A review of lane detection methods based on deep learning

•This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of computer vision and pattern recognition.•Detailed description of convolution neural networks' architectures and loss functions that used in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 111; s. 107623
Hlavní autoři: Tang, Jigang, Li, Songbin, Liu, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2021
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of computer vision and pattern recognition.•Detailed description of convolution neural networks' architectures and loss functions that used in lanes detector.•Advantages of deep learning-based methods compared with traditional heuristic recognition-based methods.•Current challenges of existing deep learning-based methods and some possible directions to solve the problems. Lane detection is an application of environmental perception, which aims to detect lane areas or lane lines by camera or lidar. In recent years, gratifying progress has been made in detection accuracy. To the best of our knowledge, this paper is the first attempt to make a comprehensive review of vision-based lane detection methods. First, we introduce the background of lane detection, including traditional lane detection methods and related deep learning methods. Second, we group the existing lane detection methods into two categories: two-step and one-step methods. Around the above summary, we introduce lane detection methods from the following two perspectives: (1) network architectures, including classification and object detection-based methods, end-to-end image-segmentation based methods, and some optimization strategies; (2) related loss functions. For each method, its contributions and weaknesses are introduced. Then, a brief comparison of representative methods is presented. Finally, we conclude this survey with some current challenges, such as expensive computation and the lack of generalization. And we point out some directions to be further explored in the future, that is, semi-supervised learning, meta-learning and neural architecture search, etc.
AbstractList •This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of computer vision and pattern recognition.•Detailed description of convolution neural networks' architectures and loss functions that used in lanes detector.•Advantages of deep learning-based methods compared with traditional heuristic recognition-based methods.•Current challenges of existing deep learning-based methods and some possible directions to solve the problems. Lane detection is an application of environmental perception, which aims to detect lane areas or lane lines by camera or lidar. In recent years, gratifying progress has been made in detection accuracy. To the best of our knowledge, this paper is the first attempt to make a comprehensive review of vision-based lane detection methods. First, we introduce the background of lane detection, including traditional lane detection methods and related deep learning methods. Second, we group the existing lane detection methods into two categories: two-step and one-step methods. Around the above summary, we introduce lane detection methods from the following two perspectives: (1) network architectures, including classification and object detection-based methods, end-to-end image-segmentation based methods, and some optimization strategies; (2) related loss functions. For each method, its contributions and weaknesses are introduced. Then, a brief comparison of representative methods is presented. Finally, we conclude this survey with some current challenges, such as expensive computation and the lack of generalization. And we point out some directions to be further explored in the future, that is, semi-supervised learning, meta-learning and neural architecture search, etc.
ArticleNumber 107623
Author Liu, Peng
Tang, Jigang
Li, Songbin
Author_xml – sequence: 1
  givenname: Jigang
  surname: Tang
  fullname: Tang, Jigang
  organization: Institute of Acoustics, Chinese Academy of Sciences, 100190, China
– sequence: 2
  givenname: Songbin
  orcidid: 0000-0003-0503-6208
  surname: Li
  fullname: Li, Songbin
  email: lisongbin@mail.ioa.ac.cn
  organization: Institute of Acoustics, Chinese Academy of Sciences, 100190, China
– sequence: 3
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  organization: Institute of Acoustics, Chinese Academy of Sciences, 100190, China
BookMark eNqFkMtKAzEUhoNUsK2-gYu8wIy5zc2FUIo3KLjRdcgkJzVlmpQkKL69M4wrF7o68J_z_fCdFVr44AGha0pKSmh9cyhPKuuwLxlhU9TUjJ-hJW0bXlRUsAVaEsJpwRnhF2iV0oEQ2oyLJeo2OMKHg08cLB6UB2wgg84ueHyE_B5Mwr1KYPAYGIATHkBF7_z-Ep1bNSS4-plr9PZw_7p9KnYvj8_bza7QvGG5qIxoOqu1EZVoWtp1reaU151te600E5bWAMb24w1pGWU9B67qSljNWsWB8TUSc6-OIaUIVp6iO6r4JSmRk748yFlfTvpy1h-x21-YdllNXjkqN_wH380wjGLjd6JM2oHXYFwcnyNNcH8XfAO-4HoX
CitedBy_id crossref_primary_10_1088_1361_6501_adfc86
crossref_primary_10_1109_TITS_2024_3524603
crossref_primary_10_3390_electronics13142790
crossref_primary_10_1016_j_jag_2024_104139
crossref_primary_10_1016_j_jii_2024_100571
crossref_primary_10_1080_00207160_2024_2443498
crossref_primary_10_1109_TITS_2023_3290991
crossref_primary_10_1109_TGRS_2024_3442732
crossref_primary_10_1109_TITS_2023_3289165
crossref_primary_10_3390_ijgi12030132
crossref_primary_10_1109_ACCESS_2022_3232127
crossref_primary_10_1016_j_jksuci_2022_06_008
crossref_primary_10_3390_s21134428
crossref_primary_10_3390_jsan14010015
crossref_primary_10_1016_j_eswa_2023_122848
crossref_primary_10_1016_j_neucom_2023_127057
crossref_primary_10_3390_jmse11040731
crossref_primary_10_1007_s00530_025_01855_w
crossref_primary_10_3390_drones8110611
crossref_primary_10_1016_j_eswa_2025_127055
crossref_primary_10_1109_TITS_2024_3503556
crossref_primary_10_1109_TVT_2024_3462508
crossref_primary_10_1080_03081060_2025_2502413
