A review of lane detection methods based on deep learning
•This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of computer vision and pattern recognition.•Detailed description of convolution neural networks' architectures and loss functions that used in...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 111; s. 107623 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2021
|
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of computer vision and pattern recognition.•Detailed description of convolution neural networks' architectures and loss functions that used in lanes detector.•Advantages of deep learning-based methods compared with traditional heuristic recognition-based methods.•Current challenges of existing deep learning-based methods and some possible directions to solve the problems.
Lane detection is an application of environmental perception, which aims to detect lane areas or lane lines by camera or lidar. In recent years, gratifying progress has been made in detection accuracy. To the best of our knowledge, this paper is the first attempt to make a comprehensive review of vision-based lane detection methods. First, we introduce the background of lane detection, including traditional lane detection methods and related deep learning methods. Second, we group the existing lane detection methods into two categories: two-step and one-step methods. Around the above summary, we introduce lane detection methods from the following two perspectives: (1) network architectures, including classification and object detection-based methods, end-to-end image-segmentation based methods, and some optimization strategies; (2) related loss functions. For each method, its contributions and weaknesses are introduced. Then, a brief comparison of representative methods is presented. Finally, we conclude this survey with some current challenges, such as expensive computation and the lack of generalization. And we point out some directions to be further explored in the future, that is, semi-supervised learning, meta-learning and neural architecture search, etc. |
|---|---|
| AbstractList | •This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of computer vision and pattern recognition.•Detailed description of convolution neural networks' architectures and loss functions that used in lanes detector.•Advantages of deep learning-based methods compared with traditional heuristic recognition-based methods.•Current challenges of existing deep learning-based methods and some possible directions to solve the problems.
Lane detection is an application of environmental perception, which aims to detect lane areas or lane lines by camera or lidar. In recent years, gratifying progress has been made in detection accuracy. To the best of our knowledge, this paper is the first attempt to make a comprehensive review of vision-based lane detection methods. First, we introduce the background of lane detection, including traditional lane detection methods and related deep learning methods. Second, we group the existing lane detection methods into two categories: two-step and one-step methods. Around the above summary, we introduce lane detection methods from the following two perspectives: (1) network architectures, including classification and object detection-based methods, end-to-end image-segmentation based methods, and some optimization strategies; (2) related loss functions. For each method, its contributions and weaknesses are introduced. Then, a brief comparison of representative methods is presented. Finally, we conclude this survey with some current challenges, such as expensive computation and the lack of generalization. And we point out some directions to be further explored in the future, that is, semi-supervised learning, meta-learning and neural architecture search, etc. |
| ArticleNumber | 107623 |
| Author | Liu, Peng Tang, Jigang Li, Songbin |
| Author_xml | – sequence: 1 givenname: Jigang surname: Tang fullname: Tang, Jigang organization: Institute of Acoustics, Chinese Academy of Sciences, 100190, China – sequence: 2 givenname: Songbin orcidid: 0000-0003-0503-6208 surname: Li fullname: Li, Songbin email: lisongbin@mail.ioa.ac.cn organization: Institute of Acoustics, Chinese Academy of Sciences, 100190, China – sequence: 3 givenname: Peng surname: Liu fullname: Liu, Peng organization: Institute of Acoustics, Chinese Academy of Sciences, 100190, China |
| BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wIy5zc2FUIo3KLjRdcgkJzVlmpQkKL69M4wrF7o68J_z_fCdFVr44AGha0pKSmh9cyhPKuuwLxlhU9TUjJ-hJW0bXlRUsAVaEsJpwRnhF2iV0oEQ2oyLJeo2OMKHg08cLB6UB2wgg84ueHyE_B5Mwr1KYPAYGIATHkBF7_z-Ep1bNSS4-plr9PZw_7p9KnYvj8_bza7QvGG5qIxoOqu1EZVoWtp1reaU151te600E5bWAMb24w1pGWU9B67qSljNWsWB8TUSc6-OIaUIVp6iO6r4JSmRk748yFlfTvpy1h-x21-YdllNXjkqN_wH380wjGLjd6JM2oHXYFwcnyNNcH8XfAO-4HoX |
| CitedBy_id | crossref_primary_10_1088_1361_6501_adfc86 crossref_primary_10_1109_TITS_2024_3524603 crossref_primary_10_3390_electronics13142790 crossref_primary_10_1016_j_jag_2024_104139 crossref_primary_10_1016_j_jii_2024_100571 crossref_primary_10_1080_00207160_2024_2443498 crossref_primary_10_1109_TITS_2023_3290991 crossref_primary_10_1109_TGRS_2024_3442732 crossref_primary_10_1109_TITS_2023_3289165 crossref_primary_10_3390_ijgi12030132 crossref_primary_10_1109_ACCESS_2022_3232127 crossref_primary_10_1016_j_jksuci_2022_06_008 crossref_primary_10_3390_s21134428 crossref_primary_10_3390_jsan14010015 crossref_primary_10_1016_j_eswa_2023_122848 crossref_primary_10_1016_j_neucom_2023_127057 crossref_primary_10_3390_jmse11040731 crossref_primary_10_1007_s00530_025_01855_w crossref_primary_10_3390_drones8110611 crossref_primary_10_1016_j_eswa_2025_127055 crossref_primary_10_1109_TITS_2024_3503556 crossref_primary_10_1109_TVT_2024_3462508 crossref_primary_10_1080_03081060_2025_2502413 crossref_primary_10_1155_2022_5134437 crossref_primary_10_1080_15389588_2023_2219794 crossref_primary_10_3390_app122010675 crossref_primary_10_1109_LRA_2024_3475881 crossref_primary_10_1109_TITS_2024_3459799 crossref_primary_10_1111_mice_13051 crossref_primary_10_1080_15472450_2025_2559224 crossref_primary_10_1155_2022_7919875 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_1109_TIV_2024_3406867 crossref_primary_10_1109_TITS_2025_3554695 crossref_primary_10_1109_ACCESS_2022_3223704 crossref_primary_10_3390_s24051590 crossref_primary_10_1364_AO_486302 crossref_primary_10_1007_s11227_021_04230_4 crossref_primary_10_1080_09540091_2022_2139352 