Medical Image Analysis using Convolutional Neural Networks: A Review

The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical systems Ročník 42; číslo 11; s. 226 - 13
Hlavní autoři: Anwar, Syed Muhammad, Majid, Muhammad, Qayyum, Adnan, Awais, Muhammad, Alnowami, Majdi, Khan, Muhammad Khurram
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2018
Springer Nature B.V
Témata:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made medical image analysis one of the top research and development area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
ObjectType-Review-3
content type line 23
ISSN:0148-5598
1573-689X
1573-689X
DOI:10.1007/s10916-018-1088-1