crossref_primary_10_1155_2022_5134437
crossref_primary_10_1080_15389588_2023_2219794
crossref_primary_10_3390_app122010675
crossref_primary_10_1109_LRA_2024_3475881
crossref_primary_10_1109_TITS_2024_3459799
crossref_primary_10_1111_mice_13051
crossref_primary_10_1080_15472450_2025_2559224
crossref_primary_10_1155_2022_7919875
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1109_TIV_2024_3406867
crossref_primary_10_1109_TITS_2025_3554695
crossref_primary_10_1109_ACCESS_2022_3223704
crossref_primary_10_3390_s24051590
crossref_primary_10_1364_AO_486302
crossref_primary_10_1007_s11227_021_04230_4
crossref_primary_10_1080_09540091_2022_2139352
crossref_primary_10_3390_app14135464
crossref_primary_10_1016_j_knosys_2021_107941
crossref_primary_10_1016_j_patcog_2023_109321
crossref_primary_10_1109_TVT_2021_3133327
crossref_primary_10_3390_app15137410
crossref_primary_10_1016_j_sysarc_2023_102888
crossref_primary_10_3390_s23177311
crossref_primary_10_1109_TITS_2025_3543809
crossref_primary_10_3390_app15020699
crossref_primary_10_1002_aaai_12139
crossref_primary_10_1038_s41598_024_84575_x
crossref_primary_10_1002_jsid_1193
crossref_primary_10_3390_app132212377
crossref_primary_10_3390_f12091202
crossref_primary_10_3390_s23062938
crossref_primary_10_3390_electronics10192356
crossref_primary_10_3390_jimaging11080259
crossref_primary_10_3390_rs16142515
crossref_primary_10_1016_j_neucom_2025_130795
crossref_primary_10_3390_f14091787
crossref_primary_10_32604_iasc_2023_039868
crossref_primary_10_3390_electronics14142865
crossref_primary_10_1093_jcde_qwac056
crossref_primary_10_3390_app12073477
crossref_primary_10_3390_mi13050716
crossref_primary_10_3390_s22197682
crossref_primary_10_1016_j_engappai_2023_106238
crossref_primary_10_1109_TITS_2024_3358732
crossref_primary_10_1109_TITS_2025_3550745
crossref_primary_10_3390_electronics14163179
crossref_primary_10_1016_j_optmat_2022_113401
crossref_primary_10_1049_ccs2_12092
crossref_primary_10_3390_math12081206
crossref_primary_10_1109_TIV_2022_3223131
crossref_primary_10_1109_ACCESS_2023_3348478
crossref_primary_10_3233_IDT_240162
crossref_primary_10_1145_3729420
crossref_primary_10_3390_sym15020535
crossref_primary_10_1007_s12559_023_10215_7
crossref_primary_10_1016_j_patcog_2021_108020
crossref_primary_10_1016_j_vehcom_2023_100573
crossref_primary_10_1109_TITS_2021_3070111
crossref_primary_10_1038_s41598_025_01167_z
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_1109_JSTARS_2025_3538920
crossref_primary_10_3390_s24144739
crossref_primary_10_1109_ACCESS_2024_3381488
crossref_primary_10_3390_app112110054
crossref_primary_10_1007_s44163_025_00455_x
crossref_primary_10_3390_wevj13100191
crossref_primary_10_3390_electronics12244911
crossref_primary_10_1038_s41598_025_86743_z
crossref_primary_10_1177_03611981251334618
crossref_primary_10_3390_su17020753
Cites_doi 10.1007/978-3-030-01234-2_49
10.1016/j.patcog.2015.12.010
10.1109/TVT.2019.2949603
10.1109/TITS.2006.869595
10.4028/b-ap0LHp
10.1016/S0167-8655(00)00021-0
10.1109/TVT.2008.2006618
10.1016/j.patcog.2014.02.004
10.14257/ijsip.2016.9.3.08
10.1016/j.patcog.2018.05.014
10.1007/s13735-017-0141-z
10.1016/j.eswa.2009.05.026
10.1109/TITS.2017.2750080
10.1109/5.726791
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2020.107623
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2020_107623
S003132032030426X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-5d479fccd454781998c31369f8bcac24f16eedfb9fc08212b3e3a654fc28a3e23
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601157900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 22:17:21 EST 2025
Sat Nov 29 07:27:08 EST 2025
Fri Feb 23 02:46:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Instance segmentation
Lane detection
Semantic segmentation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-5d479fccd454781998c31369f8bcac24f16eedfb9fc08212b3e3a654fc28a3e23
ORCID 0000-0003-0503-6208
ParticipantIDs crossref_primary_10_1016_j_patcog_2020_107623
crossref_citationtrail_10_1016_j_patcog_2020_107623
elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107623
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aung, Zaw (bib0010) 2014
Chougule, Ismail, Soni, Kozonek, Narayan, Schulze (bib0068) 2018
Chougule, Koznek, Ismail, Adam, Narayan, Schulze (bib0064) 2018
Elharrouss, Almaadeed, Almaadeed, Akbari (bib0060) 2019
Mingfang, Junzheng, Nan, Duoyang (bib0018) 2016; 9
Paszke, A.C., S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv:1606.02147. 33, 2016.
He, Gkioxari, Dollar, Girshick (bib0067) 2017
Gaikwad, Lokhande (bib0006) 2014; 16
Wang, Shen, Teoh (bib0013) 2000; 21
Hu, Tang, Wang, Zhang, Zhang, Sun (bib0036) 2018; 83
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0089) 2017
Liu, Wen, Yu, Yang (bib0094) 2016; 2
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580. 31, 2012.
Peng, Zhang, Yu, Luo, Sun (bib0049) 2017
Chen, Lo, Hang, Chan, Lin (bib0072) 2018
Fu, Wang, Ma, Yang, Wang (bib0015) 2014; 520
Kim, Lee (bib0020) 2014
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0032) 2015
Johnson, Alahi, Fei-Fei (bib0093) 2016
Zhang, Dana, Shi, Zhang, Wang, Tyagi, Agrawal (bib0052) 2018
Duan, Zhang, Zheng (bib0004) 2016
Girshick, Donahue, Darrell, Malik (bib0037) 2014
Guo, Liu, Georgiou, Lew (bib0057) 2018; 7
Neven, De Brabandere, Georgoulis, Proesmans, Van Gool (bib0081) 2018
Liu, Wen, Yu, Li, Raj, Song (bib0095) 2017
LeCun, Bottou, Bengio, Haffner (bib0029) 1998; 86
G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv preprint arXiv:1503.02531, 2015.
Pan, Shi, Luo, Wang, Tang (bib0023) 2018
Hershey, Chen, Le Roux, Watanabe (bib0080) 2016
Pizzati, Garc´ıa (bib0069) 2019
Hou, Ma, Liu, Loy (bib0027) 2019
F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, international conference on learning representations.,2015.