crossref_primary_10_3390_app14135464 crossref_primary_10_1016_j_knosys_2021_107941 crossref_primary_10_1016_j_patcog_2023_109321 crossref_primary_10_1109_TVT_2021_3133327 crossref_primary_10_3390_app15137410 crossref_primary_10_1016_j_sysarc_2023_102888 crossref_primary_10_3390_s23177311 crossref_primary_10_1109_TITS_2025_3543809 crossref_primary_10_3390_app15020699 crossref_primary_10_1002_aaai_12139 crossref_primary_10_1038_s41598_024_84575_x crossref_primary_10_1002_jsid_1193 crossref_primary_10_3390_app132212377 crossref_primary_10_3390_f12091202 crossref_primary_10_3390_s23062938 crossref_primary_10_3390_electronics10192356 crossref_primary_10_3390_jimaging11080259 crossref_primary_10_3390_rs16142515 crossref_primary_10_1016_j_neucom_2025_130795 crossref_primary_10_3390_f14091787 crossref_primary_10_32604_iasc_2023_039868 crossref_primary_10_3390_electronics14142865 crossref_primary_10_1093_jcde_qwac056 crossref_primary_10_3390_app12073477 crossref_primary_10_3390_mi13050716 crossref_primary_10_3390_s22197682 crossref_primary_10_1016_j_engappai_2023_106238 crossref_primary_10_1109_TITS_2024_3358732 crossref_primary_10_1109_TITS_2025_3550745 crossref_primary_10_3390_electronics14163179 crossref_primary_10_1016_j_optmat_2022_113401 crossref_primary_10_1049_ccs2_12092 crossref_primary_10_3390_math12081206 crossref_primary_10_1109_TIV_2022_3223131 crossref_primary_10_1109_ACCESS_2023_3348478 crossref_primary_10_3233_IDT_240162 crossref_primary_10_1145_3729420 crossref_primary_10_3390_sym15020535 crossref_primary_10_1007_s12559_023_10215_7 crossref_primary_10_1016_j_patcog_2021_108020 crossref_primary_10_1016_j_vehcom_2023_100573 crossref_primary_10_1109_TITS_2021_3070111 crossref_primary_10_1038_s41598_025_01167_z crossref_primary_10_1109_JIOT_2024_3362851 crossref_primary_10_1109_JSTARS_2025_3538920 crossref_primary_10_3390_s24144739 crossref_primary_10_1109_ACCESS_2024_3381488 crossref_primary_10_3390_app112110054 crossref_primary_10_1007_s44163_025_00455_x crossref_primary_10_3390_wevj13100191 crossref_primary_10_3390_electronics12244911 crossref_primary_10_1038_s41598_025_86743_z crossref_primary_10_1177_03611981251334618 crossref_primary_10_3390_su17020753 |
| Cites_doi | 10.1007/978-3-030-01234-2_49 10.1016/j.patcog.2015.12.010 10.1109/TVT.2019.2949603 10.1109/TITS.2006.869595 10.4028/b-ap0LHp 10.1016/S0167-8655(00)00021-0 10.1109/TVT.2008.2006618 10.1016/j.patcog.2014.02.004 10.14257/ijsip.2016.9.3.08 10.1016/j.patcog.2018.05.014 10.1007/s13735-017-0141-z 10.1016/j.eswa.2009.05.026 10.1109/TITS.2017.2750080 10.1109/5.726791 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2020.107623 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2020_107623 S003132032030426X |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c372t-5d479fccd454781998c31369f8bcac24f16eedfb9fc08212b3e3a654fc28a3e23 |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601157900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 22:17:21 EST 2025 Sat Nov 29 07:27:08 EST 2025 Fri Feb 23 02:46:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Instance segmentation Lane detection Semantic segmentation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-5d479fccd454781998c31369f8bcac24f16eedfb9fc08212b3e3a654fc28a3e23 |
| ORCID | 0000-0003-0503-6208 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2020_107623 crossref_citationtrail_10_1016_j_patcog_2020_107623 elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107623 |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 2021-03-00 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Aung, Zaw (bib0010) 2014 Chougule, Ismail, Soni, Kozonek, Narayan, Schulze (bib0068) 2018 Chougule, Koznek, Ismail, Adam, Narayan, Schulze (bib0064) 2018 Elharrouss, Almaadeed, Almaadeed, Akbari (bib0060) 2019 Mingfang, Junzheng, Nan, Duoyang (bib0018) 2016; 9 Paszke, A.C., S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv:1606.02147. 33, 2016. He, Gkioxari, Dollar, Girshick (bib0067) 2017 Gaikwad, Lokhande (bib0006) 2014; 16 Wang, Shen, Teoh (bib0013) 2000; 21 Hu, Tang, Wang, Zhang, Zhang, Sun (bib0036) 2018; 83 Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0089) 2017 Liu, Wen, Yu, Yang (bib0094) 2016; 2 G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580. 31, 2012. Peng, Zhang, Yu, Luo, Sun (bib0049) 2017 Chen, Lo, Hang, Chan, Lin (bib0072) 2018 Fu, Wang, Ma, Yang, Wang (bib0015) 2014; 520 Kim, Lee (bib0020) 2014 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0032) 2015 Johnson, Alahi, Fei-Fei (bib0093) 2016 Zhang, Dana, Shi, Zhang, Wang, Tyagi, Agrawal (bib0052) 2018 Duan, Zhang, Zheng (bib0004) 2016 Girshick, Donahue, Darrell, Malik (bib0037) 2014 Guo, Liu, Georgiou, Lew (bib0057) 2018; 7 Neven, De Brabandere, Georgoulis, Proesmans, Van Gool (bib0081) 2018 Liu, Wen, Yu, Li, Raj, Song (bib0095) 2017 LeCun, Bottou, Bengio, Haffner (bib0029) 1998; 86 G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv preprint arXiv:1503.02531, 2015. Pan, Shi, Luo, Wang, Tang (bib0023) 2018 Hershey, Chen, Le Roux, Watanabe (bib0080) 2016 Pizzati, Garc´ıa (bib0069) 2019 Hou, Ma, Liu, Loy (bib0027) 2019 F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, international conference on learning representations.,2015. McCall, Trivedi (bib0012) 2006 Buades, Morel (bib0074) 2005; Vol. 2 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0087) 2014 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0044) 2016 Chiu, Lin (bib0065) 2005 Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, J. Sun, Light-head r-cnn: in defense of two-stage object detector, arXiv:1711.07264, 2017. J´egou, Drozdzal, Vazquez, Romero, Bengio (bib0092) 2017 Andrychowicz, Denil, Gomez, Hoffman, Pfau, Schaul, Shillingford, De Freitas (bib0096) 2016 Wang, Wang, Wen (bib0003) 2011 Girshick, r-cnn (bib0038) 2015 Szegedy, Ioffe, Vanhoucke, Alemi (bib0034) 2017 Mao, Li, Xie, Lau, Wang, Paul Smolley (bib0090) 2017 L.-.C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587, 2017 Wu, Chang, Lin (bib0009) 2014; 47 Zhao, Shi, Qi, Wang, Jia (bib0050) 2017 Zhao, Zhang, Liu, Shi, Change Loy, Lin, Jia (bib0056) 2018 Zhu, Zhao, Wang, Zhao, Wu, Lu (bib0040) 2017 Kim, Yoo, Koo (bib0017) 2018 Long, Shelhamer, Darrell (bib0048) 2015 Lee, Kim, Shin Yoon, Shin, Bailo, Kim, Lee, Seok Hong, Han, So Kweon (bib0061) 2017 Guo, Shi, Kumar, Grauman, Rosing, Feris (bib0082) 2019 Hsiao, Yeh, Huang, Fu (bib0002) 2008; 58 Ghafoorian, Nugteren, Baka, Booij, Hofmann (bib0024) 2018 Mu, Ma (bib0007) 2014; 12 Wang, Lin, Chen (bib0001) 2010; 37 Montufar, Pascanu, Cho, Bengio (bib0014) 2014 Huang, Chen, Chen, Jian, Zheng (bib0063) 2018 Zou Q., Jiang H., Dai Q., Yue Y., Chen L., Wang Q., Robust lane detection from continuous driving scenes using deep neural networks, IEEE Transactions on Vehicular Technology., 2019. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks, international conference on learning representations., 2013. Ren, He, Girshick, Sun (bib0039) 2015 Van Gansbeke, De Brabandere, Neven, Proesmans, Van Gool (bib0086) 2019 John, Karunakaran, Guo, Kidono, Mita (bib0078) 2018 Kong, Sun, Yao, Liu, Lu, Chen (bib0046) 2017 Lo, Hang, Chan, Lin (bib0055) 2019 L. Riera, K. Ozcan, J. Merickel, M. Rizzo, S. Sarkar, A. Sharma, Driver behavior analysis using lane departure detection under challenging conditions, arXiv:1906.00093, 2019. Gurghian, Bailur, Carey, Murali (bib0021) 2016 Chai, Wei, Li (bib0005) 2014; Vol. 1042 Li, Chen, Huang, Li, Xu, Zheng, Huang (bib0016) 2016 Nair, Hinton (bib0030) 2010 He, Zhang, Ren, Sun (bib0035) 2016 Wu, Sahoo, Hoi (bib0047) 2020 Li, Qu, Liu, Sun, Wang (bib0076) 2019 Redmon, Divvala, Girshick, Farhadi (bib0042) 2016 Ding, Lee, Lee (bib0008) 2013 Kim, Park (bib0084) 2017 Wang, Chen, Yuan, Liu, Huang, Hou, Cottrell (bib0071) 2018 Huang, Liu, Van Der Maaten, Weinberger (bib0091) 2017 S. Zagoruyko, N. Komodakis, Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer, arXiv:1612.03928, 2016. Arjovsky, Chintala, Bottou (bib0088) 2017 Romera, Alvarez, Bergasa, Arroyo (bib0054) 2017; 19 Simonyan, Zisserman (bib0033) 2014 Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bib0083) 2017 Z. Wang, W. Ren, Q. Qiu, Lanenet: real-time lane detection networks for autonomous driving, arXiv preprint arXiv:1807.01726, 2018. Zhang, Xu, Ni, Duan (bib0077) 2018 Borji, Vanishing point detection with convolutional neural networks, ArXivabs/1609.00967, 2016. Lo, Hang, Chan, Lin (bib0073) 2019 W. Zhang, T. Mahale, End to end video segmentation for driving: lane detection for autonomous car, arXiv:1812.05914, 2018. Niu, Lu, Xu, Lv, Zhao (bib0011) 2016; 59 C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: deconvolutional single shot detector, arXiv:1701.06659, 2017. Wang, Girshick, Gupta, He (bib0075) 2018 Krizhevsky, Hinton (bib0019) 2012 Najibi, Rastegari, Davis (bib0043) 2016 Homayounfar, Ma, Liang, Wu, Fan, Urtasun (bib0028) 2019 Huval, Wang, Tandon, Kiske, Song, Pazhayampallil, Andriluka, Rajpurkar, Migimatsu, Cheng-Yue (bib0059) 2015 Wang (10.1016/j.patcog.2020.107623_bib0071) 2018 Long (10.1016/j.patcog.2020.107623_bib0048) 2015 Huval (10.1016/j.patcog.2020.107623_bib0059) 2015 Kim (10.1016/j.patcog.2020.107623_bib0084) 2017 Mingfang (10.1016/j.patcog.2020.107623_bib0018) 2016; 9 John (10.1016/j.patcog.2020.107623_bib0078) 2018 Szegedy (10.1016/j.patcog.2020.107623_bib0032) 2015 Neven (10.1016/j.patcog.2020.107623_bib0081) 2018 Krizhevsky (10.1016/j.patcog.2020.107623_bib0019) 2012 Aung (10.1016/j.patcog.2020.107623_bib0010) 2014 Ren (10.1016/j.patcog.2020.107623_bib0039) 2015 Li (10.1016/j.patcog.2020.107623_bib0076) 2019 Fu (10.1016/j.patcog.2020.107623_bib0015) 2014; 520 He (10.1016/j.patcog.2020.107623_bib0035) 2016 Chen (10.1016/j.patcog.2020.107623_bib0072) 2018 Zhang (10.1016/j.patcog.2020.107623_bib0077) 2018 10.1016/j.patcog.2020.107623_bib0022 10.1016/j.patcog.2020.107623_bib0066 Andrychowicz (10.1016/j.patcog.2020.107623_bib0096) 2016 Li (10.1016/j.patcog.2020.107623_bib0016) 2016 Gurghian (10.1016/j.patcog.2020.107623_bib0021) 2016 10.1016/j.patcog.2020.107623_bib0062 LeCun (10.1016/j.patcog.2020.107623_bib0029) 1998; 86 10.1016/j.patcog.2020.107623_bib0025 10.1016/j.patcog.2020.107623_bib0026 Chiu (10.1016/j.patcog.2020.107623_bib0065) 2005 Zhu (10.1016/j.patcog.2020.107623_bib0040) 2017 Liu (10.1016/j.patcog.2020.107623_bib0095) 2017 Wang (10.1016/j.patcog.2020.107623_bib0075) 2018 Liu (10.1016/j.patcog.2020.107623_bib0044) 2016 Elharrouss (10.1016/j.patcog.2020.107623_bib0060) 2019 Pizzati (10.1016/j.patcog.2020.107623_bib0069) 2019 Chai (10.1016/j.patcog.2020.107623_bib0005) 2014; Vol. 1042 Lo (10.1016/j.patcog.2020.107623_bib0055) 2019 Girshick (10.1016/j.patcog.2020.107623_bib0038) 2015 Mao (10.1016/j.patcog.2020.107623_bib0090) 2017 10.1016/j.patcog.2020.107623_bib0031 Wang (10.1016/j.patcog.2020.107623_bib0083) 2017 Montufar (10.1016/j.patcog.2020.107623_bib0014) 2014 10.1016/j.patcog.2020.107623_bib0070 Wu (10.1016/j.patcog.2020.107623_bib0047) 2020 Ding (10.1016/j.patcog.2020.107623_bib0008) 2013 Kim (10.1016/j.patcog.2020.107623_bib0017) 2018 10.1016/j.patcog.2020.107623_bib0079 Duan (10.1016/j.patcog.2020.107623_bib0004) 2016 He (10.1016/j.patcog.2020.107623_bib0067) 2017 Pan (10.1016/j.patcog.2020.107623_bib0023) 2018 Johnson (10.1016/j.patcog.2020.107623_bib0093) 2016 Wang (10.1016/j.patcog.2020.107623_bib0003) 2011 Gulrajani (10.1016/j.patcog.2020.107623_bib0089) 2017 Girshick (10.1016/j.patcog.2020.107623_bib0037) 2014 Hershey (10.1016/j.patcog.2020.107623_bib0080) 2016 Simonyan (10.1016/j.patcog.2020.107623_bib0033) 2014 Nair (10.1016/j.patcog.2020.107623_bib0030) 2010 10.1016/j.patcog.2020.107623_bib0041 Zhang (10.1016/j.patcog.2020.107623_bib0052) 2018 10.1016/j.patcog.2020.107623_bib0085 Niu (10.1016/j.patcog.2020.107623_bib0011) 2016; 59 Hu (10.1016/j.patcog.2020.107623_bib0036) 2018; 83 McCall (10.1016/j.patcog.2020.107623_bib0012) 2006 Szegedy (10.1016/j.patcog.2020.107623_bib0034) 2017 Homayounfar (10.1016/j.patcog.2020.107623_bib0028) 2019 Ghafoorian (10.1016/j.patcog.2020.107623_bib0024) 2018 Wang (10.1016/j.patcog.2020.107623_bib0001) 2010; 37 10.1016/j.patcog.2020.107623_bib0045 Huang (10.1016/j.patcog.2020.107623_bib0063) 2018 Hou (10.1016/j.patcog.2020.107623_bib0027) 2019 Chougule (10.1016/j.patcog.2020.107623_bib0068) 2018 Guo (10.1016/j.patcog.2020.107623_bib0082) 2019 Lee (10.1016/j.patcog.2020.107623_bib0061) 2017 Hsiao (10.1016/j.patcog.2020.107623_bib0002) 2008; 58 Kim (10.1016/j.patcog.2020.107623_bib0020) 2014 Goodfellow (10.1016/j.patcog.2020.107623_bib0087) 2014 J´egou (10.1016/j.patcog.2020.107623_bib0092) 2017 Mu (10.1016/j.patcog.2020.107623_bib0007) 2014; 12 Wu (10.1016/j.patcog.2020.107623_bib0009) 2014; 47 Peng (10.1016/j.patcog.2020.107623_bib0049) 2017 Najibi (10.1016/j.patcog.2020.107623_bib0043) 2016 Zhao (10.1016/j.patcog.2020.107623_bib0050) 2017 Huang (10.1016/j.patcog.2020.107623_bib0091) 2017 10.1016/j.patcog.2020.107623_bib0053 Guo (10.1016/j.patcog.2020.107623_bib0057) 2018; 7 Arjovsky (10.1016/j.patcog.2020.107623_bib0088) 2017 Redmon (10.1016/j.patcog.2020.107623_bib0042) 2016 Chougule (10.1016/j.patcog.2020.107623_bib0064) 2018 Buades (10.1016/j.patcog.2020.107623_bib0074) 2005; Vol. 2 Gaikwad (10.1016/j.patcog.2020.107623_bib0006) 2014; 16 10.1016/j.patcog.2020.107623_bib0051 Romera (10.1016/j.patcog.2020.107623_bib0054) 2017; 19 Van Gansbeke (10.1016/j.patcog.2020.107623_bib0086) 2019 Liu (10.1016/j.patcog.2020.107623_bib0094) 2016; 2 Zhao (10.1016/j.patcog.2020.107623_bib0056) 2018 Kong (10.1016/j.patcog.2020.107623_bib0046) 2017 Lo (10.1016/j.patcog.2020.107623_bib0073) 2019 10.1016/j.patcog.2020.107623_bib0058 Wang (10.1016/j.patcog.2020.107623_bib0013) 2000; 21 |
| References_xml | – year: 2019 ident: bib0086 article-title: End-to-end lane detection through differentiable least-squares fitting publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops – start-page: 1013 year: 2019 end-page: 1021 ident: bib0027 article-title: Learning lightweight lane detection cnns by self-attention distillation publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 47 start-page: 2756 year: 2014 end-page: 2767 ident: bib0009 article-title: Lane-mark extraction for automobiles under complex conditions publication-title: Pattern Recognit – reference: L. Riera, K. Ozcan, J. Merickel, M. Rizzo, S. Sarkar, A. Sharma, Driver behavior analysis using lane departure detection under challenging conditions, arXiv:1906.00093, 2019. – start-page: 1 year: 2019 end-page: 14 ident: bib0076 article-title: A lane detection network based on ibn and attention publication-title: Multimed Tools Appl – start-page: 5767 year: 2017 end-page: 5777 ident: bib0089 article-title: Improved training of wasserstein gans publication-title: Advances in neural information processing systems – volume: 19 start-page: 263 year: 2017 end-page: 272 ident: bib0054 article-title: Erfnet: efficient residual factorized convnet for real-time semantic segmentation publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Borji, Vanishing point detection with convolutional neural networks, ArXivabs/1609.00967, 2016. – reference: Z. Wang, W. Ren, Q. Qiu, Lanenet: real-time lane detection networks for autonomous driving, arXiv preprint arXiv:1807.01726, 2018. – start-page: 3431 year: 2015 end-page: 3440 ident: bib0048 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1947 year: 2017 end-page: 1955 ident: bib0061 article-title: Vpgnet: vanishing point guided network for lane and road marking detection and recognition publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580. 31, 2012. – start-page: 38 year: 2016 end-page: 45 ident: bib0021 article-title: Deeplanes: end-to-end lane position estimation using deep neural networksa publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – reference: W. Zhang, T. Mahale, End to end video segmentation for driving: lane detection for autonomous car, arXiv:1812.05914, 2018. – start-page: 807 year: 2010 end-page: 814 ident: bib0030 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th international conference on machine learning (ICML-10) – reference: Paszke, A.C., S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv:1606.02147. 33, 2016. – start-page: 649 year: 2018 end-page: 652 ident: bib0017 article-title: Road and lane detection using stereo camera publication-title: 2018 IEEE 525 International Conference on Big Data and Smart Computing (BigComp), IEEE – start-page: 706 year: 2005 end-page: 711 ident: bib0065 article-title: Lane detection using color-based segmentation publication-title: IEEE Proceedings. Intelligent Vehicles Symposium, 2005., IEEE – reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv preprint arXiv:1503.02531, 2015. – start-page: 779 year: 2016 end-page: 788 ident: bib0042 article-title: You only look once: unified, real-time object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 2911 year: 2019 end-page: 2920 ident: bib0028 article-title: Dagmapper: learning to map by discovering lane topology publication-title: Proceedings of the IEEE International Conference on Computer Vision – year: 2017 ident: bib0067 article-title: Mask r-cnn. publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence – start-page: 7151 year: 2018 end-page: 7160 ident: bib0052 article-title: Context encoding for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 11 year: 2017 end-page: 19 ident: bib0092 article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops – start-page: 31 year: 2016 end-page: 35 ident: bib0080 article-title: Deep clustering: discriminative embeddings for segmentation and separation publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 37 start-page: 113 year: 2010 end-page: 126 ident: bib0001 article-title: Applying fuzzy method to vision-based lane detection and departure warning system publication-title: Expert Syst Appl – start-page: 212 year: 2017 end-page: 220 ident: bib0095 article-title: Sphereface: deep hypersphere embedding for face recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 267 year: 2018 end-page: 283 ident: bib0056 article-title: Psanet: point-wise spatial attention network for scene parsing publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 411 year: 2016 end-page: 415 ident: bib0016 article-title: Nighttime lane markings recognition based on canny detection and hough transform publication-title: 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), IEEE – year: 2017 ident: bib0034 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Thirty-First AAAI Conference on Artificial Intelligence – year: 2018 ident: bib0023 article-title: Spatial as deep: spatial cnn for traffic scene understanding publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – year: 2020 ident: bib0047 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing – start-page: 2881 year: 2017 end-page: 2890 ident: bib0050 article-title: Pyramid scene parsing network publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 2924 year: 2014 end-page: 2932 ident: bib0014 article-title: On the number of linear regions of deep neural networks publication-title: Advances in neural information processing systems – start-page: 1 year: 2019 end-page: 6 ident: bib0055 article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation publication-title: Proceedings of the ACM Multimedia Asia on ZZZ – reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, international conference on learning representations.,2015. – reference: P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks, international conference on learning representations., 2013. – year: 2018 ident: bib0024 article-title: El-gan: embedding loss driven generative adversarial networks for lane detection publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 680 year: 2016 end-page: 684 ident: bib0004 article-title: Lane line recognition algorithm based on threshold segmentation and continuity of lane line publication-title: 2016 2nd IEEE International Conference on Computer and Communications (ICCC) – start-page: 3156 year: 2017 end-page: 3164 ident: bib0083 article-title: Residual attention network for image classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2015 end-page: 9 ident: bib0032 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – year: 2014 ident: bib0033 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Computer Science – start-page: 1 year: 2019 end-page: 22 ident: bib0060 article-title: Image inpainting: a review publication-title: Neural Processing Letters – start-page: 143 year: 2018 end-page: 154 ident: bib0063 article-title: Spatial-temproal based lane detection using deep learning publication-title: IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer – volume: 21 start-page: 677 year: 2000 end-page: 689 ident: bib0013 article-title: Lane detection using spline model publication-title: Pattern Recognit Lett – volume: 16 start-page: 910 year: 2014 end-page: 918 ident: bib0006 article-title: Lane departure identification for advanced driver assistance publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 2794 year: 2017 end-page: 2802 ident: bib0090 article-title: Least squares generative adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, J. Sun, Light-head r-cnn: in defense of two-stage object detector, arXiv:1711.07264, 2017. – start-page: 4700 year: 2017 end-page: 4708 ident: bib0091 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 7 start-page: 87 year: 2018 end-page: 93 ident: bib0057 article-title: A review of semantic segmentation using deep neural networks publication-title: Int J Multimed Inf Retr – start-page: 30 year: 2017 end-page: 38 ident: bib0084 article-title: End-to-end ego lane estimation based on sequential transfer learning for self-driving cars publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 189 year: 2018 end-page: 194 ident: bib0078 article-title: Free space, visible and missing lane marker estimation using the psinet and extra trees regression publication-title: 2018 24th International Conference on Pattern Recognition (ICPR) – year: 2018 ident: bib0064 article-title: Reliable multilane 645 detection and classification by utilizing cnn as a regression network publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 214 year: 2017 end-page: 223 ident: bib0088 article-title: Wasserstein generative adversarial networks publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70 – start-page: 1 year: 2019 end-page: 6 ident: bib0073 article-title: Multi-class lane semantic segmentation using efficient convolutional networks publication-title: 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP) – volume: 59 start-page: 225 year: 2016 end-page: 233 ident: bib0011 article-title: Robust lane detection using two-stage feature extraction with curve fitting publication-title: Pattern Recognit – start-page: 1444 year: 2018 end-page: 1451 ident: bib0068 article-title: An efficient encoderdecoder cnn architecture for reliable multilane detection in real time publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV) – start-page: 1097 year: 2012 end-page: 1105 ident: bib0019 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – volume: 83 start-page: 134 year: 2018 end-page: 149 ident: bib0036 article-title: Deep learning for image-based cancer detection and diagnosis a survey publication-title: Pattern Recognit – start-page: 20 year: 2006 end-page: 37 ident: bib0012 article-title: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation publication-title: IEEE Trans. Intelligent Transportation Systems – volume: 9 start-page: 89 year: 2016 end-page: 102 ident: bib0018 article-title: Shadow lane robust detection by image signal local reconstruction, International Journal of Signal Processing publication-title: Image Processing and Pattern Recognition – reference: C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: deconvolutional single shot detector, arXiv:1701.06659, 2017. – start-page: 4353 year: 2017 end-page: 4361 ident: bib0049 article-title: Large kernel matters-improve semantic segmentation by global convolutional network publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 12 start-page: 3491 year: 2014 end-page: 3500 ident: bib0007 article-title: Lane detection based on object segmentation and piecewise fitting, TELKOMNIKA Indones publication-title: J. Electr. Eng. TELKOMNIKA – start-page: 454 year: 2014 end-page: 461 ident: bib0020 article-title: Robust lane detection based on convolutional neural network and random sample consensus publication-title: International conference on neural information processing, Springer – volume: 520 start-page: 655 year: 2014 end-page: 660 ident: bib0015 article-title: Multi-lanes detection based on panoramic camera publication-title: 11th IEEE International Conference on Control & Automation (ICCA) – year: 2015 ident: bib0059 article-title: An empirical evaluation of deep learning on highway driving publication-title: CoRR. – reference: S. Zagoruyko, N. Komodakis, Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer, arXiv:1612.03928, 2016. – start-page: 2536 year: 2019 end-page: 2541 ident: bib0069 article-title: Enhanced free space detection in multiple lanes based on single cnn with scene identification publication-title: 2019 IEEE Intelligent Vehicles Symposium (IV) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0029 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: Vol. 2 start-page: 60 year: 2005 end-page: 65 ident: bib0074 article-title: A non-local algorithm for image denoising publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) – volume: 58 start-page: 2089 year: 2008 end-page: 2094 ident: bib0002 article-title: A portable vision-based real-time lane departure warning system: day and night publication-title: IEEE Transactions on Vehicular Technology – reference: L.-.C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587, 2017 – start-page: 1 year: 2013 end-page: 4 ident: bib0008 article-title: An adaptive road roi determination algorithm for lane detection publication-title: 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), IEEE – start-page: 4126 year: 2017 end-page: 4134 ident: bib0040 article-title: Couplenet: coupling global structure with local parts for object detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 770 year: 2016 end-page: 778 ident: bib0035 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 2369 year: 2016 end-page: 2377 ident: bib0043 article-title: G-cnn: an iterative grid based object detector publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 29 year: 2014 end-page: 30 ident: bib0010 article-title: Video based lane departure warning system using hough transform publication-title: International Conference on Advances in Engineering and Technology – start-page: 486 year: 2018 end-page: 502 ident: bib0077 article-title: Geometric constrained joint lane segmentation and lane boundary detection publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 694 year: 2016 end-page: 711 ident: bib0093 article-title: Perceptual losses for real-time style transfer and superresolution publication-title: European conference on computer vision, Springer – volume: Vol. 1042 start-page: 126 year: 2014 end-page: 130 ident: bib0005 article-title: The multi-scale hough transform lane detection method based on the algorithm of otsu and canny publication-title: Advanced Materials Research – start-page: 580 year: 2014 end-page: 587 ident: bib0037 article-title: Rich feature hierarchies for accurate object 575 detection and semantic segmentation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 3981 year: 2016 end-page: 3989 ident: bib0096 article-title: Learning to learn by gradient descent by gradient descent publication-title: Advances in neural information processing systems – start-page: 1440 year: 2015 end-page: 1448 ident: bib0038 publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 1 year: 2018 end-page: 5 ident: bib0072 article-title: Efficient road lane marking detection with deep learning publication-title: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP) – start-page: 91 year: 2015 end-page: 99 ident: bib0039 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – start-page: 4805 year: 2019 end-page: 4814 ident: bib0082 article-title: Spottune: transfer learning through adaptive fine-tuning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2672 year: 2014 end-page: 2680 ident: bib0087 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – start-page: 3181 year: 2011 end-page: 3185 ident: bib0003 article-title: Robust lane detection based on gradient-pairs constraint publication-title: Proceedings of the 30th Chinese Control Conference – start-page: 21 year: 2016 end-page: 37 ident: bib0044 article-title: Ssd: single shot multibox detector publication-title: European conference on computer vision – reference: Zou Q., Jiang H., Dai Q., Yue Y., Chen L., Wang Q., Robust lane detection from continuous driving scenes using deep neural networks, IEEE Transactions on Vehicular Technology., 2019. – start-page: 286 year: 2018 end-page: 291 ident: bib0081 article-title: Towards end-toend lane detection: an instance segmentation approach publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV) – start-page: 7794 year: 2018 end-page: 7803 ident: bib0075 article-title: Non-local neural networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 2 start-page: 7 year: 2016 ident: bib0094 article-title: Large-margin softmax loss for convolutional neural networks publication-title: ICML – start-page: 5936 year: 2017 end-page: 5944 ident: bib0046 article-title: Ron: reverse connection with objectness prior networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1451 year: 2018 end-page: 1460 ident: bib0071 article-title: Understanding convolution for semantic segmentation publication-title: 2018 IEEE winter conference on applications of computer vision (WACV) – ident: 10.1016/j.patcog.2020.107623_bib0051 doi: 10.1007/978-3-030-01234-2_49 – ident: 10.1016/j.patcog.2020.107623_bib0041 – year: 2015 ident: 10.1016/j.patcog.2020.107623_bib0059 article-title: An empirical evaluation of deep learning on highway driving publication-title: CoRR. – volume: 2 start-page: 7 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0094 article-title: Large-margin softmax loss for convolutional neural networks – start-page: 1451 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0071 article-title: Understanding convolution for semantic segmentation – start-page: 1 year: 2013 ident: 10.1016/j.patcog.2020.107623_bib0008 article-title: An adaptive road roi determination algorithm for lane detection – start-page: 1013 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0027 article-title: Learning lightweight lane detection cnns by self-attention distillation – ident: 10.1016/j.patcog.2020.107623_bib0045 – start-page: 2881 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0050 article-title: Pyramid scene parsing network – start-page: 7151 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0052 article-title: Context encoding for semantic segmentation – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0055 article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation – start-page: 706 year: 2005 ident: 10.1016/j.patcog.2020.107623_bib0065 article-title: Lane detection using color-based segmentation – start-page: 189 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0078 article-title: Free space, visible and missing lane marker estimation using the psinet and extra trees regression – ident: 10.1016/j.patcog.2020.107623_bib0025 – start-page: 286 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0081 article-title: Towards end-toend lane detection: an instance segmentation approach – start-page: 486 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0077 article-title: Geometric constrained joint lane segmentation and lane boundary detection – start-page: 4805 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0082 article-title: Spottune: transfer learning through adaptive fine-tuning – ident: 10.1016/j.patcog.2020.107623_bib0031 – volume: 59 start-page: 225 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0011 article-title: Robust lane detection using two-stage feature extraction with curve fitting publication-title: Pattern Recognit doi: 10.1016/j.patcog.2015.12.010 – volume: Vol. 2 start-page: 60 year: 2005 ident: 10.1016/j.patcog.2020.107623_bib0074 article-title: A non-local algorithm for image denoising – start-page: 649 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0017 article-title: Road and lane detection using stereo camera – year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0033 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Computer Science – start-page: 4126 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0040 article-title: Couplenet: coupling global structure with local parts for object detection – ident: 10.1016/j.patcog.2020.107623_bib0058 – start-page: 411 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0016 article-title: Nighttime lane markings recognition based on canny detection and hough transform – start-page: 3431 year: 2015 ident: 10.1016/j.patcog.2020.107623_bib0048 article-title: Fully convolutional networks for semantic segmentation – year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0024 article-title: El-gan: embedding loss driven generative adversarial networks for lane detection – ident: 10.1016/j.patcog.2020.107623_bib0079 doi: 10.1109/TVT.2019.2949603 – start-page: 214 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0088 article-title: Wasserstein generative adversarial networks – start-page: 4353 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0049 article-title: Large kernel matters-improve semantic segmentation by global convolutional network – start-page: 20 year: 2006 ident: 10.1016/j.patcog.2020.107623_bib0012 article-title: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation publication-title: IEEE Trans. Intelligent Transportation Systems doi: 10.1109/TITS.2006.869595 – volume: 520 start-page: 655 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0015 article-title: Multi-lanes detection based on panoramic camera – start-page: 1 year: 2015 ident: 10.1016/j.patcog.2020.107623_bib0032 article-title: Going deeper with convolutions – year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0034 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – start-page: 212 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0095 article-title: Sphereface: deep hypersphere embedding for face recognition – start-page: 1444 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0068 article-title: An efficient encoderdecoder cnn architecture for reliable multilane detection in real time – start-page: 267 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0056 article-title: Psanet: point-wise spatial attention network for scene parsing – year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0023 article-title: Spatial as deep: spatial cnn for traffic scene understanding – volume: Vol. 1042 start-page: 126 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0005 article-title: The multi-scale hough transform lane detection method based on the algorithm of otsu and canny doi: 10.4028/b-ap0LHp – start-page: 2911 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0028 article-title: Dagmapper: learning to map by discovering lane topology – start-page: 680 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0004 article-title: Lane line recognition algorithm based on threshold segmentation and continuity of lane line – volume: 12 start-page: 3491 issue: 5 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0007 article-title: Lane detection based on object segmentation and piecewise fitting, TELKOMNIKA Indones publication-title: J. Electr. Eng. TELKOMNIKA – volume: 21 start-page: 677 issue: 8 year: 2000 ident: 10.1016/j.patcog.2020.107623_bib0013 article-title: Lane detection using spline model publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(00)00021-0 – volume: 16 start-page: 910 issue: 2 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0006 article-title: Lane departure identification for advanced driver assistance publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 30 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0084 article-title: End-to-end ego lane estimation based on sequential transfer learning for self-driving cars – volume: 58 start-page: 2089 issue: 4 year: 2008 ident: 10.1016/j.patcog.2020.107623_bib0002 article-title: A portable vision-based real-time lane departure warning system: day and night publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2008.2006618 – start-page: 31 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0080 article-title: Deep clustering: discriminative embeddings for segmentation and separation – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0035 article-title: Deep residual learning for image recognition – start-page: 21 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0044 article-title: Ssd: single shot multibox detector – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0072 article-title: Efficient road lane marking detection with deep learning – start-page: 91 year: 2015 ident: 10.1016/j.patcog.2020.107623_bib0039 article-title: Faster r-cnn: towards real-time object detection with region proposal networks – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0076 article-title: A lane detection network based on ibn and attention publication-title: Multimed Tools Appl – ident: 10.1016/j.patcog.2020.107623_bib0062 – start-page: 3981 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0096 article-title: Learning to learn by gradient descent by gradient descent – start-page: 143 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0063 article-title: Spatial-temproal based lane detection using deep learning – start-page: 11 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0092 article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation – start-page: 807 year: 2010 ident: 10.1016/j.patcog.2020.107623_bib0030 article-title: Rectified linear units improve restricted boltzmann machines – volume: 47 start-page: 2756 issue: 8 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0009 article-title: Lane-mark extraction for automobiles under complex conditions publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.02.004 – volume: 9 start-page: 89 issue: 3 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0018 article-title: Shadow lane robust detection by image signal local reconstruction, International Journal of Signal Processing publication-title: Image Processing and Pattern Recognition doi: 10.14257/ijsip.2016.9.3.08 – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0060 article-title: Image inpainting: a review publication-title: Neural Processing Letters – start-page: 1097 year: 2012 ident: 10.1016/j.patcog.2020.107623_bib0019 article-title: Imagenet classification with deep convolutional neural networks – start-page: 1440 year: 2015 ident: 10.1016/j.patcog.2020.107623_bib0038 – start-page: 2369 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0043 article-title: G-cnn: an iterative grid based object detector – ident: 10.1016/j.patcog.2020.107623_bib0066 – ident: 10.1016/j.patcog.2020.107623_bib0085 – start-page: 38 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0021 article-title: Deeplanes: end-to-end lane position estimation using deep neural networksa – year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0067 article-title: Mask r-cnn. – volume: 83 start-page: 134 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0036 article-title: Deep learning for image-based cancer detection and diagnosis a survey publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.05.014 – start-page: 3181 year: 2011 ident: 10.1016/j.patcog.2020.107623_bib0003 article-title: Robust lane detection based on gradient-pairs constraint – start-page: 2924 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0014 article-title: On the number of linear regions of deep neural networks – start-page: 580 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0037 article-title: Rich feature hierarchies for accurate object 575 detection and semantic segmentation – start-page: 2672 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0087 article-title: Generative adversarial nets – start-page: 5767 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0089 article-title: Improved training of wasserstein gans – volume: 7 start-page: 87 issue: 2 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0057 article-title: A review of semantic segmentation using deep neural networks publication-title: Int J Multimed Inf Retr doi: 10.1007/s13735-017-0141-z – start-page: 3156 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0083 article-title: Residual attention network for image classification – start-page: 1947 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0061 article-title: Vpgnet: vanishing point guided network for lane and road marking detection and recognition – start-page: 7794 year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0075 article-title: Non-local neural networks – volume: 37 start-page: 113 issue: 1 year: 2010 ident: 10.1016/j.patcog.2020.107623_bib0001 article-title: Applying fuzzy method to vision-based lane detection and departure warning system publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.05.026 – year: 2020 ident: 10.1016/j.patcog.2020.107623_bib0047 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing – volume: 19 start-page: 263 issue: 1 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0054 article-title: Erfnet: efficient residual factorized convnet for real-time semantic segmentation publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2017.2750080 – start-page: 4700 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0091 article-title: Densely connected convolutional networks – start-page: 454 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0020 article-title: Robust lane detection based on convolutional neural network and random sample consensus – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0073 article-title: Multi-class lane semantic segmentation using efficient convolutional networks – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.patcog.2020.107623_bib0029 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – start-page: 2536 year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0069 article-title: Enhanced free space detection in multiple lanes based on single cnn with scene identification – ident: 10.1016/j.patcog.2020.107623_bib0026 – year: 2019 ident: 10.1016/j.patcog.2020.107623_bib0086 article-title: End-to-end lane detection through differentiable least-squares fitting – start-page: 779 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0042 article-title: You only look once: unified, real-time object detection – ident: 10.1016/j.patcog.2020.107623_bib0053 – year: 2018 ident: 10.1016/j.patcog.2020.107623_bib0064 article-title: Reliable multilane 645 detection and classification by utilizing cnn as a regression network – ident: 10.1016/j.patcog.2020.107623_bib0022 – ident: 10.1016/j.patcog.2020.107623_bib0070 – start-page: 2794 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0090 article-title: Least squares generative adversarial networks – start-page: 5936 year: 2017 ident: 10.1016/j.patcog.2020.107623_bib0046 article-title: Ron: reverse connection with objectness prior networks for object detection – start-page: 29 year: 2014 ident: 10.1016/j.patcog.2020.107623_bib0010 article-title: Video based lane departure warning system using hough transform – start-page: 694 year: 2016 ident: 10.1016/j.patcog.2020.107623_bib0093 article-title: Perceptual losses for real-time style transfer and superresolution |
| SSID | ssj0017142 |
| Score | 2.6411502 |
| Snippet | •This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107623 |
| SubjectTerms | Deep learning Instance segmentation Lane detection Semantic segmentation |
| Title | A review of lane detection methods based on deep learning |
| URI | https://dx.doi.org/10.1016/j.patcog.2020.107623 |
| Volume | 111 |
| WOSCitedRecordID | wos000601157900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFA46PXjxt_ibHLxJZU3apjkOmegOY-CE3UqbJmNDuuKm-Of70iTddKLu4KUbIclKvuzlS_K99xC6yjLCSZpL-COp0AvSJthBKkOPpwT4gIQPEVfJJli3Gw8GvGezOE6rdAKsKOL3d17-K9RQBmBr19kV4K47hQL4DqDDE2CH55-Aby24o2gl63UuZ9IkBDfpoqfXeunK9TVBLmXpEkcMF3lqrwq7qV1drL5oflvftyfMndEwtY20oKdSBTxOimE2mqt8Rq9GA2zr2dMFsiCvchaT-h4lTfrJYlr7aGwebCAj4zO8ZI7NycD4poRlZTKE3TjRha765-jXX1alWivoZGjjxPSS6F4S08s62iAs5GDNNloP7UGnvj9ifmDixNu3d06TlbJv-W2-JyULRKO_i7btDgG3DLJ7aE0W-2jHZd_A1hgfIN7CBmg8UVgDjWugsQUaV0BjKNBAYwf0IXq6a_dv7z2bCMMTlJGZF-YB40qIvIq-pr0iBfVpxFWciVSQQPkRUB2VQR1gdD7JqKRpFAZKkDilktAj1CgmhTxGmDHBOQxIFjVlkMVAuBUY-SAA1h8RrsITRN1IJMJGidfJSp6Tn3A4QV7dqjRRUn6pz9wgJ5bpGQaXwMz5seXpir90hrbm0_ocNWYvr_ICbYq32Wj6cmmnzQcTenJ2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+lane+detection+methods+based+on+deep+learning&rft.jtitle=Pattern+recognition&rft.au=Tang%2C+Jigang&rft.au=Li%2C+Songbin&rft.au=Liu%2C+Peng&rft.date=2021-03-01&rft.issn=0031-3203&rft.volume=111&rft.spage=107623&rft_id=info:doi/10.1016%2Fj.patcog.2020.107623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |