Utilizing electronic health record pre-consultation data to create a predictive algorithm for diagnosis of chronic pediatric rheumatic conditions

Objectives To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times. Methods All new rheumatology patient evaluations from 202...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical rheumatology Jg. 44; H. 10; S. 4203 - 4214
Hauptverfasser: Lauer, Kendra R., Driest, Kyla, Pratt, Laura R., Taxter, Alysha
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.10.2025
Springer Nature B.V
Schlagworte:
ISSN:0770-3198, 1434-9949, 1434-9949
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objectives To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times. Methods All new rheumatology patient evaluations from 2021 to 2023 were retrospectively reviewed to identify the reason for the visit, patient-recorded outcomes, and international classification of disease codes. The data sample was randomly split into 80% derivation and 20% validation sets. Logistic regression evaluated the association of diagnosis and referral data; variables with p  < 0.2 in univariate were included in a multivariate model. Complete data are reported. Results Of the 3139 subjects, 2064 (66%) were female, with a median age of 13 [IQR 8, 16]. Patients diagnosed with inflammatory arthritis numbered 319 (10%), while 55 (2%) were diagnosed with systemic lupus erythematosus (SLE). The median time from the first visit to diagnosing inflammatory arthritis and SLE was 88 days [35, 210] and 42 [17, 132], respectively. In univariate analysis, a referral reason for swelling was positively associated with a new inflammatory arthritis diagnosis. In contrast, antinuclear antibody positivity, rash, and lupus were positively associated with a new SLE diagnosis. Referral data had low sensitivity and high specificity for both inflammatory arthritis and SLE diagnoses, with areas under the curve of 0.59 and 0.65, respectively. Conclusion Utilizing the EHR to create a predictive algorithm for chronic rheumatic disease presents a promising solution to existing patient care challenges. This approach suggests that integrating such models to the referral process could help expedite access to pediatric rheumatology services. Key Points • Patient referrals to pediatric rheumatology specialists often lead to non-rheumatic diagnosis. • Patient-reported data within the electronic health record can be utilized to predict likelihood of rheumatic disease. • Electronic algorithms to predict rheumatic disease could expedite patient care access to pediatric rheumatology, which currently has a physician shortage and potentially long wait times.
AbstractList ObjectivesTo develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times.MethodsAll new rheumatology patient evaluations from 2021 to 2023 were retrospectively reviewed to identify the reason for the visit, patient-recorded outcomes, and international classification of disease codes. The data sample was randomly split into 80% derivation and 20% validation sets. Logistic regression evaluated the association of diagnosis and referral data; variables with p < 0.2 in univariate were included in a multivariate model. Complete data are reported.ResultsOf the 3139 subjects, 2064 (66%) were female, with a median age of 13 [IQR 8, 16]. Patients diagnosed with inflammatory arthritis numbered 319 (10%), while 55 (2%) were diagnosed with systemic lupus erythematosus (SLE). The median time from the first visit to diagnosing inflammatory arthritis and SLE was 88 days [35, 210] and 42 [17, 132], respectively. In univariate analysis, a referral reason for swelling was positively associated with a new inflammatory arthritis diagnosis. In contrast, antinuclear antibody positivity, rash, and lupus were positively associated with a new SLE diagnosis. Referral data had low sensitivity and high specificity for both inflammatory arthritis and SLE diagnoses, with areas under the curve of 0.59 and 0.65, respectively.ConclusionUtilizing the EHR to create a predictive algorithm for chronic rheumatic disease presents a promising solution to existing patient care challenges. This approach suggests that integrating such models to the referral process could help expedite access to pediatric rheumatology services. Key Points• Patient referrals to pediatric rheumatology specialists often lead to non-rheumatic diagnosis.• Patient-reported data within the electronic health record can be utilized to predict likelihood of rheumatic disease.• Electronic algorithms to predict rheumatic disease could expedite patient care access to pediatric rheumatology, which currently has a physician shortage and potentially long wait times.
To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times.OBJECTIVESTo develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times.All new rheumatology patient evaluations from 2021 to 2023 were retrospectively reviewed to identify the reason for the visit, patient-recorded outcomes, and international classification of disease codes. The data sample was randomly split into 80% derivation and 20% validation sets. Logistic regression evaluated the association of diagnosis and referral data; variables with p < 0.2 in univariate were included in a multivariate model. Complete data are reported.METHODSAll new rheumatology patient evaluations from 2021 to 2023 were retrospectively reviewed to identify the reason for the visit, patient-recorded outcomes, and international classification of disease codes. The data sample was randomly split into 80% derivation and 20% validation sets. Logistic regression evaluated the association of diagnosis and referral data; variables with p < 0.2 in univariate were included in a multivariate model. Complete data are reported.Of the 3139 subjects, 2064 (66%) were female, with a median age of 13 [IQR 8, 16]. Patients diagnosed with inflammatory arthritis numbered 319 (10%), while 55 (2%) were diagnosed with systemic lupus erythematosus (SLE). The median time from the first visit to diagnosing inflammatory arthritis and SLE was 88 days [35, 210] and 42 [17, 132], respectively. In univariate analysis, a referral reason for swelling was positively associated with a new inflammatory arthritis diagnosis. In contrast, antinuclear antibody positivity, rash, and lupus were positively associated with a new SLE diagnosis. Referral data had low sensitivity and high specificity for both inflammatory arthritis and SLE diagnoses, with areas under the curve of 0.59 and 0.65, respectively.RESULTSOf the 3139 subjects, 2064 (66%) were female, with a median age of 13 [IQR 8, 16]. Patients diagnosed with inflammatory arthritis numbered 319 (10%), while 55 (2%) were diagnosed with systemic lupus erythematosus (SLE). The median time from the first visit to diagnosing inflammatory arthritis and SLE was 88 days [35, 210] and 42 [17, 132], respectively. In univariate analysis, a referral reason for swelling was positively associated with a new inflammatory arthritis diagnosis. In contrast, antinuclear antibody positivity, rash, and lupus were positively associated with a new SLE diagnosis. Referral data had low sensitivity and high specificity for both inflammatory arthritis and SLE diagnoses, with areas under the curve of 0.59 and 0.65, respectively.Utilizing the EHR to create a predictive algorithm for chronic rheumatic disease presents a promising solution to existing patient care challenges. This approach suggests that integrating such models to the referral process could help expedite access to pediatric rheumatology services. Key Points • Patient referrals to pediatric rheumatology specialists often lead to non-rheumatic diagnosis. • Patient-reported data within the electronic health record can be utilized to predict likelihood of rheumatic disease. • Electronic algorithms to predict rheumatic disease could expedite patient care access to pediatric rheumatology, which currently has a physician shortage and potentially long wait times.CONCLUSIONUtilizing the EHR to create a predictive algorithm for chronic rheumatic disease presents a promising solution to existing patient care challenges. This approach suggests that integrating such models to the referral process could help expedite access to pediatric rheumatology services. Key Points • Patient referrals to pediatric rheumatology specialists often lead to non-rheumatic diagnosis. • Patient-reported data within the electronic health record can be utilized to predict likelihood of rheumatic disease. • Electronic algorithms to predict rheumatic disease could expedite patient care access to pediatric rheumatology, which currently has a physician shortage and potentially long wait times.
Objectives To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times. Methods All new rheumatology patient evaluations from 2021 to 2023 were retrospectively reviewed to identify the reason for the visit, patient-recorded outcomes, and international classification of disease codes. The data sample was randomly split into 80% derivation and 20% validation sets. Logistic regression evaluated the association of diagnosis and referral data; variables with p  < 0.2 in univariate were included in a multivariate model. Complete data are reported. Results Of the 3139 subjects, 2064 (66%) were female, with a median age of 13 [IQR 8, 16]. Patients diagnosed with inflammatory arthritis numbered 319 (10%), while 55 (2%) were diagnosed with systemic lupus erythematosus (SLE). The median time from the first visit to diagnosing inflammatory arthritis and SLE was 88 days [35, 210] and 42 [17, 132], respectively. In univariate analysis, a referral reason for swelling was positively associated with a new inflammatory arthritis diagnosis. In contrast, antinuclear antibody positivity, rash, and lupus were positively associated with a new SLE diagnosis. Referral data had low sensitivity and high specificity for both inflammatory arthritis and SLE diagnoses, with areas under the curve of 0.59 and 0.65, respectively. Conclusion Utilizing the EHR to create a predictive algorithm for chronic rheumatic disease presents a promising solution to existing patient care challenges. This approach suggests that integrating such models to the referral process could help expedite access to pediatric rheumatology services. Key Points • Patient referrals to pediatric rheumatology specialists often lead to non-rheumatic diagnosis. • Patient-reported data within the electronic health record can be utilized to predict likelihood of rheumatic disease. • Electronic algorithms to predict rheumatic disease could expedite patient care access to pediatric rheumatology, which currently has a physician shortage and potentially long wait times.
To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic health record (EHR) to address current lengthy consultation wait times. All new rheumatology patient evaluations from 2021 to 2023 were retrospectively reviewed to identify the reason for the visit, patient-recorded outcomes, and international classification of disease codes. The data sample was randomly split into 80% derivation and 20% validation sets. Logistic regression evaluated the association of diagnosis and referral data; variables with p < 0.2 in univariate were included in a multivariate model. Complete data are reported. Of the 3139 subjects, 2064 (66%) were female, with a median age of 13 [IQR 8, 16]. Patients diagnosed with inflammatory arthritis numbered 319 (10%), while 55 (2%) were diagnosed with systemic lupus erythematosus (SLE). The median time from the first visit to diagnosing inflammatory arthritis and SLE was 88 days [35, 210] and 42 [17, 132], respectively. In univariate analysis, a referral reason for swelling was positively associated with a new inflammatory arthritis diagnosis. In contrast, antinuclear antibody positivity, rash, and lupus were positively associated with a new SLE diagnosis. Referral data had low sensitivity and high specificity for both inflammatory arthritis and SLE diagnoses, with areas under the curve of 0.59 and 0.65, respectively. Utilizing the EHR to create a predictive algorithm for chronic rheumatic disease presents a promising solution to existing patient care challenges. This approach suggests that integrating such models to the referral process could help expedite access to pediatric rheumatology services. Key Points • Patient referrals to pediatric rheumatology specialists often lead to non-rheumatic diagnosis. • Patient-reported data within the electronic health record can be utilized to predict likelihood of rheumatic disease. • Electronic algorithms to predict rheumatic disease could expedite patient care access to pediatric rheumatology, which currently has a physician shortage and potentially long wait times.
Author Lauer, Kendra R.
Taxter, Alysha
Driest, Kyla
Pratt, Laura R.
Author_xml – sequence: 1
  givenname: Kendra R.
  orcidid: 0009-0006-0998-4503
  surname: Lauer
  fullname: Lauer, Kendra R.
  organization: Division of Pediatric Rheumatology, Nationwide Children’s Hospital
– sequence: 2
  givenname: Kyla
  orcidid: 0000-0002-6514-4182
  surname: Driest
  fullname: Driest, Kyla
  organization: Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University
– sequence: 3
  givenname: Laura R.
  orcidid: 0000-0002-9990-9032
  surname: Pratt
  fullname: Pratt, Laura R.
  organization: Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University
– sequence: 4
  givenname: Alysha
  orcidid: 0000-0002-2429-116X
  surname: Taxter
  fullname: Taxter, Alysha
  email: Alysha.Taxter@nationwidechildrens.org, taxter.1@osu.edu
  organization: Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University, Division of Clinical Informatics, Nationwide Children’s Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40817391$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi3Uik5bXoAFssSGTeA6Tux4iarSIlViQ9eR41xPXCX2YDtI9C14YzxNAYkFG_9I5zu27ndOTnzwSMhrBu8ZgPyQyipkBXVbgRScVe0LsmMNbyqlGnVCdiAlVJyp7oycp_QAAHWn2Ety1kDHJFdsR37eZze7R-f3FGc0OQbvDJ1Qz3miEU2IIz1ErEzwaZ2zzi54OuqsaQ7URNQZqT4SozPZfS-XeR-iy9NCbYh0dHrvQ3KJBkvNtNkPBdY5llOccF2K09DiH91Rni7JqdVzwlfP-wW5_3T99eq2uvty8_nq411luKxz1Y5y7KTFQTSitp2Vkg_cat2Bhm5QylrNxqHuYFASmhZBlWmh4MKwWoDm_IK827yHGL6tmHK_uGRwnrXHsKae1w0wLoQ4om__QR_CGn35XaEEtLVUShXqzTO1DguO_SG6Rccf_e9hF6DeABNDShHtH4RBf2y03xrtS6P9U6N9W0J8C6UC-z3Gv2__J_UL91ilVw
Cites_doi 10.1002/acr.22238
10.1186/1546-0096-13-1
10.1542/peds.2023-063678R
10.1186/s12969-023-00809-8
10.1007/s00431-023-05017-w
10.1186/s12969-016-0085-5
10.1002/art.23087
10.1136/annrheumdis-2012-202031
10.1093/rheumatology/ket273
10.1007/s00296-017-3734-1
10.1002/art.41892
10.1002/acr.24497
10.1016/j.jpeds.2008.08.013
10.3402/meo.v7i.4536
10.1002/acr.22845
10.1177/0961203318805851
10.1002/art.41888
10.1542/peds.110.2.354
10.1007/s00467-020-04686-1
10.1093/rheumatology/kep460
10.1002/art.24671
10.1007/s11926-021-00985-0
10.5152/TurkArchPediatr.2022.22192
10.1016/j.semarthrit.2023.152167
10.1177/0009922815624902
10.1002/art.23204
10.1186/s12969-023-00910-y
10.1177/0961203316644333
10.1016/j.jbspin.2019.04.014
10.3899/jrheum.180734
10.1136/annrheumdis-2016-210602
10.1016/j.jbspin.2020.05.007
10.1002/art.22882
10.1542/pir.2022-005623
10.1186/1471-2431-4-13
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
DOI 10.1007/s10067-025-07631-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1434-9949
EndPage 4214
ExternalDocumentID 40817391
10_1007_s10067_025_07631_5
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: The Ohio State University Clinical and Translational Science Institute (CTSI)
  grantid: UL1TR002733
– fundername: National Center for Advancing Translational Sciences of the National Institutes of Health
  grantid: UL1TR002733
– fundername: NCATS NIH HHS
  grantid: UL1 TR002733
GroupedDBID ---
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
203
28-
29B
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
~A9
~EX
~KM
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
AAYZH
ID FETCH-LOGICAL-c372t-5d7d87feb6462f8f773b3faa80a08b99ffa1db280b97045e09100e636c1260a33
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551628200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0770-3198
1434-9949
IngestDate Sat Aug 16 17:01:04 EDT 2025
Wed Nov 26 14:52:15 EST 2025
Sun Oct 19 00:29:54 EDT 2025
Sat Nov 29 07:14:57 EST 2025
Tue Oct 14 01:15:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Systemic lupus erythematosus
Electronic health record
Pediatric rheumatology
Juvenile idiopathic arthritis
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-5d7d87feb6462f8f773b3faa80a08b99ffa1db280b97045e09100e636c1260a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-0998-4503
0000-0002-6514-4182
0000-0002-9990-9032
0000-0002-2429-116X
OpenAccessLink https://link.springer.com/10.1007/s10067-025-07631-5
PMID 40817391
PQID 3260527999
PQPubID 326351
PageCount 12
ParticipantIDs proquest_miscellaneous_3240136663
proquest_journals_3260527999
pubmed_primary_40817391
crossref_primary_10_1007_s10067_025_07631_5
springer_journals_10_1007_s10067_025_07631_5
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle Journal of the International League of Associations for Rheumatology
PublicationTitle Clinical rheumatology
PublicationTitleAbbrev Clin Rheumatol
PublicationTitleAlternate Clin Rheumatol
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References F McErlane (7631_CR16) 2013; 72
E Aygun (7631_CR27) 2019; 32
GS Hazlewood (7631_CR41) 2016; 68
JJ Sacks (7631_CR1) 2007; 57
KA Rouster-Stevens (7631_CR31) 2014; 66
CK Correll (7631_CR13) 2022; 74
MS Ong (7631_CR40) 2021; 73
HE Foster (7631_CR35) 2007; 57
HI Brunner (7631_CR22) 2008; 58
N Sahin (7631_CR29) 2023; 182
N Ambrose (7631_CR21) 2016; 25
S Jandial (7631_CR20) 2009; 154
A Consolaro (7631_CR15) 2016; 14
BA Denardo (7631_CR2) 1994; 21
D Chiewchengchol (7631_CR25) 2015
N Chottawornsak (7631_CR26) 2018; 27
7631_CR11
CK Correll (7631_CR12) 2024
S Alhumaid (7631_CR3) 2023; 15
DD Reiff (7631_CR5) 2023; 21
U Kaya Akca (7631_CR4) 2023; 58
N Tzaribachev (7631_CR7) 2009; 61
DE Bonds (7631_CR19) 2002; 7
A Charras (7631_CR23) 2021; 23
A Kavirayani (7631_CR38) 2013; 52
JL McGhee (7631_CR24) 2004; 4
L Oni (7631_CR10) 2021; 36
V Ahluwalia (7631_CR32) 2020; 47
JL McGhee (7631_CR14) 2002; 110
A Ahrari (7631_CR30) 2020; 87
B Combe (7631_CR36) 2017; 76
7631_CR8
AM Long (7631_CR9) 2023; 44
K Davies (7631_CR37) 2010; 49
HM Peterson (7631_CR18) 2023; 59
AM Rosenberg (7631_CR6) 2005; 32
CK Correll (7631_CR28) 2016; 55
NJ Shiff (7631_CR17) 2017; 37
A Chausset (7631_CR33) 2023; 21
C Freychet (7631_CR34) 2019; 86
Y Kimura (7631_CR39) 2021; 73
References_xml – volume: 66
  start-page: 649
  issue: 5
  year: 2014
  ident: 7631_CR31
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.22238
– volume: 15
  start-page: e43594
  issue: 8
  year: 2023
  ident: 7631_CR3
  publication-title: Cureus
– year: 2015
  ident: 7631_CR25
  publication-title: Pediatr Rheumatol Online J
  doi: 10.1186/1546-0096-13-1
– year: 2024
  ident: 7631_CR12
  publication-title: Pediatrics
  doi: 10.1542/peds.2023-063678R
– volume: 21
  issue: 1
  year: 2023
  ident: 7631_CR33
  publication-title: Pediatr Rheumatol Online J
  doi: 10.1186/s12969-023-00809-8
– volume: 182
  start-page: 3325
  issue: 7
  year: 2023
  ident: 7631_CR29
  publication-title: Eur J Pediatr
  doi: 10.1007/s00431-023-05017-w
– volume: 14
  issue: 1
  year: 2016
  ident: 7631_CR15
  publication-title: Pediatr Rheumatol Online J
  doi: 10.1186/s12969-016-0085-5
– volume: 57
  start-page: 1439
  issue: 8
  year: 2007
  ident: 7631_CR1
  publication-title: Arthritis Rheum
  doi: 10.1002/art.23087
– volume: 72
  start-page: 1983
  issue: 12
  year: 2013
  ident: 7631_CR16
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2012-202031
– volume: 52
  start-page: 2203
  issue: 12
  year: 2013
  ident: 7631_CR38
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/ket273
– volume: 37
  start-page: 1575
  issue: 9
  year: 2017
  ident: 7631_CR17
  publication-title: Rheumatol Int
  doi: 10.1007/s00296-017-3734-1
– volume: 73
  start-page: 1910
  issue: 10
  year: 2021
  ident: 7631_CR40
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.41892
– volume: 74
  start-page: 340
  issue: 3
  year: 2022
  ident: 7631_CR13
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.24497
– volume: 154
  start-page: 267
  issue: 2
  year: 2009
  ident: 7631_CR20
  publication-title: J Pediatr
  doi: 10.1016/j.jpeds.2008.08.013
– volume: 7
  issue: 1
  year: 2002
  ident: 7631_CR19
  publication-title: Med Educ Online
  doi: 10.3402/meo.v7i.4536
– volume: 21
  start-page: 1553
  issue: 8
  year: 1994
  ident: 7631_CR2
  publication-title: J Rheumatol
– volume: 32
  start-page: 1992
  issue: 10
  year: 2005
  ident: 7631_CR6
  publication-title: J Rheumatol
– volume: 68
  start-page: 1547
  issue: 10
  year: 2016
  ident: 7631_CR41
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.22845
– volume: 27
  start-page: 2069
  issue: 13
  year: 2018
  ident: 7631_CR26
  publication-title: Lupus
  doi: 10.1177/0961203318805851
– volume: 73
  start-page: 1898
  issue: 10
  year: 2021
  ident: 7631_CR39
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.41888
– volume: 110
  start-page: 354
  issue: 2 Pt 1
  year: 2002
  ident: 7631_CR14
  publication-title: Pediatrics
  doi: 10.1542/peds.110.2.354
– volume: 36
  start-page: 1377
  issue: 6
  year: 2021
  ident: 7631_CR10
  publication-title: Pediatr Nephrol
  doi: 10.1007/s00467-020-04686-1
– volume: 49
  start-page: 1406
  issue: 7
  year: 2010
  ident: 7631_CR37
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/kep460
– volume: 61
  start-page: 1367
  issue: 10
  year: 2009
  ident: 7631_CR7
  publication-title: Arthritis Rheum
  doi: 10.1002/art.24671
– volume: 23
  start-page: 20
  issue: 3
  year: 2021
  ident: 7631_CR23
  publication-title: Curr Rheumatol Rep
  doi: 10.1007/s11926-021-00985-0
– volume: 58
  start-page: 49
  issue: 1
  year: 2023
  ident: 7631_CR4
  publication-title: Turk Arch Pediatr
  doi: 10.5152/TurkArchPediatr.2022.22192
– volume: 59
  start-page: 152167
  year: 2023
  ident: 7631_CR18
  publication-title: Semin Arthritis Rheum
  doi: 10.1016/j.semarthrit.2023.152167
– volume: 55
  start-page: 1279
  issue: 14
  year: 2016
  ident: 7631_CR28
  publication-title: Clin Pediatr (Phila)
  doi: 10.1177/0009922815624902
– volume: 58
  start-page: 556
  issue: 2
  year: 2008
  ident: 7631_CR22
  publication-title: Arthritis Rheum
  doi: 10.1002/art.23204
– volume: 21
  issue: 1
  year: 2023
  ident: 7631_CR5
  publication-title: Pediatr Rheumatol Online J
  doi: 10.1186/s12969-023-00910-y
– volume: 25
  start-page: 1542
  issue: 14
  year: 2016
  ident: 7631_CR21
  publication-title: Lupus
  doi: 10.1177/0961203316644333
– volume: 86
  start-page: 739
  issue: 6
  year: 2019
  ident: 7631_CR34
  publication-title: Joint Bone Spine
  doi: 10.1016/j.jbspin.2019.04.014
– ident: 7631_CR11
– volume: 47
  start-page: 461
  issue: 3
  year: 2020
  ident: 7631_CR32
  publication-title: J Rheumatol
  doi: 10.3899/jrheum.180734
– volume: 76
  start-page: 948
  issue: 6
  year: 2017
  ident: 7631_CR36
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2016-210602
– volume: 87
  start-page: 588
  issue: 6
  year: 2020
  ident: 7631_CR30
  publication-title: Joint Bone Spine
  doi: 10.1016/j.jbspin.2020.05.007
– ident: 7631_CR8
– volume: 57
  start-page: 921
  issue: 6
  year: 2007
  ident: 7631_CR35
  publication-title: Arthritis Rheum
  doi: 10.1002/art.22882
– volume: 32
  start-page: 181
  year: 2019
  ident: 7631_CR27
  publication-title: Pan Afr Med J
– volume: 44
  start-page: 565
  issue: 10
  year: 2023
  ident: 7631_CR9
  publication-title: Pediatr Rev
  doi: 10.1542/pir.2022-005623
– volume: 4
  start-page: 13
  year: 2004
  ident: 7631_CR24
  publication-title: BMC Pediatr
  doi: 10.1186/1471-2431-4-13
SSID ssj0002891
Score 2.4286618
Snippet Objectives To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the...
To develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the electronic...
ObjectivesTo develop a predictive algorithm for diagnosing chronic pediatric rheumatic conditions using patient-reported, historical, and referral data in the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4203
SubjectTerms Adolescent
Algorithms
Antinuclear antibodies
Arthritis
Autoimmune diseases
Child
Childhood
Chronic Disease
Complaints
Diagnosis
Electronic Health Records
Electronic medical records
Female
Fibromyalgia
Humans
Inflammation
Lupus
Lupus Erythematosus, Systemic - diagnosis
Male
Medicine
Medicine & Public Health
Original Article
Pain
Patients
Pediatrics
Prediction Algorithms
Questionnaires
Referral and Consultation
Regression analysis
Retrospective Studies
Rheumatic diseases
Rheumatic Diseases - diagnosis
Rheumatology
Sensitivity analysis
Systemic lupus erythematosus
Workforce
Title Utilizing electronic health record pre-consultation data to create a predictive algorithm for diagnosis of chronic pediatric rheumatic conditions
URI https://link.springer.com/article/10.1007/s10067-025-07631-5
https://www.ncbi.nlm.nih.gov/pubmed/40817391
https://www.proquest.com/docview/3260527999
https://www.proquest.com/docview/3240136663
Volume 44
WOSCitedRecordID wos001551628200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1434-9949
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002891
  issn: 0770-3198
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VWiEupS2PptDVIPXWWkriJHaOVVXEhVVVoNpbZCcORFo2aDfbQ_9F_3HHdrJLBRzgHGtsecYz32ReAJ9ynkY6liELtSwZKbyEqTgvmUnIvFcq0lJrN2xCjMdyMsl_9EVhiyHbfQhJOk19p9iNNCuz41fJ9-YRSzfgJZk7aZ_jz_NfK_0b93PyhLAaJpd9qczDNP43R_cw5r34qDM7JzvPO_AbeN3DTPzq5eItvDCzd7B11gfSd-HvZddMmz9EDteDcNAXRaL_cYM2QaS0FZpTH65Hm02KXYsOaBpUdkXVOIWJanrVzpvu-gYJBWPlE_iaBbY1lr7_Lt4OU0Fwfm2WrlUsEv3KJ43tweXJ94tvp6yfzsBKLuKOpZWopKiNzpIsrmUtBNe8VkqGKpQ6z-taRZUVA50Lwo3GApPQZDwrI_KhFOf7sDlrZ-Y9oMwI1ySkO9OavEGSjypUiY0HEqAwypgAPg9MKm59E45i3W7Z3nJBt1y4Wy7SAI4GPhb9g1wU3PptsSA4HMDx6jM9JRsfUTPTLu0a62ySP8cDOPD8X22XEHQSPI8C-DIwe0388bN8eNryQ9iOrby4ZMEj2OzmS_MRXpW_u2YxH8GGmMiRE_Z__Fn4mg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFgEXyptAgUHiBpaSOIntY4WoWtGuELSot8hOnDbSsql2sxz4F_zjju1kF9T2AOdYY8sznvkm8wJ4p3iemFTGLDayYqTwMqZTVTGbkXmvdWKkMX7YhJhM5Omp-jIUhS3GbPcxJOk19R_FbqRZmRu_Sr43T1h-C7Yyslguke_rt-8r_ZsOc_KEcBpGyaFU5noaf5ujKxjzSnzUm5297f878AO4P8BM3A1y8RA27OwR3DkaAumP4fdJ307bX0QO14NwMBRFYvhxgy5BpHIVmtMQrkeXTYp9hx5oWtRuRd16hYl6etbN2_78BxIKxjok8LUL7BqsQv9dvBinguD83C59q1gk-nVIGnsCJ3ufjj_us2E6A6u4SHuW16KWorGmyIq0kY0Q3PBGaxnrWBqlmkYntRMDowThRuuASWwLXlQJ-VCa86ewOetm9jmgLAjXECtV3pA3SPJRxzpz8UACFFZbG8H7kUnlRWjCUa7bLbtbLumWS3_LZR7BzsjHcniQi5I7vy0VBIcjeLv6TE_JxUf0zHZLt8Y5m-TP8QieBf6vtssIOgmukgg-jMxeE7_5LC_-bfkbuLt_fHRYHh5MPr-Ee6mTHZ84uAOb_XxpX8Ht6mffLuavvchfAtBR-pY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQRUX3o9AgUHiBlGTOImdIwJWIGBVCYp6i-zYbiMtyWo3y4F_wT9mbCe7RYUD4hxrbNnj8fdlXgDPK1akKhNJnCjRxGTw8lhmVRObnJ53LVMllPLNJvh8Lk5OqqNzWfw-2n1ySYacBlelqRsOl9oenkt8Iysbu1asxMNZGheX4UrumgY5vv7569YWZ2PPPM6dtanEmDbzZxm_P00X8OYFX6l_gmY3_n_xN-H6CD_xVdCXW3DJdLdh_9PoYL8DP4-HdtH-ING4a5CDIVkSww8ddIEjjcvcXAQ3ProoUxx69ADUoHQjdOsNKcrFab9qh7NvSOgYdQjsa9fYW2xCXV5cTt1CcHVmNr6ELJJ8HYLJ7sLx7O2X1-_isWtD3DCeDXGhuRbcGlXmZWaF5ZwpZqUUiUyEqiprZaqdeqiKE540DrAkpmRlkxK3kozdg72u78wDQFES3snJphaWWCLpjU5k7vyEBDSMNCaCF9OB1ctQnKPelWF2u1zTLtd-l-sigoPpTOvxoq5r5vhcxgkmR_Bs-5mumPObyM70GzfGkVDieSyC-0EXttPlBKk4q9IIXk4HvxP-97U8_LfhT2H_6M2s_vh-_uERXMuc6vh4wgPYG1Yb8xiuNt-Hdr164rX_F87vA4k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+electronic+health+record+pre-consultation+data+to+create+a+predictive+algorithm+for+diagnosis+of+chronic+pediatric+rheumatic+conditions&rft.jtitle=Clinical+rheumatology&rft.au=Lauer%2C+Kendra+R&rft.au=Driest%2C+Kyla&rft.au=Pratt%2C+Laura+R&rft.au=Taxter%2C+Alysha&rft.date=2025-10-01&rft.eissn=1434-9949&rft.volume=44&rft.issue=10&rft.spage=4203&rft_id=info:doi/10.1007%2Fs10067-025-07631-5&rft_id=info%3Apmid%2F40817391&rft.externalDocID=40817391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0770-3198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0770-3198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0770-3198&client=summon