McCall, Trivedi (bib0012) 2006
Buades, Morel (bib0074) 2005; Vol. 2
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0087) 2014
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0044) 2016
Chiu, Lin (bib0065) 2005
Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, J. Sun, Light-head r-cnn: in defense of two-stage object detector, arXiv:1711.07264, 2017.
J´egou, Drozdzal, Vazquez, Romero, Bengio (bib0092) 2017
Andrychowicz, Denil, Gomez, Hoffman, Pfau, Schaul, Shillingford, De Freitas (bib0096) 2016
Wang, Wang, Wen (bib0003) 2011
Girshick, r-cnn (bib0038) 2015
Szegedy, Ioffe, Vanhoucke, Alemi (bib0034) 2017
Mao, Li, Xie, Lau, Wang, Paul Smolley (bib0090) 2017
L.-.C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587, 2017
Wu, Chang, Lin (bib0009) 2014; 47
Zhao, Shi, Qi, Wang, Jia (bib0050) 2017
Zhao, Zhang, Liu, Shi, Change Loy, Lin, Jia (bib0056) 2018
Zhu, Zhao, Wang, Zhao, Wu, Lu (bib0040) 2017
Kim, Yoo, Koo (bib0017) 2018
Long, Shelhamer, Darrell (bib0048) 2015
Lee, Kim, Shin Yoon, Shin, Bailo, Kim, Lee, Seok Hong, Han, So Kweon (bib0061) 2017
Guo, Shi, Kumar, Grauman, Rosing, Feris (bib0082) 2019
Hsiao, Yeh, Huang, Fu (bib0002) 2008; 58
Ghafoorian, Nugteren, Baka, Booij, Hofmann (bib0024) 2018
Mu, Ma (bib0007) 2014; 12
Wang, Lin, Chen (bib0001) 2010; 37
Montufar, Pascanu, Cho, Bengio (bib0014) 2014
Huang, Chen, Chen, Jian, Zheng (bib0063) 2018
Zou Q., Jiang H., Dai Q., Yue Y., Chen L., Wang Q., Robust lane detection from continuous driving scenes using deep neural networks, IEEE Transactions on Vehicular Technology., 2019.
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks, international conference on learning representations., 2013.
Ren, He, Girshick, Sun (bib0039) 2015
Van Gansbeke, De Brabandere, Neven, Proesmans, Van Gool (bib0086) 2019
John, Karunakaran, Guo, Kidono, Mita (bib0078) 2018
Kong, Sun, Yao, Liu, Lu, Chen (bib0046) 2017
Lo, Hang, Chan, Lin (bib0055) 2019
L. Riera, K. Ozcan, J. Merickel, M. Rizzo, S. Sarkar, A. Sharma, Driver behavior analysis using lane departure detection under challenging conditions, arXiv:1906.00093, 2019.
Gurghian, Bailur, Carey, Murali (bib0021) 2016
Chai, Wei, Li (bib0005) 2014; Vol. 1042
Li, Chen, Huang, Li, Xu, Zheng, Huang (bib0016) 2016
Nair, Hinton (bib0030) 2010
He, Zhang, Ren, Sun (bib0035) 2016
Wu, Sahoo, Hoi (bib0047) 2020
Li, Qu, Liu, Sun, Wang (bib0076) 2019
Redmon, Divvala, Girshick, Farhadi (bib0042) 2016
Ding, Lee, Lee (bib0008) 2013
Kim, Park (bib0084) 2017
Wang, Chen, Yuan, Liu, Huang, Hou, Cottrell (bib0071) 2018
Huang, Liu, Van Der Maaten, Weinberger (bib0091) 2017
S. Zagoruyko, N. Komodakis, Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer, arXiv:1612.03928, 2016.
Arjovsky, Chintala, Bottou (bib0088) 2017
Romera, Alvarez, Bergasa, Arroyo (bib0054) 2017; 19
Simonyan, Zisserman (bib0033) 2014
Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bib0083) 2017
Z. Wang, W. Ren, Q. Qiu, Lanenet: real-time lane detection networks for autonomous driving, arXiv preprint arXiv:1807.01726, 2018.
Zhang, Xu, Ni, Duan (bib0077) 2018
Borji, Vanishing point detection with convolutional neural networks, ArXivabs/1609.00967, 2016.
Lo, Hang, Chan, Lin (bib0073) 2019
W. Zhang, T. Mahale, End to end video segmentation for driving: lane detection for autonomous car, arXiv:1812.05914, 2018.
Niu, Lu, Xu, Lv, Zhao (bib0011) 2016; 59
C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: deconvolutional single shot detector, arXiv:1701.06659, 2017.
Wang, Girshick, Gupta, He (bib0075) 2018
Krizhevsky, Hinton (bib0019) 2012
Najibi, Rastegari, Davis (bib0043) 2016
Homayounfar, Ma, Liang, Wu, Fan, Urtasun (bib0028) 2019
Huval, Wang, Tandon, Kiske, Song, Pazhayampallil, Andriluka, Rajpurkar, Migimatsu, Cheng-Yue (bib0059) 2015
Wang (10.1016/j.patcog.2020.107623_bib0071) 2018
Long (10.1016/j.patcog.2020.107623_bib0048) 2015
Huval (10.1016/j.patcog.2020.107623_bib0059) 2015
Kim (10.1016/j.patcog.2020.107623_bib0084) 2017
Mingfang (10.1016/j.patcog.2020.107623_bib0018) 2016; 9
John (10.1016/j.patcog.2020.107623_bib0078) 2018
Szegedy (10.1016/j.patcog.2020.107623_bib0032) 2015
Neven (10.1016/j.patcog.2020.107623_bib0081) 2018
Krizhevsky (10.1016/j.patcog.2020.107623_bib0019) 2012
Aung (10.1016/j.patcog.2020.107623_bib0010) 2014
Ren (10.1016/j.patcog.2020.107623_bib0039) 2015
Li (10.1016/j.patcog.2020.107623_bib0076) 2019
Fu (10.1016/j.patcog.2020.107623_bib0015) 2014; 520
He (10.1016/j.patcog.2020.107623_bib0035) 2016
Chen (10.1016/j.patcog.2020.107623_bib0072) 2018
Zhang (10.1016/j.patcog.2020.107623_bib0077) 2018
10.1016/j.patcog.2020.107623_bib0022
10.1016/j.patcog.2020.107623_bib0066
Andrychowicz (10.1016/j.patcog.2020.107623_bib0096) 2016
Li (10.1016/j.patcog.2020.107623_bib0016) 2016
Gurghian (10.1016/j.patcog.2020.107623_bib0021) 2016
10.1016/j.patcog.2020.107623_bib0062
LeCun (10.1016/j.patcog.2020.107623_bib0029) 1998; 86
10.1016/j.patcog.2020.107623_bib0025
10.1016/j.patcog.2020.107623_bib0026
Chiu (10.1016/j.patcog.2020.107623_bib0065) 2005
Zhu (10.1016/j.patcog.2020.107623_bib0040) 2017
Liu (10.1016/j.patcog.2020.107623_bib0095) 2017
Wang (10.1016/j.patcog.2020.107623_bib0075) 2018
Liu (10.1016/j.patcog.2020.107623_bib0044) 2016
Elharrouss (10.1016/j.patcog.2020.107623_bib0060) 2019
Pizzati (10.1016/j.patcog.2020.107623_bib0069) 2019
Chai (10.1016/j.patcog.2020.107623_bib0005) 2014; Vol. 1042
Lo (10.1016/j.patcog.2020.107623_bib0055) 2019
Girshick (10.1016/j.patcog.2020.107623_bib0038) 2015
Mao (10.1016/j.patcog.2020.107623_bib0090) 2017
10.1016/j.patcog.2020.107623_bib0031
Wang (10.1016/j.patcog.2020.107623_bib0083) 2017
Montufar (10.1016/j.patcog.2020.107623_bib0014) 2014
10.1016/j.patcog.2020.107623_bib0070
Wu (10.1016/j.patcog.2020.107623_bib0047) 2020
Ding (10.1016/j.patcog.2020.107623_bib0008) 2013
Kim (10.1016/j.patcog.2020.107623_bib0017) 2018
10.1016/j.patcog.2020.107623_bib0079
Duan (10.1016/j.patcog.2020.107623_bib0004) 2016
He (10.1016/j.patcog.2020.107623_bib0067) 2017
Pan (10.1016/j.patcog.2020.107623_bib0023) 2018
Johnson (10.1016/j.patcog.2020.107623_bib0093) 2016
Wang (10.1016/j.patcog.2020.107623_bib0003) 2011
Gulrajani (10.1016/j.patcog.2020.107623_bib0089) 2017
Girshick (10.1016/j.patcog.2020.107623_bib0037) 2014
Hershey (10.1016/j.patcog.2020.107623_bib0080) 2016
Simonyan (10.1016/j.patcog.2020.107623_bib0033) 2014
Nair (10.1016/j.patcog.2020.107623_bib0030) 2010
10.1016/j.patcog.2020.107623_bib0041
Zhang (10.1016/j.patcog.2020.107623_bib0052) 2018
10.1016/j.patcog.2020.107623_bib0085
Niu (10.1016/j.patcog.2020.107623_bib0011) 2016; 59
Hu (10.1016/j.patcog.2020.107623_bib0036) 2018; 83
McCall (10.1016/j.patcog.2020.107623_bib0012) 2006
Szegedy (10.1016/j.patcog.2020.107623_bib0034) 2017
Homayounfar (10.1016/j.patcog.2020.107623_bib0028) 2019
Ghafoorian (10.1016/j.patcog.2020.107623_bib0024) 2018
Wang (10.1016/j.patcog.2020.107623_bib0001) 2010; 37
10.1016/j.patcog.2020.107623_bib0045
Huang (10.1016/j.patcog.2020.107623_bib0063) 2018
Hou (10.1016/j.patcog.2020.107623_bib0027) 2019
Chougule (10.1016/j.patcog.2020.107623_bib0068) 2018
Guo (10.1016/j.patcog.2020.107623_bib0082) 2019
Lee (10.1016/j.patcog.2020.107623_bib0061) 2017
Hsiao (10.1016/j.patcog.2020.107623_bib0002) 2008; 58
Kim (10.1016/j.patcog.2020.107623_bib0020) 2014
Goodfellow (10.1016/j.patcog.2020.107623_bib0087) 2014
J´egou (10.1016/j.patcog.2020.107623_bib0092) 2017
Mu (10.1016/j.patcog.2020.107623_bib0007) 2014; 12
Wu (10.1016/j.patcog.2020.107623_bib0009) 2014; 47
Peng (10.1016/j.patcog.2020.107623_bib0049) 2017
Najibi (10.1016/j.patcog.2020.107623_bib0043) 2016
Zhao (10.1016/j.patcog.2020.107623_bib0050) 2017
Huang (10.1016/j.patcog.2020.107623_bib0091) 2017
10.1016/j.patcog.2020.107623_bib0053
Guo (10.1016/j.patcog.2020.107623_bib0057) 2018; 7
Arjovsky (10.1016/j.patcog.2020.107623_bib0088) 2017
Redmon (10.1016/j.patcog.2020.107623_bib0042) 2016
Chougule (10.1016/j.patcog.2020.107623_bib0064) 2018
Buades (10.1016/j.patcog.2020.107623_bib0074) 2005; Vol. 2
Gaikwad (10.1016/j.patcog.2020.107623_bib0006) 2014; 16
10.1016/j.patcog.2020.107623_bib0051
Romera (10.1016/j.patcog.2020.107623_bib0054) 2017; 19
Van Gansbeke (10.1016/j.patcog.2020.107623_bib0086) 2019
Liu (10.1016/j.patcog.2020.107623_bib0094) 2016; 2
Zhao (10.1016/j.patcog.2020.107623_bib0056) 2018
Kong (10.1016/j.patcog.2020.107623_bib0046) 2017
Lo (10.1016/j.patcog.2020.107623_bib0073) 2019
10.1016/j.patcog.2020.107623_bib0058
Wang (10.1016/j.patcog.2020.107623_bib0013) 2000; 21
References_xml – year: 2019
  ident: bib0086
  article-title: End-to-end lane detection through differentiable least-squares fitting
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
– start-page: 1013
  year: 2019
  end-page: 1021
  ident: bib0027
  article-title: Learning lightweight lane detection cnns by self-attention distillation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 47
  start-page: 2756
  year: 2014
  end-page: 2767
  ident: bib0009
  article-title: Lane-mark extraction for automobiles under complex conditions
  publication-title: Pattern Recognit
– reference: L. Riera, K. Ozcan, J. Merickel, M. Rizzo, S. Sarkar, A. Sharma, Driver behavior analysis using lane departure detection under challenging conditions, arXiv:1906.00093, 2019.
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0076
  article-title: A lane detection network based on ibn and attention
  publication-title: Multimed Tools Appl
– start-page: 5767
  year: 2017
  end-page: 5777
  ident: bib0089
  article-title: Improved training of wasserstein gans
  publication-title: Advances in neural information processing systems
– volume: 19
  start-page: 263
  year: 2017
  end-page: 272
  ident: bib0054
  article-title: Erfnet: efficient residual factorized convnet for real-time semantic segmentation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Borji, Vanishing point detection with convolutional neural networks, ArXivabs/1609.00967, 2016.
– reference: Z. Wang, W. Ren, Q. Qiu, Lanenet: real-time lane detection networks for autonomous driving, arXiv preprint arXiv:1807.01726, 2018.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0048
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1947
  year: 2017
  end-page: 1955
  ident: bib0061
  article-title: Vpgnet: vanishing point guided network for lane and road marking detection and recognition
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv:1207.0580. 31, 2012.
– start-page: 38
  year: 2016
  end-page: 45
  ident: bib0021
  article-title: Deeplanes: end-to-end lane position estimation using deep neural networksa
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– reference: W. Zhang, T. Mahale, End to end video segmentation for driving: lane detection for autonomous car, arXiv:1812.05914, 2018.
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0030
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th international conference on machine learning (ICML-10)
– reference: Paszke, A.C., S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv:1606.02147. 33, 2016.
– start-page: 649
  year: 2018
  end-page: 652
  ident: bib0017
  article-title: Road and lane detection using stereo camera
  publication-title: 2018 IEEE 525 International Conference on Big Data and Smart Computing (BigComp), IEEE
– start-page: 706
  year: 2005
  end-page: 711
  ident: bib0065
  article-title: Lane detection using color-based segmentation
  publication-title: IEEE Proceedings. Intelligent Vehicles Symposium, 2005., IEEE
– reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv preprint arXiv:1503.02531, 2015.
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0042
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 2911
  year: 2019
  end-page: 2920
  ident: bib0028
  article-title: Dagmapper: learning to map by discovering lane topology
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2017
  ident: bib0067
  article-title: Mask r-cnn.
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– start-page: 7151
  year: 2018
  end-page: 7160
  ident: bib0052
  article-title: Context encoding for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 11
  year: 2017
  end-page: 19
  ident: bib0092
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops
– start-page: 31
  year: 2016
  end-page: 35
  ident: bib0080
  article-title: Deep clustering: discriminative embeddings for segmentation and separation
  publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 37
  start-page: 113
  year: 2010
  end-page: 126
  ident: bib0001
  article-title: Applying fuzzy method to vision-based lane detection and departure warning system
  publication-title: Expert Syst Appl
– start-page: 212
  year: 2017
  end-page: 220
  ident: bib0095
  article-title: Sphereface: deep hypersphere embedding for face recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 267
  year: 2018
  end-page: 283
  ident: bib0056
  article-title: Psanet: point-wise spatial attention network for scene parsing
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 411
  year: 2016
  end-page: 415
  ident: bib0016
  article-title: Nighttime lane markings recognition based on canny detection and hough transform
  publication-title: 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), IEEE
– year: 2017
  ident: bib0034
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Thirty-First AAAI Conference on Artificial Intelligence
– year: 2018
  ident: bib0023
  article-title: Spatial as deep: spatial cnn for traffic scene understanding
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– year: 2020
  ident: bib0047
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: bib0050
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 2924
  year: 2014
  end-page: 2932
  ident: bib0014
  article-title: On the number of linear regions of deep neural networks
  publication-title: Advances in neural information processing systems
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0055
  article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation
  publication-title: Proceedings of the ACM Multimedia Asia on ZZZ
– reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, international conference on learning representations.,2015.
– reference: P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks, international conference on learning representations., 2013.
– year: 2018
  ident: bib0024
  article-title: El-gan: embedding loss driven generative adversarial networks for lane detection
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 680
  year: 2016
  end-page: 684
  ident: bib0004
  article-title: Lane line recognition algorithm based on threshold segmentation and continuity of lane line
  publication-title: 2016 2nd IEEE International Conference on Computer and Communications (ICCC)
– start-page: 3156
  year: 2017
  end-page: 3164
  ident: bib0083
  article-title: Residual attention network for image classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0032
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2014
  ident: bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Computer Science
– start-page: 1
  year: 2019
  end-page: 22
  ident: bib0060
  article-title: Image inpainting: a review
  publication-title: Neural Processing Letters
– start-page: 143
  year: 2018
  end-page: 154
  ident: bib0063
  article-title: Spatial-temproal based lane detection using deep learning
  publication-title: IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer
– volume: 21
  start-page: 677
  year: 2000
  end-page: 689
  ident: bib0013
  article-title: Lane detection using spline model
  publication-title: Pattern Recognit Lett
– volume: 16
  start-page: 910
  year: 2014
  end-page: 918
  ident: bib0006
  article-title: Lane departure identification for advanced driver assistance
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 2794
  year: 2017
  end-page: 2802
  ident: bib0090
  article-title: Least squares generative adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, J. Sun, Light-head r-cnn: in defense of two-stage object detector, arXiv:1711.07264, 2017.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0091
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 7
  start-page: 87
  year: 2018
  end-page: 93
  ident: bib0057
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int J Multimed Inf Retr
– start-page: 30
  year: 2017
  end-page: 38
  ident: bib0084
  article-title: End-to-end ego lane estimation based on sequential transfer learning for self-driving cars
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– start-page: 189
  year: 2018
  end-page: 194
  ident: bib0078
  article-title: Free space, visible and missing lane marker estimation using the psinet and extra trees regression
  publication-title: 2018 24th International Conference on Pattern Recognition (ICPR)
– year: 2018
  ident: bib0064
  article-title: Reliable multilane 645 detection and classification by utilizing cnn as a regression network
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 214
  year: 2017
  end-page: 223
  ident: bib0088
  article-title: Wasserstein generative adversarial networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0073
  article-title: Multi-class lane semantic segmentation using efficient convolutional networks
  publication-title: 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP)
– volume: 59
  start-page: 225
  year: 2016
  end-page: 233
  ident: bib0011
  article-title: Robust lane detection using two-stage feature extraction with curve fitting
  publication-title: Pattern Recognit
– start-page: 1444
  year: 2018
  end-page: 1451
  ident: bib0068
  article-title: An efficient encoderdecoder cnn architecture for reliable multilane detection in real time
  publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV)
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0019
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 83
  start-page: 134
  year: 2018
  end-page: 149
  ident: bib0036
  article-title: Deep learning for image-based cancer detection and diagnosis a survey
  publication-title: Pattern Recognit
– start-page: 20
  year: 2006
  end-page: 37
  ident: bib0012
  article-title: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation
  publication-title: IEEE Trans. Intelligent Transportation Systems
– volume: 9
  start-page: 89
  year: 2016
  end-page: 102
  ident: bib0018
  article-title: Shadow lane robust detection by image signal local reconstruction, International Journal of Signal Processing
  publication-title: Image Processing and Pattern Recognition
– reference: C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: deconvolutional single shot detector, arXiv:1701.06659, 2017.
– start-page: 4353
  year: 2017
  end-page: 4361
  ident: bib0049
  article-title: Large kernel matters-improve semantic segmentation by global convolutional network
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 12
  start-page: 3491
  year: 2014
  end-page: 3500
  ident: bib0007
  article-title: Lane detection based on object segmentation and piecewise fitting, TELKOMNIKA Indones
  publication-title: J. Electr. Eng. TELKOMNIKA
– start-page: 454
  year: 2014
  end-page: 461
  ident: bib0020
  article-title: Robust lane detection based on convolutional neural network and random sample consensus
  publication-title: International conference on neural information processing, Springer
– volume: 520
  start-page: 655
  year: 2014
  end-page: 660
  ident: bib0015
  article-title: Multi-lanes detection based on panoramic camera
  publication-title: 11th IEEE International Conference on Control & Automation (ICCA)
– year: 2015
  ident: bib0059
  article-title: An empirical evaluation of deep learning on highway driving
  publication-title: CoRR.
– reference: S. Zagoruyko, N. Komodakis, Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer, arXiv:1612.03928, 2016.
– start-page: 2536
  year: 2019
  end-page: 2541
  ident: bib0069
  article-title: Enhanced free space detection in multiple lanes based on single cnn with scene identification
  publication-title: 2019 IEEE Intelligent Vehicles Symposium (IV)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0029
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: Vol. 2
  start-page: 60
  year: 2005
  end-page: 65
  ident: bib0074
  article-title: A non-local algorithm for image denoising
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
– volume: 58
  start-page: 2089
  year: 2008
  end-page: 2094
  ident: bib0002
  article-title: A portable vision-based real-time lane departure warning system: day and night
  publication-title: IEEE Transactions on Vehicular Technology
– reference: L.-.C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587, 2017
– start-page: 1
  year: 2013
  end-page: 4
  ident: bib0008
  article-title: An adaptive road roi determination algorithm for lane detection
  publication-title: 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), IEEE
– start-page: 4126
  year: 2017
  end-page: 4134
  ident: bib0040
  article-title: Couplenet: coupling global structure with local parts for object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0035
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 2369
  year: 2016
  end-page: 2377
  ident: bib0043
  article-title: G-cnn: an iterative grid based object detector
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 29
  year: 2014
  end-page: 30
  ident: bib0010
  article-title: Video based lane departure warning system using hough transform
  publication-title: International Conference on Advances in Engineering and Technology
– start-page: 486
  year: 2018
  end-page: 502
  ident: bib0077
  article-title: Geometric constrained joint lane segmentation and lane boundary detection
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 694
  year: 2016
  end-page: 711
  ident: bib0093
  article-title: Perceptual losses for real-time style transfer and superresolution
  publication-title: European conference on computer vision, Springer
– volume: Vol. 1042
  start-page: 126
  year: 2014
  end-page: 130
  ident: bib0005
  article-title: The multi-scale hough transform lane detection method based on the algorithm of otsu and canny
  publication-title: Advanced Materials Research
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib0037
  article-title: Rich feature hierarchies for accurate object 575 detection and semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 3981
  year: 2016
  end-page: 3989
  ident: bib0096
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Advances in neural information processing systems
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: bib0038
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib0072
  article-title: Efficient road lane marking detection with deep learning
  publication-title: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0039
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– start-page: 4805
  year: 2019
  end-page: 4814
  ident: bib0082
  article-title: Spottune: transfer learning through adaptive fine-tuning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0087
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– start-page: 3181
  year: 2011
  end-page: 3185
  ident: bib0003
  article-title: Robust lane detection based on gradient-pairs constraint
  publication-title: Proceedings of the 30th Chinese Control Conference
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0044
  article-title: Ssd: single shot multibox detector
  publication-title: European conference on computer vision
– reference: Zou Q., Jiang H., Dai Q., Yue Y., Chen L., Wang Q., Robust lane detection from continuous driving scenes using deep neural networks, IEEE Transactions on Vehicular Technology., 2019.
– start-page: 286
  year: 2018
  end-page: 291
  ident: bib0081
  article-title: Towards end-toend lane detection: an instance segmentation approach
  publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV)
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: bib0075
  article-title: Non-local neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 2
  start-page: 7
  year: 2016
  ident: bib0094
  article-title: Large-margin softmax loss for convolutional neural networks
  publication-title: ICML
– start-page: 5936
  year: 2017
  end-page: 5944
  ident: bib0046
  article-title: Ron: reverse connection with objectness prior networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1451
  year: 2018
  end-page: 1460
  ident: bib0071
  article-title: Understanding convolution for semantic segmentation
  publication-title: 2018 IEEE winter conference on applications of computer vision (WACV)
– ident: 10.1016/j.patcog.2020.107623_bib0051
  doi: 10.1007/978-3-030-01234-2_49
– ident: 10.1016/j.patcog.2020.107623_bib0041
– year: 2015
  ident: 10.1016/j.patcog.2020.107623_bib0059
  article-title: An empirical evaluation of deep learning on highway driving
  publication-title: CoRR.
– volume: 2
  start-page: 7
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0094
  article-title: Large-margin softmax loss for convolutional neural networks
– start-page: 1451
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0071
  article-title: Understanding convolution for semantic segmentation
– start-page: 1
  year: 2013
  ident: 10.1016/j.patcog.2020.107623_bib0008
  article-title: An adaptive road roi determination algorithm for lane detection
– start-page: 1013
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0027
  article-title: Learning lightweight lane detection cnns by self-attention distillation
– ident: 10.1016/j.patcog.2020.107623_bib0045
– start-page: 2881
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0050
  article-title: Pyramid scene parsing network
– start-page: 7151
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0052
  article-title: Context encoding for semantic segmentation
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0055
  article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation
– start-page: 706
  year: 2005
  ident: 10.1016/j.patcog.2020.107623_bib0065
  article-title: Lane detection using color-based segmentation
– start-page: 189
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0078
  article-title: Free space, visible and missing lane marker estimation using the psinet and extra trees regression
– ident: 10.1016/j.patcog.2020.107623_bib0025
– start-page: 286
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0081
  article-title: Towards end-toend lane detection: an instance segmentation approach
– start-page: 486
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0077
  article-title: Geometric constrained joint lane segmentation and lane boundary detection
– start-page: 4805
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0082
  article-title: Spottune: transfer learning through adaptive fine-tuning
– ident: 10.1016/j.patcog.2020.107623_bib0031
– volume: 59
  start-page: 225
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0011
  article-title: Robust lane detection using two-stage feature extraction with curve fitting
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2015.12.010
– volume: Vol. 2
  start-page: 60
  year: 2005
  ident: 10.1016/j.patcog.2020.107623_bib0074
  article-title: A non-local algorithm for image denoising
– start-page: 649
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0017
  article-title: Road and lane detection using stereo camera
– year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Computer Science
– start-page: 4126
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0040
  article-title: Couplenet: coupling global structure with local parts for object detection
– ident: 10.1016/j.patcog.2020.107623_bib0058
– start-page: 411
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0016
  article-title: Nighttime lane markings recognition based on canny detection and hough transform
– start-page: 3431
  year: 2015
  ident: 10.1016/j.patcog.2020.107623_bib0048
  article-title: Fully convolutional networks for semantic segmentation
– year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0024
  article-title: El-gan: embedding loss driven generative adversarial networks for lane detection
– ident: 10.1016/j.patcog.2020.107623_bib0079
  doi: 10.1109/TVT.2019.2949603
– start-page: 214
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0088
  article-title: Wasserstein generative adversarial networks
– start-page: 4353
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0049
  article-title: Large kernel matters-improve semantic segmentation by global convolutional network
– start-page: 20
  year: 2006
  ident: 10.1016/j.patcog.2020.107623_bib0012
  article-title: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation
  publication-title: IEEE Trans. Intelligent Transportation Systems
  doi: 10.1109/TITS.2006.869595
– volume: 520
  start-page: 655
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0015
  article-title: Multi-lanes detection based on panoramic camera
– start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2020.107623_bib0032
  article-title: Going deeper with convolutions
– year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0034
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– start-page: 212
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0095
  article-title: Sphereface: deep hypersphere embedding for face recognition
– start-page: 1444
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0068
  article-title: An efficient encoderdecoder cnn architecture for reliable multilane detection in real time
– start-page: 267
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0056
  article-title: Psanet: point-wise spatial attention network for scene parsing
– year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0023
  article-title: Spatial as deep: spatial cnn for traffic scene understanding
– volume: Vol. 1042
  start-page: 126
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0005
  article-title: The multi-scale hough transform lane detection method based on the algorithm of otsu and canny
  doi: 10.4028/b-ap0LHp
– start-page: 2911
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0028
  article-title: Dagmapper: learning to map by discovering lane topology
– start-page: 680
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0004
  article-title: Lane line recognition algorithm based on threshold segmentation and continuity of lane line
– volume: 12
  start-page: 3491
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0007
  article-title: Lane detection based on object segmentation and piecewise fitting, TELKOMNIKA Indones
  publication-title: J. Electr. Eng. TELKOMNIKA
– volume: 21
  start-page: 677
  issue: 8
  year: 2000
  ident: 10.1016/j.patcog.2020.107623_bib0013
  article-title: Lane detection using spline model
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(00)00021-0
– volume: 16
  start-page: 910
  issue: 2
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0006
  article-title: Lane departure identification for advanced driver assistance
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 30
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0084
  article-title: End-to-end ego lane estimation based on sequential transfer learning for self-driving cars
– volume: 58
  start-page: 2089
  issue: 4
  year: 2008
  ident: 10.1016/j.patcog.2020.107623_bib0002
  article-title: A portable vision-based real-time lane departure warning system: day and night
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2008.2006618
– start-page: 31
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0080
  article-title: Deep clustering: discriminative embeddings for segmentation and separation
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0035
  article-title: Deep residual learning for image recognition
– start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0044
  article-title: Ssd: single shot multibox detector
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0072
  article-title: Efficient road lane marking detection with deep learning
– start-page: 91
  year: 2015
  ident: 10.1016/j.patcog.2020.107623_bib0039
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0076
  article-title: A lane detection network based on ibn and attention
  publication-title: Multimed Tools Appl
– ident: 10.1016/j.patcog.2020.107623_bib0062
– start-page: 3981
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0096
  article-title: Learning to learn by gradient descent by gradient descent
– start-page: 143
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0063
  article-title: Spatial-temproal based lane detection using deep learning
– start-page: 11
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0092
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
– start-page: 807
  year: 2010
  ident: 10.1016/j.patcog.2020.107623_bib0030
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 47
  start-page: 2756
  issue: 8
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0009
  article-title: Lane-mark extraction for automobiles under complex conditions
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.02.004
– volume: 9
  start-page: 89
  issue: 3
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0018
  article-title: Shadow lane robust detection by image signal local reconstruction, International Journal of Signal Processing
  publication-title: Image Processing and Pattern Recognition
  doi: 10.14257/ijsip.2016.9.3.08
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0060
  article-title: Image inpainting: a review
  publication-title: Neural Processing Letters
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patcog.2020.107623_bib0019
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1440
  year: 2015
  ident: 10.1016/j.patcog.2020.107623_bib0038
– start-page: 2369
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0043
  article-title: G-cnn: an iterative grid based object detector
– ident: 10.1016/j.patcog.2020.107623_bib0066
– ident: 10.1016/j.patcog.2020.107623_bib0085
– start-page: 38
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0021
  article-title: Deeplanes: end-to-end lane position estimation using deep neural networksa
– year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0067
  article-title: Mask r-cnn.
– volume: 83
  start-page: 134
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0036
  article-title: Deep learning for image-based cancer detection and diagnosis a survey
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.05.014
– start-page: 3181
  year: 2011
  ident: 10.1016/j.patcog.2020.107623_bib0003
  article-title: Robust lane detection based on gradient-pairs constraint
– start-page: 2924
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0014
  article-title: On the number of linear regions of deep neural networks
– start-page: 580
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0037
  article-title: Rich feature hierarchies for accurate object 575 detection and semantic segmentation
– start-page: 2672
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0087
  article-title: Generative adversarial nets
– start-page: 5767
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0089
  article-title: Improved training of wasserstein gans
– volume: 7
  start-page: 87
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0057
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int J Multimed Inf Retr
  doi: 10.1007/s13735-017-0141-z
– start-page: 3156
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0083
  article-title: Residual attention network for image classification
– start-page: 1947
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0061
  article-title: Vpgnet: vanishing point guided network for lane and road marking detection and recognition
– start-page: 7794
  year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0075
  article-title: Non-local neural networks
– volume: 37
  start-page: 113
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2020.107623_bib0001
  article-title: Applying fuzzy method to vision-based lane detection and departure warning system
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.05.026
– year: 2020
  ident: 10.1016/j.patcog.2020.107623_bib0047
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
– volume: 19
  start-page: 263
  issue: 1
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0054
  article-title: Erfnet: efficient residual factorized convnet for real-time semantic segmentation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2750080
– start-page: 4700
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0091
  article-title: Densely connected convolutional networks
– start-page: 454
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0020
  article-title: Robust lane detection based on convolutional neural network and random sample consensus
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0073
  article-title: Multi-class lane semantic segmentation using efficient convolutional networks
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2020.107623_bib0029
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– start-page: 2536
  year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0069
  article-title: Enhanced free space detection in multiple lanes based on single cnn with scene identification
– ident: 10.1016/j.patcog.2020.107623_bib0026
– year: 2019
  ident: 10.1016/j.patcog.2020.107623_bib0086
  article-title: End-to-end lane detection through differentiable least-squares fitting
– start-page: 779
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0042
  article-title: You only look once: unified, real-time object detection
– ident: 10.1016/j.patcog.2020.107623_bib0053
– year: 2018
  ident: 10.1016/j.patcog.2020.107623_bib0064
  article-title: Reliable multilane 645 detection and classification by utilizing cnn as a regression network
– ident: 10.1016/j.patcog.2020.107623_bib0022
– ident: 10.1016/j.patcog.2020.107623_bib0070
– start-page: 2794
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0090
  article-title: Least squares generative adversarial networks
– start-page: 5936
  year: 2017
  ident: 10.1016/j.patcog.2020.107623_bib0046
  article-title: Ron: reverse connection with objectness prior networks for object detection
– start-page: 29
  year: 2014
  ident: 10.1016/j.patcog.2020.107623_bib0010
  article-title: Video based lane departure warning system using hough transform
– start-page: 694
  year: 2016
  ident: 10.1016/j.patcog.2020.107623_bib0093
  article-title: Perceptual losses for real-time style transfer and superresolution
SSID ssj0017142
Score 2.6411502
Snippet •This work is the _rst overall review of recent deep learning-based lane detection methods.•Detailed description of representive methods from perpective of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107623
SubjectTerms Deep learning
Instance segmentation
Lane detection
Semantic segmentation
Title A review of lane detection methods based on deep learning
URI https://dx.doi.org/10.1016/j.patcog.2020.107623
Volume 111
WOSCitedRecordID wos000601157900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFA46PXjxt_ibHLxJZU3apjkOmegOY-CE3UqbJmNDuuKm-Of70iTddKLu4KUbIclKvuzlS_K99xC6yjLCSZpL-COp0AvSJthBKkOPpwT4gIQPEVfJJli3Gw8GvGezOE6rdAKsKOL3d17-K9RQBmBr19kV4K47hQL4DqDDE2CH55-Aby24o2gl63UuZ9IkBDfpoqfXeunK9TVBLmXpEkcMF3lqrwq7qV1drL5oflvftyfMndEwtY20oKdSBTxOimE2mqt8Rq9GA2zr2dMFsiCvchaT-h4lTfrJYlr7aGwebCAj4zO8ZI7NycD4poRlZTKE3TjRha765-jXX1alWivoZGjjxPSS6F4S08s62iAs5GDNNloP7UGnvj9ifmDixNu3d06TlbJv-W2-JyULRKO_i7btDgG3DLJ7aE0W-2jHZd_A1hgfIN7CBmg8UVgDjWugsQUaV0BjKNBAYwf0IXq6a_dv7z2bCMMTlJGZF-YB40qIvIq-pr0iBfVpxFWciVSQQPkRUB2VQR1gdD7JqKRpFAZKkDilktAj1CgmhTxGmDHBOQxIFjVlkMVAuBUY-SAA1h8RrsITRN1IJMJGidfJSp6Tn3A4QV7dqjRRUn6pz9wgJ5bpGQaXwMz5seXpir90hrbm0_ocNWYvr_ICbYq32Wj6cmmnzQcTenJ2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+lane+detection+methods+based+on+deep+learning&rft.jtitle=Pattern+recognition&rft.au=Tang%2C+Jigang&rft.au=Li%2C+Songbin&rft.au=Liu%2C+Peng&rft.date=2021-03-01&rft.issn=0031-3203&rft.volume=111&rft.spage=107623&rft_id=info:doi/10.1016%2Fj.patcog.2020.107623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon