publication-title: Limnol Oceanogr doi: 10.1002/lno.12066 – volume: 5 start-page: 18289 issue: 1 year: 2015 ident: 2732_CR71 publication-title: Sci Rep doi: 10.1038/srep18289 – volume: 29 start-page: 2026 issue: 12 year: 2019 ident: 2732_CR6 publication-title: Aquat Conserv Mar Freshw Ecosyst doi: 10.1002/aqc.3215 – volume: 4 year: 2016 ident: 2732_CR64 publication-title: PeerJ doi: 10.7717/peerj.1643 – year: 2024 ident: 2732_CR75 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.14477 – volume: 556 start-page: 492 issue: 7702 year: 2018 ident: 2732_CR48 publication-title: Nature doi: 10.1038/s41586-018-0041-2 – volume: 81 year: 2024 ident: 2732_CR59 publication-title: Ecol Inform doi: 10.1016/j.ecoinf.2024.102632 – volume: 543 start-page: 373 issue: 7645 year: 2017 ident: 2732_CR47 publication-title: Nature doi: 10.1038/nature21707 – volume: 16 issue: 12 year: 2021 ident: 2732_CR52 publication-title: PLoS ONE doi: 10.1371/journal.pone.0260516 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: 2732_CR42 publication-title: Commun Biol doi: 10.1038/s42003-022-04309-5 – volume: 14 start-page: 2494 issue: 9 year: 2023 ident: 2732_CR32 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.14175 – volume: 4 start-page: 1495 issue: 11 year: 2020 ident: 2732_CR86 publication-title: Nat Ecol Evol doi: 10.1038/s41559-020-1281-8 – volume: 11 start-page: 714 issue: 6 year: 2020 ident: 2732_CR55 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13388 – volume: 27 start-page: S1 issue: S1 year: 2019 ident: 2732_CR29 publication-title: Second Edition Restor Ecol doi: 10.1111/rec.13035 – volume: 40 start-page: 1819 issue: 6 year: 2021 ident: 2732_CR56 publication-title: Coral Reefs doi: 10.1007/s00338-021-02184-w – volume: 36 start-page: 3148 issue: 12 year: 2022 ident: 2732_CR66 publication-title: Funct Ecol doi: 10.1111/1365-2435.14182 – volume: 6 start-page: 400 issue: 1 year: 2023 ident: 2732_CR53 publication-title: Commun Biol doi: 10.1038/s42003-023-04758-6 – volume: 132 start-page: 87 year: 2019 ident: 2732_CR88 publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2019.04.007 – year: 2021 ident: 2732_CR74 publication-title: Front Mar Sci doi: 10.3389/fmars.2021.662263 – volume: 27 issue: 1 year: 2024 ident: 2732_CR67 publication-title: Ecol Lett doi: 10.1111/ele.14332 – volume: 7 start-page: 2249 issue: 1 year: 2017 ident: 2732_CR40 publication-title: Sci Rep doi: 10.1038/s41598-017-02402-y – ident: 2732_CR61 – volume: 36 start-page: 51 issue: 1 year: 2017 ident: 2732_CR28 publication-title: Coral Reefs doi: 10.1007/s00338-016-1518-9 – volume: 167 issue: 11 year: 2020 ident: 2732_CR41 publication-title: Mar Biol doi: 10.1007/s00227-020-03776-w – volume: 39 start-page: 246 issue: 3 year: 2022 ident: 2732_CR70 publication-title: J Field Robot doi: 10.1002/rob.22049 – volume: 40 start-page: 1463 issue: 5 year: 2021 ident: 2732_CR68 publication-title: Coral Reefs doi: 10.1007/s00338-021-02169-9 – volume: 635 start-page: 233 year: 2020 ident: 2732_CR21 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps13205 – volume: 15 issue: 11 year: 2020 ident: 2732_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0242847 – ident: 2732_CR39 – ident: 2732_CR72 – volume: 9 start-page: 378 issue: 2 year: 2017 ident: 2732_CR10 publication-title: R J doi: 10.3929/ethz-b-000240890 – volume: 38 start-page: 605 issue: 4 year: 2019 ident: 2732_CR43 publication-title: Coral Reefs doi: 10.1007/s00338-019-01821-9 – volume: 93 start-page: 2131 issue: 10 year: 2012 ident: 2732_CR18 publication-title: Ecology doi: 10.1890/12-0495.1 – volume: 3 year: 2015 ident: 2732_CR11 publication-title: PeerJ doi: 10.7717/peerj.1077 – volume: 7 start-page: 27 issue: 2 year: 2019 ident: 2732_CR26 publication-title: J Mar Sci Eng doi: 10.3390/jmse7020027 – volume: 98 start-page: 1862 issue: 6 year: 2023 ident: 2732_CR20 publication-title: Biol Rev doi: 10.1111/brv.12987 – volume: 199 start-page: 387 issue: 2 year: 2022 ident: 2732_CR77 publication-title: Oecologia doi: 10.1007/s00442-022-05196-7 – volume: 32 start-page: 315 issue: 2 year: 2013 ident: 2732_CR33 publication-title: Coral Reefs doi: 10.1007/s00338-012-0984-y – year: 2024 ident: 2732_CR54 publication-title: Coral Reefs doi: 10.1007/s00338-024-02464-1 – volume: 24 start-page: 127 issue: 3 year: 2009 ident: 2732_CR8 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2008.10.008 – volume: 546 start-page: 82 issue: 7656 year: 2017 ident: 2732_CR46 publication-title: Nature doi: 10.1038/nature22901 – ident: 2732_CR50 doi: 10.1017/9781009157896.013 – volume: 173 year: 2022 ident: 2732_CR83 publication-title: Mar Environ Res doi: 10.1016/j.marenvres.2021.105537 – volume: 199 start-page: 1302 issue: 4335 year: 1978 ident: 2732_CR16 publication-title: Science doi: 10.1126/science.199.4335.1302 – volume: 4 start-page: 1083 issue: 8 year: 2021 ident: 2732_CR65 publication-title: One Earth doi: 10.1016/j.oneear.2021.07.012 – ident: 2732_CR3 – volume: 568 start-page: 387 issue: 7752 year: 2019 ident: 2732_CR49 publication-title: Nature doi: 10.1038/s41586-019-1081-y – volume: 22 start-page: 232 issue: 2 year: 2012 ident: 2732_CR80 publication-title: Aquat Conserv Mar Freshw Ecosyst doi: 10.1002/aqc.1248 |
| SSID | ssj0005593 |
| Score | 2.4506047 |
| Snippet | As coral reefs face increasingly frequent and severe disturbances, their condition relies more heavily on recovery dynamics. Understanding reef recovery is... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1651 |
| SubjectTerms | Archipelagoes Atolls Biomedical and Life Sciences Coral bleaching Coral reefs Demography Density Ecosystem integrity Freshwater & Marine Ecology High temperature High temperature effects Investigations Life Sciences Mortality Oceanography Photogrammetry Recovery Recruitment Storm damage Survival |
| Title | Fate-tracking early coral recruits following bleaching in a remote reef ecosystem |
| URI | https://link.springer.com/article/10.1007/s00338-025-02732-8 https://www.ncbi.nlm.nih.gov/pubmed/41064478 https://www.proquest.com/docview/3257674755 https://www.proquest.com/docview/3259089956 |
| Volume | 44 |
| WOSCitedRecordID | wos001562880000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1432-0975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005593 issn: 0722-4028 databaseCode: RSV dateStart: 19970201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sVRDBR31Va1nBmwbSbB7bo0iLp_oq0lvYV6AgqbSp4r93drNpkepBTzlk2CwzOzszmZlvAC7jSOou5dpTmnMvjJn0eOgLjFIEZ4p2NRXlsIlkMGCjUffBNYXNqmr3KiVpb-pFs5sZO8Y8M37VYLCgHtdgHc0dM-r49PyyLOxwULsJhlkYHTHXKvPzGt_N0YqPuZIftWanv_u_De_BjnMzyU15LvZhTecN2OxZiOrPBmzfS81zh1Z9AI999Di9Ysql-XFOtAE9JtL07hO8EKfzcTEjGR6YyYd5LV5dBSYZ54QjBUpb40NnBGPZEhr6EIb93vD2znOzFjxJk6Dw4jgRSrBE0YxGRjE7pqmWhwLtt4Fsl90MnTOeqVB1hC8Nap3yeYDxFudZLOkR1PNJrk-AqAydtg5F4kCFJtGc-IwzwWMWylhGsglXFcfTtxJRI11gJ1uWpciy1LIsZU1oVUJJnXbNUmqiJIyDoqgJF4vXqBcm2cFzPZlbGpvSjOImHJfCXHwOt4VuYIKLX1eSWy7--15O_0Z-BluBEb6t_GtBvZjO9TlsyPdiPJu2oZaMWNue3C__MuUM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60KorgUa9q1RV800DbzbF9FGmpWOtVpG9hr0BBUklTxX_v7CZpkeqDPuUhy2aZY2cmM_MNwLnvSd2kXDtKc-64PpMOd2sCoxTBmaJNTUU2bCLo9dhg0HzIm8LGRbV7kZK0N_W02c2MHWOOGb9qMFhQjxdhyUWLZQr5np5fZoUdOdRugGEWRkcsb5X5eY_v5mjOx5zLj1qz097834G3YCN3M8lVJhfbsKDjMqy0LET1ZxnW76XmcY5WvQOPbfQ4nTTh0vw4J9qAHhNpevcJXojJZJiOSYQCM_owr8VrXoFJhjHhuAK5rfGhI4KxbAYNvQv9dqt_3XHyWQuOpEEjdXw_EEqwQNGIekYx66aplrsC7beBbJfNCJ0zHilX1UVNGtQ6VeMNjLc4j3xJ96AUj2J9AERF6LTVKS5uKNckmoMa40xwn7nSl56swEVB8fAtQ9QIp9jJlmQhkiy0JAtZBaoFU8Jcu8YhNVESxkGeV4Gz6WvUC5Ps4LEeTewam9L0_ArsZ8ycfg6PhW5ggJtfFpybbf77WQ7_tvwUVjv9u27YvendHsFawwiCrQKsQilNJvoYluV7OhwnJ1Z-vwBfCOcI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB68EcGjXvVcwTcNPTbH9lG0RVFqxSK-hb0CBUmlTRX_vTObtCrqg_iUh102y-xMdr7MzDcAx2GgbYNL6xkrpeeHQnvSrypEKUoKwxuWq7zZRNRui8fHRudTFb_Ldh-HJPOaBmJpSrPKs0kqk8I3akEmPGrFSnwsaNPTMOtT0yDC6_cPH0keBe1uhJALkZIoymZ-XuPr1fTN3_wWK3VXUGvl_5tfheXC_WRnub6swZRNSzDfdNTVbyVYutVWpgWL9TrctdAT9bKB1PRDnVkiQ2aaavoZfigHo142ZAkqUv-VhtVTkZnJeimTOAO1wOLDJgwxbk4ZvQHdVrN7fukVPRg8zaN65oVhpIwSkeEJD8hga1RsK32F9zpRuetGgk6bTIxvaqqqic3OVGUdcZiUSaj5Jsyk_dRuAzMJOnM1jpPrxqcAdFQVUigZCl-HOtBlOBlLP37OmTbiCaeyE1mMIoudyGJRhr3xAcWF1Q1jTugJ8VEQlOFoMoz2QkEQmdr-yM1xoc4gLMNWfrCT1-G20D2McPHT8Sl-LP77Xnb-Nv0QFjoXrfjmqn29C4t10gOXHLgHM9lgZPdhTr9kveHgwKnyO6-O7-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fate-tracking+early+coral+recruits+following+bleaching+in+a+remote+reef+ecosystem&rft.jtitle=Coral+reefs&rft.au=Stratford%2C+John+E&rft.au=Mogg%2C+Andrew+O+M&rft.au=Koldewey%2C+Heather+J&rft.au=Lachs%2C+Liam&rft.date=2025-10-01&rft.issn=1432-0975&rft.volume=44&rft.issue=5&rft_id=info:doi/10.1007%2Fs00338-025-02732-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0722-4028&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0722-4028&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0722-4028&client=summon |