An improved Jaya optimization algorithm with Lévy flight
Recent advances in metaheuristics have shown the advantages of using the Lévy distribution, which models a kind of random walk (named “Lévy flight”) with occasional “big” steps. This characteristic makes Lévy flight especially useful for performing large “jumps” that allow the search to escape from...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 165; s. 113902 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
01.03.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent advances in metaheuristics have shown the advantages of using the Lévy distribution, which models a kind of random walk (named “Lévy flight”) with occasional “big” steps. This characteristic makes Lévy flight especially useful for performing large “jumps” that allow the search to escape from a local optimum and restart in a different region of the search space. In this paper, we investigate this idea by applying Lévy flight to Jaya, a simple yet effective Swarm Intelligence optimization algorithm recently proposed in the literature. We perform experiments on the CEC 2014 benchmark as well as five industrial optimization problems taken from the CEC 2011 benchmark, and compare the performance of the proposed Lévy flight Jaya Algorithm (LJA) against several state-of-the-art algorithms for continuous optimization. Our numerical results show that, although both Jaya and LJA are in general less efficient than the most advanced algorithms on the CEC 2014 benchmark, LJA largely outperforms the original Jaya algorithm in most cases, and is also highly competitive on the tested industrial problems.
•We present the Lévy flight Jaya Algorithm (LJA) for continuous optimization.•We evaluate the effect of the β parameter on LJA.•LJA consistently outperforms the original Jaya on most optimization problems.•We compare LJA with state-of-the-art algorithms on benchmark/industrial problems. |
|---|---|
| AbstractList | Recent advances in metaheuristics have shown the advantages of using the Lévy distribution, which models a kind of random walk (named "Lévy flight") with occasional "big" steps. This characteristic makes Lévy flight especially useful for performing large "jumps" that allow the search to escape from a local optimum and restart in a different region of the search space. In this paper, we investigate this idea by applying Lévy flight to Jaya, a simple yet effective Swarm Intelligence optimization algorithm recently proposed in the literature. We perform experiments on the CEC 2014 benchmark as well as five industrial optimization problems taken from the CEC 2011 benchmark, and compare the performance of the proposed Lévy flight Jaya Algorithm (LJA) against several state-of-the-art algorithms for continuous optimization. Our numerical results show that, although both Jaya and LJA are in general less efficient than the most advanced algorithms on the CEC 2014 benchmark, LJA largely outperforms the original Jaya algorithm in most cases, and is also highly competitive on the tested industrial problems. Recent advances in metaheuristics have shown the advantages of using the Lévy distribution, which models a kind of random walk (named “Lévy flight”) with occasional “big” steps. This characteristic makes Lévy flight especially useful for performing large “jumps” that allow the search to escape from a local optimum and restart in a different region of the search space. In this paper, we investigate this idea by applying Lévy flight to Jaya, a simple yet effective Swarm Intelligence optimization algorithm recently proposed in the literature. We perform experiments on the CEC 2014 benchmark as well as five industrial optimization problems taken from the CEC 2011 benchmark, and compare the performance of the proposed Lévy flight Jaya Algorithm (LJA) against several state-of-the-art algorithms for continuous optimization. Our numerical results show that, although both Jaya and LJA are in general less efficient than the most advanced algorithms on the CEC 2014 benchmark, LJA largely outperforms the original Jaya algorithm in most cases, and is also highly competitive on the tested industrial problems. •We present the Lévy flight Jaya Algorithm (LJA) for continuous optimization.•We evaluate the effect of the β parameter on LJA.•LJA consistently outperforms the original Jaya on most optimization problems.•We compare LJA with state-of-the-art algorithms on benchmark/industrial problems. |
| ArticleNumber | 113902 |
| Author | Iacca, Giovanni Veloso de Melo, Vinícius dos Santos Junior, Vlademir Celso |
| Author_xml | – sequence: 1 givenname: Giovanni surname: Iacca fullname: Iacca, Giovanni email: giovanni.iacca@unitn.it organization: Department of Information Engineering and Computer Science, University of Trento, Povo, Italy – sequence: 2 givenname: Vlademir Celso surname: dos Santos Junior fullname: dos Santos Junior, Vlademir Celso email: vcsjunior@unifesp.br organization: Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil – sequence: 3 givenname: Vinícius surname: Veloso de Melo fullname: Veloso de Melo, Vinícius email: vvdemelo@wawanesa.com organization: The Wawanesa Mutual Insurance Company, Data Analytics, Winnipeg, Manitoba, Canada |
| BookMark | eNp9kE1OwzAQhS1UJNrCBVhFYp3inyS2JTZVxa8qsYG15Th26yiJi-O2KjfiHFwMl7Bi0c2MNHrfzLw3AaPOdRqAawRnCKLitp7pfi9nGOI4QIRDfAbGiFGSFpSTERhDntM0QzS7AJO-ryFEFEI6BnzeJbbdeLfTVfIiDzJxm2Bb-ymDdV0im5XzNqzbZB9rsvz-2h0S09jVOlyCcyObXl_99Sl4f7h_Wzyly9fH58V8mSpCcUhzzjNTZMgQwpmRkiooc8ZyzKUuJCSF1pKUmhlaMVVCJKGhRUloiTOOqVJkCm6GvfHJj63ug6jd1nfxpMAZo6jgcVtU4UGlvOt7r43YeNtKfxAIimNEohbHiMQxIjFEFCH2D1I2_BoPXtrmNHo3oDpa31ntRa-s7pSurNcqiMrZU_gPqpCD4g |
| CitedBy_id | crossref_primary_10_1016_j_jobe_2022_105062 crossref_primary_10_1007_s42235_023_00437_8 crossref_primary_10_1007_s00500_023_08782_w crossref_primary_10_1007_s12065_022_00745_8 crossref_primary_10_1007_s11440_023_01988_0 crossref_primary_10_1007_s00521_022_08057_9 crossref_primary_10_1007_s00521_023_08229_1 crossref_primary_10_1016_j_sysarc_2023_102871 crossref_primary_10_1007_s10489_022_03269_x crossref_primary_10_3390_en17122985 crossref_primary_10_1007_s10462_021_10077_1 crossref_primary_10_1016_j_advengsoft_2022_103405 crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1109_ACCESS_2025_3530477 crossref_primary_10_1007_s00500_023_09393_1 crossref_primary_10_3390_a18020107 crossref_primary_10_3233_JIFS_213471 crossref_primary_10_1007_s00521_021_06751_8 crossref_primary_10_1016_j_seta_2022_102312 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_1016_j_compbiomed_2023_107216 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1007_s00170_023_12905_w crossref_primary_10_3390_math10091567 crossref_primary_10_1109_ACCESS_2021_3099169 crossref_primary_10_1002_rcm_9603 crossref_primary_10_7717_peerj_cs_1420 crossref_primary_10_3390_buildings12050610 crossref_primary_10_1016_j_knosys_2023_110374 crossref_primary_10_3390_sym17071085 crossref_primary_10_1016_j_compbiomed_2024_108440 crossref_primary_10_3390_app13085102 crossref_primary_10_3390_su16208790 crossref_primary_10_3390_met14050529 crossref_primary_10_1016_j_est_2023_110158 crossref_primary_10_3389_fenrg_2023_1140443 crossref_primary_10_3390_s23146614 crossref_primary_10_1016_j_neucom_2024_127506 crossref_primary_10_1109_ACCESS_2022_3210122 crossref_primary_10_1016_j_eswa_2022_118644 crossref_primary_10_1007_s10489_022_04224_6 crossref_primary_10_1016_j_compag_2022_106805 crossref_primary_10_1016_j_measurement_2024_115022 crossref_primary_10_3233_IDT_240739 crossref_primary_10_1109_ACCESS_2022_3162074 crossref_primary_10_12677_csa_2025_158211 crossref_primary_10_1007_s11227_024_06207_5 crossref_primary_10_1109_ACCESS_2022_3202894 crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_1038_s41598_024_81168_6 crossref_primary_10_1016_j_compbiomed_2024_108297 crossref_primary_10_1007_s11042_023_15415_9 crossref_primary_10_1049_cmu2_70029 crossref_primary_10_1016_j_aei_2021_101317 crossref_primary_10_1109_ACCESS_2024_3404641 crossref_primary_10_1007_s00500_023_09070_3 crossref_primary_10_1007_s12145_023_00963_3 crossref_primary_10_1016_j_asoc_2021_108071 crossref_primary_10_1016_j_asoc_2025_113654 crossref_primary_10_1016_j_eswa_2023_121303 crossref_primary_10_1017_S0263574724000481 crossref_primary_10_1049_cit2_12345 crossref_primary_10_1007_s10462_022_10234_0 crossref_primary_10_1016_j_engappai_2023_106207 crossref_primary_10_1007_s00500_023_09206_5 crossref_primary_10_1007_s10462_022_10322_1 crossref_primary_10_1007_s11356_024_32330_0 crossref_primary_10_1016_j_eswa_2022_118460 crossref_primary_10_1007_s11227_022_04996_1 crossref_primary_10_1109_TGRS_2022_3231594 crossref_primary_10_3390_en15093394 crossref_primary_10_1016_j_apenergy_2024_123437 crossref_primary_10_7717_peerj_cs_1473 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_1109_TIM_2023_3275999 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_1002_cpe_8101 crossref_primary_10_1007_s13042_024_02292_3 crossref_primary_10_1007_s00521_022_07391_2 crossref_primary_10_1016_j_bspc_2024_107478 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1016_j_eswa_2023_120827 crossref_primary_10_1007_s10462_025_11289_5 crossref_primary_10_1007_s11227_024_06790_7 crossref_primary_10_1016_j_asoc_2021_108053 crossref_primary_10_1016_j_enconman_2021_115057 crossref_primary_10_1016_j_compbiomed_2023_107410 crossref_primary_10_32604_cmc_2023_034221 crossref_primary_10_3390_app13020945 crossref_primary_10_1186_s44147_025_00714_9 crossref_primary_10_1080_19942060_2024_2359022 crossref_primary_10_1093_jcde_qwac095 crossref_primary_10_1016_j_knosys_2021_107625 crossref_primary_10_1088_1361_6501_ad15dc crossref_primary_10_1016_j_prime_2023_100305 crossref_primary_10_3389_fgene_2021_644945 crossref_primary_10_1111_exsy_13079 crossref_primary_10_1002_oca_70028 crossref_primary_10_3390_math11061362 crossref_primary_10_1016_j_swevo_2024_101779 crossref_primary_10_1109_ACCESS_2024_3427812 crossref_primary_10_1016_j_eswa_2023_120402 crossref_primary_10_1155_2021_6379469 crossref_primary_10_3390_sym14112282 crossref_primary_10_1093_jcde_qwad053 crossref_primary_10_1016_j_ress_2025_111148 crossref_primary_10_3390_photonics9020093 crossref_primary_10_1016_j_aei_2024_102947 crossref_primary_10_1016_j_scs_2021_103075 crossref_primary_10_1016_j_dajour_2023_100251 crossref_primary_10_1007_s00500_024_09879_6 crossref_primary_10_1007_s42835_023_01623_8 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_1016_j_cie_2022_108032 |
| Cites_doi | 10.1016/j.eswa.2019.113052 10.1016/j.swevo.2017.04.008 10.1016/j.ins.2011.11.025 10.1007/s10898-017-0589-7 10.1007/s10898-018-0673-7 10.1002/tal.1550 10.1016/j.cad.2010.12.015 10.1016/j.swevo.2018.10.011 10.3233/FI-2017-1487 10.1016/j.asoc.2017.06.044 10.1038/44831 10.1007/BF00941892 10.1016/j.ins.2017.10.039 10.2307/3001968 10.1080/00031305.1998.10480559 10.1016/j.swevo.2018.06.006 10.3390/math8050785 10.1016/j.swevo.2017.12.006 10.1016/j.swevo.2017.12.007 10.1016/j.eswa.2014.06.032 10.1007/s10898-007-9149-x 10.1080/00207721.2015.1010748 10.1504/IJBIC.2010.032124 10.1016/j.swevo.2016.02.001 10.1023/A:1017930332101 10.1016/j.amc.2017.05.014 10.1016/j.advengsoft.2014.09.014 10.1038/s41598-017-18940-4 10.1016/j.cnsns.2014.08.026 10.1016/j.asoc.2019.105576 10.3390/e18030077 10.1007/s00500-013-1106-7 10.1016/j.swevo.2015.09.006 10.1016/j.swevo.2017.05.006 10.1016/j.swevo.2017.05.002 10.1007/s00500-008-0392-y |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113902 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113902 S0957417420306989 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c372t-5994f641f3398faa7c0a588529ae6a036eea3be8f7d8cb01a0f76b37b24927cc3 |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602356300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 30 04:30:25 EST 2025 Sat Nov 29 07:06:18 EST 2025 Tue Nov 18 20:55:30 EST 2025 Fri Feb 23 02:46:02 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence Jaya Continuous optimization Lévy flight |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-5994f641f3398faa7c0a588529ae6a036eea3be8f7d8cb01a0f76b37b24927cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/11572/273762 |
| PQID | 2487169885 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2487169885 crossref_primary_10_1016_j_eswa_2020_113902 crossref_citationtrail_10_1016_j_eswa_2020_113902 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113902 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Tighzert, Fonlupt, Mendil (b53) 2018; 40 Hariya, Kurihara, Shindo, Jin’no (b16) 2015 Sergeyev, Kvasov, Mukhametzhanov (b50) 2018; 8 Sergeyev, Kvasov (b49) 2015; 21 Kennedy (b25) 2010 Yang, Deb (b64) 2009 Poláková, Tvrdík, Bujok (b43) 2014 Piotrowski, Napiorkowski (b42) 2018; 427 Caraffini, Neri, Passow, Iacca (b5) 2013; 17 Rao, Saroj (b47) 2017; 37 Garcia, Fernandez, Luengo, Herrera (b14) 2008; 13 Zhang, Yang, Cattani, Rao, Wang, Phillips (b68) 2016; 18 Liang, Qu, Suganthan (b30) 2013 Majumder, Laha (b32) 2016; 28 Mallipeddi, Wu, Lee, Suganthan (b33) 2014 Chen, Zheng, Liu, Xie (b7) 2014 Wang, Guo, Gandomi (b56) 2013 Hintze, Nelson (b18) 1998; 52 Nguyen, Vo (b37) 2017; 37 Wang, Rao, Chen, Zhang, Liu, Wei (b58) 2017; 151 Lera, Sergeyev (b28) 2018; 71 Gao, Zhang, Sadollah, Lentzakis, Su (b13) 2017; 37 Wilcoxon (b59) 1945; 1 Viswanathan, Buldyrev, Havlin, Da Luz, Raposo, Stanley (b55) 1999; 401 Heidari, Pahlavani (b17) 2017; 60 Iacca, Neri, Mininno, Ong, Lim (b21) 2012; 188 Hare, Loeppky, Xie (b15) 2018; 72 Paulavičius, Sergeyev, Kvasov, Žilinskas (b40) 2020; 144 Preux, Munos, Valko (b44) 2014 Opara, Arabas (b38) 2018; 39 Yu, Kelley, Zheng, Tan (b66) 2014 Kvasov, Sergeyev (b27) 2015; 80 Rao (b46) 2016; 7 Yang (b63) 2012 de Melo, Iacca (b34) 2014; 41 Rao, Savsani, Vakharia (b48) 2011; 43 Zhang, Xie, Bi (b67) 2004 Zhigljavsky, Zilinskas (b69) 2007 Tanabe, Fukunaga (b52) 2014 Wang, Nguyen, Li, Jenkinson, Yang, Kavakeb (b57) 2019; 44 Sharma, Bansal, Arya, Yang (b51) 2016; 47 Karaboga, Basturk (b24) 2007; 39 Paulavičius, Žilinskas (b41) 2014 Yashesh, Deb, Bandaru (b65) 2014 Kalantzis, Shang, Lei, Leventouri (b23) 2016; 26 Hu, Bao, Xiong (b20) 2014 Gablonsky, Kelley (b12) 2001; 21 Jones, Perttunen, Stuckman (b22) 1993; 79 Molina, Lacroix, Herrera (b35) 2014 Bujok, Tvrdík, Poláková (b3) 2014 Gablonsky (b11) 2001 Xu, Huang, Ye (b60) 2014 Li, Shang, Qu, Liang (b29) 2014 Bekdaş (b2) 2019; 28 Caraffini, Iacca (b4) 2020; 8 Erlich, Rueda, Wildenhues, Shewarega (b10) 2014 Pandey, Verma, Kumar (b39) 2019; 44 Maia, de Castro, Caminhas (b31) 2014 Aslan, Gunduz, Kiran (b1) 2019; 82 Das, Suganthan (b8) 2010 Qu, Liang, Xiao, Shang (b45) 2014 Tran, Nguyen, Nguyen (b54) 2014 Yang (b62) 2010; 2 Neri, Iacca, Mininno (b36) 2013 Yang (b61) 2010 Elsayed, Sarker, Essam, Hamza (b9) 2014 Kvasov, Mukhametzhanov (b26) 2018; 318 Holm (b19) 1979; 6 Chechkin, Metzler, Klafter, Gonchar (b6) 2008 Qu (10.1016/j.eswa.2020.113902_b45) 2014 Gablonsky (10.1016/j.eswa.2020.113902_b11) 2001 Bujok (10.1016/j.eswa.2020.113902_b3) 2014 Chen (10.1016/j.eswa.2020.113902_b7) 2014 Rao (10.1016/j.eswa.2020.113902_b47) 2017; 37 Jones (10.1016/j.eswa.2020.113902_b22) 1993; 79 Nguyen (10.1016/j.eswa.2020.113902_b37) 2017; 37 Hare (10.1016/j.eswa.2020.113902_b15) 2018; 72 Wang (10.1016/j.eswa.2020.113902_b56) 2013 Elsayed (10.1016/j.eswa.2020.113902_b9) 2014 Kvasov (10.1016/j.eswa.2020.113902_b26) 2018; 318 Zhang (10.1016/j.eswa.2020.113902_b68) 2016; 18 Caraffini (10.1016/j.eswa.2020.113902_b4) 2020; 8 Hu (10.1016/j.eswa.2020.113902_b20) 2014 Karaboga (10.1016/j.eswa.2020.113902_b24) 2007; 39 Wang (10.1016/j.eswa.2020.113902_b57) 2019; 44 Sharma (10.1016/j.eswa.2020.113902_b51) 2016; 47 Tran (10.1016/j.eswa.2020.113902_b54) 2014 de Melo (10.1016/j.eswa.2020.113902_b34) 2014; 41 Yang (10.1016/j.eswa.2020.113902_b63) 2012 Bekdaş (10.1016/j.eswa.2020.113902_b2) 2019; 28 Kalantzis (10.1016/j.eswa.2020.113902_b23) 2016; 26 Neri (10.1016/j.eswa.2020.113902_b36) 2013 Liang (10.1016/j.eswa.2020.113902_b30) 2013 Paulavičius (10.1016/j.eswa.2020.113902_b40) 2020; 144 Yu (10.1016/j.eswa.2020.113902_b66) 2014 Rao (10.1016/j.eswa.2020.113902_b46) 2016; 7 Li (10.1016/j.eswa.2020.113902_b29) 2014 Gao (10.1016/j.eswa.2020.113902_b13) 2017; 37 Erlich (10.1016/j.eswa.2020.113902_b10) 2014 Sergeyev (10.1016/j.eswa.2020.113902_b49) 2015; 21 Das (10.1016/j.eswa.2020.113902_b8) 2010 Kvasov (10.1016/j.eswa.2020.113902_b27) 2015; 80 Viswanathan (10.1016/j.eswa.2020.113902_b55) 1999; 401 Iacca (10.1016/j.eswa.2020.113902_b21) 2012; 188 Yang (10.1016/j.eswa.2020.113902_b62) 2010; 2 Chechkin (10.1016/j.eswa.2020.113902_b6) 2008 Majumder (10.1016/j.eswa.2020.113902_b32) 2016; 28 Paulavičius (10.1016/j.eswa.2020.113902_b41) 2014 Xu (10.1016/j.eswa.2020.113902_b60) 2014 Molina (10.1016/j.eswa.2020.113902_b35) 2014 Yashesh (10.1016/j.eswa.2020.113902_b65) 2014 Garcia (10.1016/j.eswa.2020.113902_b14) 2008; 13 Aslan (10.1016/j.eswa.2020.113902_b1) 2019; 82 Hintze (10.1016/j.eswa.2020.113902_b18) 1998; 52 Rao (10.1016/j.eswa.2020.113902_b48) 2011; 43 Tighzert (10.1016/j.eswa.2020.113902_b53) 2018; 40 Gablonsky (10.1016/j.eswa.2020.113902_b12) 2001; 21 Yang (10.1016/j.eswa.2020.113902_b64) 2009 Tanabe (10.1016/j.eswa.2020.113902_b52) 2014 Holm (10.1016/j.eswa.2020.113902_b19) 1979; 6 Maia (10.1016/j.eswa.2020.113902_b31) 2014 Pandey (10.1016/j.eswa.2020.113902_b39) 2019; 44 Wang (10.1016/j.eswa.2020.113902_b58) 2017; 151 Poláková (10.1016/j.eswa.2020.113902_b43) 2014 Piotrowski (10.1016/j.eswa.2020.113902_b42) 2018; 427 Sergeyev (10.1016/j.eswa.2020.113902_b50) 2018; 8 Wilcoxon (10.1016/j.eswa.2020.113902_b59) 1945; 1 Zhigljavsky (10.1016/j.eswa.2020.113902_b69) 2007 Caraffini (10.1016/j.eswa.2020.113902_b5) 2013; 17 Heidari (10.1016/j.eswa.2020.113902_b17) 2017; 60 Hariya (10.1016/j.eswa.2020.113902_b16) 2015 Yang (10.1016/j.eswa.2020.113902_b61) 2010 Lera (10.1016/j.eswa.2020.113902_b28) 2018; 71 Zhang (10.1016/j.eswa.2020.113902_b67) 2004 Kennedy (10.1016/j.eswa.2020.113902_b25) 2010 Opara (10.1016/j.eswa.2020.113902_b38) 2018; 39 Mallipeddi (10.1016/j.eswa.2020.113902_b33) 2014 Preux (10.1016/j.eswa.2020.113902_b44) 2014 |
| References_xml | – volume: 188 start-page: 17 year: 2012 end-page: 43 ident: b21 article-title: Ockham’s Razor in memetic computing: Three stage optimal memetic exploration publication-title: Information Sciences – start-page: 431 year: 2008 end-page: 451 ident: b6 article-title: Introduction to the theory of Lévy flights publication-title: Anomalous transport: Foundations and applications – volume: 13 start-page: 959 year: 2008 end-page: 977 ident: b14 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Computing – volume: 80 start-page: 58 year: 2015 end-page: 66 ident: b27 article-title: Deterministic approaches for solving practical black-box global optimization problems publication-title: Advances in Engineering Software – volume: 44 start-page: 1003 year: 2019 end-page: 1017 ident: b57 article-title: Optimising discrete dynamic berth allocations in seaports using a Lévy flight based meta-heuristic publication-title: Swarm and Evolutionary Computation – volume: 37 start-page: 73 year: 2017 end-page: 89 ident: b37 article-title: Modified cuckoo search algorithm for multiobjective short-term hydrothermal scheduling publication-title: Swarm and Evolutionary Computation – start-page: 209 year: 2010 end-page: 218 ident: b61 article-title: Firefly algorithm, Lévy flights and global optimization publication-title: Research and development in intelligent systems XXVI – start-page: 2307 year: 2004 end-page: 2311 ident: b67 article-title: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space publication-title: IEEE congress on evolutionary computation (CEC), Vol. 2 – volume: 41 start-page: 7077 year: 2014 end-page: 7094 ident: b34 article-title: A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization publication-title: Expert Systems with Applications – start-page: 2259 year: 2014 end-page: 2265 ident: b20 article-title: Partial opposition-based adaptive differential evolution algorithms: evaluation on the CEC 2014 benchmark set for real-parameter optimization publication-title: IEEE congress on evolutionary computation (CEC) – volume: 79 start-page: 157 year: 1993 end-page: 181 ident: b22 article-title: Lipschitzian optimization without the Lipschitz constant publication-title: Journal of Optimization Theory and Applications – start-page: 2649 year: 2014 end-page: 2655 ident: b31 article-title: Real-parameter optimization with OptBees publication-title: IEEE congress on evolutionary computation (CEC) – volume: 151 start-page: 191 year: 2017 end-page: 211 ident: b58 article-title: Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm publication-title: Fundamenta Informaticae – start-page: 3238 year: 2014 end-page: 3245 ident: b66 article-title: Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems publication-title: IEEE congress on evolutionary computation (CEC) – volume: 71 start-page: 193 year: 2018 end-page: 211 ident: b28 article-title: GOSH: derivative-free global optimization using multi-dimensional space-filling curves publication-title: Journal of Global Optimization – start-page: 2672 year: 2014 end-page: 2677 ident: b7 article-title: An evolutionary algorithm based on covariance matrix leaning and searching preference for solving CEC 2014 benchmark problems publication-title: IEEE congress on evolutionary computation (CEC) – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b17 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Applied Soft Computing – start-page: 1625 year: 2014 end-page: 1632 ident: b10 article-title: Evaluating the mean-variance mapping optimization on the CEC 2014 test suite publication-title: IEEE congress on evolutionary computation (CEC) – volume: 427 start-page: 32 year: 2018 end-page: 62 ident: b42 article-title: Some metaheuristics should be simplified publication-title: Information Sciences – start-page: 2237 year: 2014 end-page: 2244 ident: b65 article-title: Non-uniform mapping in real-coded genetic algorithms publication-title: IEEE congress on evolutionary computation (CEC) – volume: 37 start-page: 1 year: 2017 end-page: 26 ident: b47 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm and Evolutionary Computation – volume: 21 start-page: 99 year: 2015 end-page: 111 ident: b49 article-title: A deterministic global optimization using smooth diagonal auxiliary functions publication-title: Communications in Nonlinear Science – volume: 401 start-page: 911 year: 1999 ident: b55 article-title: Optimizing the success of random searches publication-title: Nature – volume: 37 start-page: 58 year: 2017 end-page: 72 ident: b13 article-title: Jaya, harmony search and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem publication-title: Swarm and Evolutionary Computation – volume: 47 start-page: 2652 year: 2016 end-page: 2670 ident: b51 article-title: Lévy flight artificial bee colony algorithm publication-title: International Journal of Systems Science – volume: 44 start-page: 470 year: 2019 end-page: 479 ident: b39 article-title: Nature inspired power optimization in smartphones publication-title: Swarm and Evolutionary Computation – start-page: 2230 year: 2014 end-page: 2236 ident: b43 article-title: Controlled restart in differential evolution applied to CEC 2014 benchmark functions publication-title: IEEE congress on evolutionary computation (CEC) – volume: 8 start-page: 785 year: 2020 ident: b4 article-title: The SOS platform: designing, tuning and statistically benchmarking optimisation algorithms publication-title: Mathematics – volume: 40 start-page: 92 year: 2018 end-page: 115 ident: b53 article-title: A set of new compact firefly algorithms publication-title: Swarm and Evolutionary Computation – volume: 17 start-page: 2235 year: 2013 end-page: 2256 ident: b5 article-title: Re-sampled inheritance search: high performance despite the simplicity publication-title: Soft Computing – start-page: 1650 year: 2014 end-page: 1657 ident: b9 article-title: Testing united multi-operator evolutionary algorithms on the CEC 2014 real-parameter numerical optimization publication-title: IEEE congress on evolutionary computation (CEC) – start-page: 2266 year: 2014 end-page: 2273 ident: b45 article-title: Memetic differential evolution based on fitness Euclidean-distance ratio publication-title: IEEE congress on evolutionary computation (CEC) – year: 2014 ident: b41 article-title: Simplicial global optimization – start-page: 337 year: 2013 end-page: 364 ident: b36 article-title: Compact optimization publication-title: Handbook of optimization: From classical to modern approach – start-page: 1658 year: 2014 end-page: 1665 ident: b52 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: IEEE congress on evolutionary computation (CEC) – start-page: 210 year: 2009 end-page: 214 ident: b64 article-title: Cuckoo search via Lévy flights publication-title: World congress on nature biologically inspired computing (NaBIC) – start-page: 2678 year: 2015 end-page: 2684 ident: b16 article-title: Lévy flight PSO publication-title: IEEE congress on evolutionary computation (CEC) – start-page: 1617 year: 2014 end-page: 1624 ident: b60 article-title: A differential evolution with replacement strategy for real-parameter numerical optimization publication-title: IEEE congress on evolutionary computation (CEC) – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b24 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization – year: 2001 ident: b11 article-title: Modifications of the DIRECT algorithm – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: b50 article-title: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget publication-title: Scientific Reports – start-page: 2253 year: 2014 end-page: 2258 ident: b3 article-title: Differential evolution with rotation-invariant mutation and competing-strategies adaptation publication-title: IEEE congress on evolutionary computation (CEC) – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: b46 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: International Journal of Industrial Engineering Computations – volume: 82 year: 2019 ident: b1 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Applied Soft Computing – start-page: 760 year: 2010 end-page: 766 ident: b25 article-title: Particle swarm optimization publication-title: Encyclopedia of machine learning – year: 2014 ident: b54 article-title: Global optimization using Lévy flights – start-page: 341 year: 2010 end-page: 359 ident: b8 article-title: Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b48 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer Aided Design – volume: 144 year: 2020 ident: b40 article-title: Globally-biased BIRECT algorithm with local accelerators for expensive global optimization publication-title: Expert Systems with Applications – start-page: 2245 year: 2014 end-page: 2252 ident: b44 article-title: Bandits attack function optimization publication-title: IEEE congress on evolutionary computation (CEC) – volume: 52 start-page: 181 year: 1998 end-page: 184 ident: b18 article-title: Violin plots: a box plot-density trace synergism publication-title: American Statistician – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b59 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bulletin – year: 2013 ident: b30 article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization – start-page: 1454 year: 2014 end-page: 1460 ident: b29 article-title: Differential evolution strategy based on the constraint of fitness values classification publication-title: IEEE congress on evolutionary computation (CEC) – start-page: 1760 year: 2014 end-page: 1767 ident: b33 article-title: Gaussian adaptation based parameter adaptation for differential evolution publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 6 start-page: 65 year: 1979 end-page: 70 ident: b19 article-title: A simple sequentially rejective multiple test procedure publication-title: Scandinavian Journal of Statistics – volume: 72 start-page: 781 year: 2018 end-page: 801 ident: b15 article-title: Methods to compare expensive stochastic optimization algorithms with random restarts publication-title: Journal of Global Optimization – start-page: 1633 year: 2014 end-page: 1640 ident: b35 article-title: Influence of regions on the memetic algorithm for the CEC 2014 special session on real-parameter single objective optimisation publication-title: IEEE congress on evolutionary computation (CEC) – volume: 18 year: 2016 ident: b68 article-title: Tea category identification using a novel fractional fourier entropy and Jaya algorithm publication-title: Entropy – volume: 28 year: 2019 ident: b2 article-title: Optimum design of post-tensioned axially symmetric cylindrical walls using novel hybrid metaheuristic methods publication-title: The Structural Design of Tall and Special Buildings – volume: 26 start-page: 191 year: 2016 end-page: 201 ident: b23 article-title: Investigations of a GPU-based Lévy-firefly algorithm for constrained optimization of radiation therapy treatment planning publication-title: Swarm and Evolutionary Computation – volume: 39 start-page: 53 year: 2018 end-page: 69 ident: b38 article-title: Comparison of mutation strategies in differential evolution – A probabilistic perspective publication-title: Swarm and Evolutionary Computation – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b62 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-Inspired Computing – volume: 318 start-page: 245 year: 2018 end-page: 259 ident: b26 article-title: Metaheuristic vs. deterministic global optimization algorithms: The univariate case publication-title: Applied Mathematics and Computation – volume: 28 start-page: 131 year: 2016 end-page: 143 ident: b32 article-title: A new cuckoo search algorithm for 2-machine robotic cell scheduling problem with sequence-dependent setup times publication-title: Swarm and Evolutionary Computation – start-page: 240 year: 2012 end-page: 249 ident: b63 article-title: Flower pollination algorithm for global optimization publication-title: International conference on unconventional computation and natural computation (UCNC) – year: 2013 ident: b56 article-title: Lévy-flight krill herd algorithm publication-title: Mathematical Problems in Engineering – year: 2007 ident: b69 article-title: Stochastic global optimization, Vol. 9 – volume: 21 start-page: 27 year: 2001 end-page: 37 ident: b12 article-title: A locally-biased form of the DIRECT algorithm publication-title: Journal of Global Optimization – volume: 144 year: 2020 ident: 10.1016/j.eswa.2020.113902_b40 article-title: Globally-biased BIRECT algorithm with local accelerators for expensive global optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113052 – start-page: 2230 year: 2014 ident: 10.1016/j.eswa.2020.113902_b43 article-title: Controlled restart in differential evolution applied to CEC 2014 benchmark functions – volume: 37 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2020.113902_b47 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.04.008 – volume: 188 start-page: 17 year: 2012 ident: 10.1016/j.eswa.2020.113902_b21 article-title: Ockham’s Razor in memetic computing: Three stage optimal memetic exploration publication-title: Information Sciences doi: 10.1016/j.ins.2011.11.025 – start-page: 2307 year: 2004 ident: 10.1016/j.eswa.2020.113902_b67 article-title: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space – volume: 71 start-page: 193 issue: 1 year: 2018 ident: 10.1016/j.eswa.2020.113902_b28 article-title: GOSH: derivative-free global optimization using multi-dimensional space-filling curves publication-title: Journal of Global Optimization doi: 10.1007/s10898-017-0589-7 – start-page: 1658 year: 2014 ident: 10.1016/j.eswa.2020.113902_b52 article-title: Improving the search performance of SHADE using linear population size reduction – year: 2001 ident: 10.1016/j.eswa.2020.113902_b11 – year: 2013 ident: 10.1016/j.eswa.2020.113902_b56 article-title: Lévy-flight krill herd algorithm publication-title: Mathematical Problems in Engineering – volume: 72 start-page: 781 issue: 4 year: 2018 ident: 10.1016/j.eswa.2020.113902_b15 article-title: Methods to compare expensive stochastic optimization algorithms with random restarts publication-title: Journal of Global Optimization doi: 10.1007/s10898-018-0673-7 – volume: 6 start-page: 65 issue: 2 year: 1979 ident: 10.1016/j.eswa.2020.113902_b19 article-title: A simple sequentially rejective multiple test procedure publication-title: Scandinavian Journal of Statistics – start-page: 1633 year: 2014 ident: 10.1016/j.eswa.2020.113902_b35 article-title: Influence of regions on the memetic algorithm for the CEC 2014 special session on real-parameter single objective optimisation – volume: 28 issue: 1 year: 2019 ident: 10.1016/j.eswa.2020.113902_b2 article-title: Optimum design of post-tensioned axially symmetric cylindrical walls using novel hybrid metaheuristic methods publication-title: The Structural Design of Tall and Special Buildings doi: 10.1002/tal.1550 – start-page: 2678 year: 2015 ident: 10.1016/j.eswa.2020.113902_b16 article-title: Lévy flight PSO – year: 2013 ident: 10.1016/j.eswa.2020.113902_b30 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.113902_b48 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer Aided Design doi: 10.1016/j.cad.2010.12.015 – start-page: 431 year: 2008 ident: 10.1016/j.eswa.2020.113902_b6 article-title: Introduction to the theory of Lévy flights – volume: 44 start-page: 1003 year: 2019 ident: 10.1016/j.eswa.2020.113902_b57 article-title: Optimising discrete dynamic berth allocations in seaports using a Lévy flight based meta-heuristic publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.10.011 – start-page: 1650 year: 2014 ident: 10.1016/j.eswa.2020.113902_b9 article-title: Testing united multi-operator evolutionary algorithms on the CEC 2014 real-parameter numerical optimization – volume: 151 start-page: 191 issue: 1–4 year: 2017 ident: 10.1016/j.eswa.2020.113902_b58 article-title: Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm publication-title: Fundamenta Informaticae doi: 10.3233/FI-2017-1487 – start-page: 2237 year: 2014 ident: 10.1016/j.eswa.2020.113902_b65 article-title: Non-uniform mapping in real-coded genetic algorithms – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.eswa.2020.113902_b17 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.06.044 – start-page: 3238 year: 2014 ident: 10.1016/j.eswa.2020.113902_b66 article-title: Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems – volume: 401 start-page: 911 issue: 6756 year: 1999 ident: 10.1016/j.eswa.2020.113902_b55 article-title: Optimizing the success of random searches publication-title: Nature doi: 10.1038/44831 – volume: 79 start-page: 157 issue: 1 year: 1993 ident: 10.1016/j.eswa.2020.113902_b22 article-title: Lipschitzian optimization without the Lipschitz constant publication-title: Journal of Optimization Theory and Applications doi: 10.1007/BF00941892 – year: 2007 ident: 10.1016/j.eswa.2020.113902_b69 – start-page: 2253 year: 2014 ident: 10.1016/j.eswa.2020.113902_b3 article-title: Differential evolution with rotation-invariant mutation and competing-strategies adaptation – volume: 427 start-page: 32 year: 2018 ident: 10.1016/j.eswa.2020.113902_b42 article-title: Some metaheuristics should be simplified publication-title: Information Sciences doi: 10.1016/j.ins.2017.10.039 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.eswa.2020.113902_b59 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bulletin doi: 10.2307/3001968 – volume: 52 start-page: 181 issue: 2 year: 1998 ident: 10.1016/j.eswa.2020.113902_b18 article-title: Violin plots: a box plot-density trace synergism publication-title: American Statistician doi: 10.1080/00031305.1998.10480559 – start-page: 240 year: 2012 ident: 10.1016/j.eswa.2020.113902_b63 article-title: Flower pollination algorithm for global optimization – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2020.113902_b64 article-title: Cuckoo search via Lévy flights – start-page: 760 year: 2010 ident: 10.1016/j.eswa.2020.113902_b25 article-title: Particle swarm optimization – start-page: 337 year: 2013 ident: 10.1016/j.eswa.2020.113902_b36 article-title: Compact optimization – year: 2014 ident: 10.1016/j.eswa.2020.113902_b54 – start-page: 1617 year: 2014 ident: 10.1016/j.eswa.2020.113902_b60 article-title: A differential evolution with replacement strategy for real-parameter numerical optimization – volume: 44 start-page: 470 year: 2019 ident: 10.1016/j.eswa.2020.113902_b39 article-title: Nature inspired power optimization in smartphones publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.06.006 – volume: 8 start-page: 785 issue: 5 year: 2020 ident: 10.1016/j.eswa.2020.113902_b4 article-title: The SOS platform: designing, tuning and statistically benchmarking optimisation algorithms publication-title: Mathematics doi: 10.3390/math8050785 – volume: 40 start-page: 92 year: 2018 ident: 10.1016/j.eswa.2020.113902_b53 article-title: A set of new compact firefly algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.12.006 – volume: 39 start-page: 53 year: 2018 ident: 10.1016/j.eswa.2020.113902_b38 article-title: Comparison of mutation strategies in differential evolution – A probabilistic perspective publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.12.007 – start-page: 1454 year: 2014 ident: 10.1016/j.eswa.2020.113902_b29 article-title: Differential evolution strategy based on the constraint of fitness values classification – volume: 41 start-page: 7077 issue: 16 year: 2014 ident: 10.1016/j.eswa.2020.113902_b34 article-title: A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.06.032 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.eswa.2020.113902_b24 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 47 start-page: 2652 issue: 11 year: 2016 ident: 10.1016/j.eswa.2020.113902_b51 article-title: Lévy flight artificial bee colony algorithm publication-title: International Journal of Systems Science doi: 10.1080/00207721.2015.1010748 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.eswa.2020.113902_b62 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-Inspired Computing doi: 10.1504/IJBIC.2010.032124 – volume: 28 start-page: 131 year: 2016 ident: 10.1016/j.eswa.2020.113902_b32 article-title: A new cuckoo search algorithm for 2-machine robotic cell scheduling problem with sequence-dependent setup times publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2016.02.001 – start-page: 1760 year: 2014 ident: 10.1016/j.eswa.2020.113902_b33 article-title: Gaussian adaptation based parameter adaptation for differential evolution – start-page: 209 year: 2010 ident: 10.1016/j.eswa.2020.113902_b61 article-title: Firefly algorithm, Lévy flights and global optimization – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.eswa.2020.113902_b46 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: International Journal of Industrial Engineering Computations – start-page: 2649 year: 2014 ident: 10.1016/j.eswa.2020.113902_b31 article-title: Real-parameter optimization with OptBees – volume: 21 start-page: 27 issue: 1 year: 2001 ident: 10.1016/j.eswa.2020.113902_b12 article-title: A locally-biased form of the DIRECT algorithm publication-title: Journal of Global Optimization doi: 10.1023/A:1017930332101 – volume: 318 start-page: 245 year: 2018 ident: 10.1016/j.eswa.2020.113902_b26 article-title: Metaheuristic vs. deterministic global optimization algorithms: The univariate case publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2017.05.014 – start-page: 2672 year: 2014 ident: 10.1016/j.eswa.2020.113902_b7 article-title: An evolutionary algorithm based on covariance matrix leaning and searching preference for solving CEC 2014 benchmark problems – start-page: 2259 year: 2014 ident: 10.1016/j.eswa.2020.113902_b20 article-title: Partial opposition-based adaptive differential evolution algorithms: evaluation on the CEC 2014 benchmark set for real-parameter optimization – start-page: 1625 year: 2014 ident: 10.1016/j.eswa.2020.113902_b10 article-title: Evaluating the mean-variance mapping optimization on the CEC 2014 test suite – volume: 80 start-page: 58 year: 2015 ident: 10.1016/j.eswa.2020.113902_b27 article-title: Deterministic approaches for solving practical black-box global optimization problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2014.09.014 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eswa.2020.113902_b50 article-title: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget publication-title: Scientific Reports doi: 10.1038/s41598-017-18940-4 – volume: 21 start-page: 99 issue: 1–3 year: 2015 ident: 10.1016/j.eswa.2020.113902_b49 article-title: A deterministic global optimization using smooth diagonal auxiliary functions publication-title: Communications in Nonlinear Science doi: 10.1016/j.cnsns.2014.08.026 – volume: 82 year: 2019 ident: 10.1016/j.eswa.2020.113902_b1 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105576 – start-page: 2245 year: 2014 ident: 10.1016/j.eswa.2020.113902_b44 article-title: Bandits attack function optimization – volume: 18 issue: 3 year: 2016 ident: 10.1016/j.eswa.2020.113902_b68 article-title: Tea category identification using a novel fractional fourier entropy and Jaya algorithm publication-title: Entropy doi: 10.3390/e18030077 – year: 2014 ident: 10.1016/j.eswa.2020.113902_b41 – volume: 17 start-page: 2235 issue: 12 year: 2013 ident: 10.1016/j.eswa.2020.113902_b5 article-title: Re-sampled inheritance search: high performance despite the simplicity publication-title: Soft Computing doi: 10.1007/s00500-013-1106-7 – volume: 26 start-page: 191 year: 2016 ident: 10.1016/j.eswa.2020.113902_b23 article-title: Investigations of a GPU-based Lévy-firefly algorithm for constrained optimization of radiation therapy treatment planning publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2015.09.006 – volume: 37 start-page: 73 year: 2017 ident: 10.1016/j.eswa.2020.113902_b37 article-title: Modified cuckoo search algorithm for multiobjective short-term hydrothermal scheduling publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.05.006 – start-page: 2266 year: 2014 ident: 10.1016/j.eswa.2020.113902_b45 article-title: Memetic differential evolution based on fitness Euclidean-distance ratio – volume: 37 start-page: 58 year: 2017 ident: 10.1016/j.eswa.2020.113902_b13 article-title: Jaya, harmony search and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.05.002 – start-page: 341 year: 2010 ident: 10.1016/j.eswa.2020.113902_b8 – volume: 13 start-page: 959 issue: 10 year: 2008 ident: 10.1016/j.eswa.2020.113902_b14 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Computing doi: 10.1007/s00500-008-0392-y |
| SSID | ssj0017007 |
| Score | 2.62672 |
| Snippet | Recent advances in metaheuristics have shown the advantages of using the Lévy distribution, which models a kind of random walk (named “Lévy flight”) with... Recent advances in metaheuristics have shown the advantages of using the Lévy distribution, which models a kind of random walk (named "Lévy flight") with... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113902 |
| SubjectTerms | Algorithms Benchmarks Continuous optimization Jaya Levy distribution Lévy flight Optimization Optimization algorithms Random walk Swarm intelligence |
| Title | An improved Jaya optimization algorithm with Lévy flight |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113902 https://www.proquest.com/docview/2487169885 |
| Volume | 165 |
| WOSCitedRecordID | wos000602356300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGKQs2vFFbCsqCXRQ04zwcL0elCEZVhUQZzS5yHAdSpc4oSUPnk_od_BjXsR1mBrWiCzZRlDiW5XNyfX19Hwi9YxwWAh4ID35C2KBEGfYoqPpwF-RBNglUCvC-2AQ5O4uXS_plNFrZWJiuJFLG19d09V-hhmcAtgqdvQfcQ6fwAO4BdLgC7HD9J-BnUoU-1lUHquScrZlbgVS4NOGWLiu_V3XR_rjUFthTfVDerd28VNv0LUO9yoLcmlzPNgpu47x7YBUDfHr7unJslbKwL7Kqcb-qIsWNO7-ShTYMLMreIb92j2FVrmzThVAFFdwMhIzQh0GLQvZj-8CLbdsE3nDOGoyMxAO8gy15G4UbEnMKKmgfc_23MNd2hYv3ovmpMkThvgCNabydOXtnRRv8DK0L20Wi-khUH4nu4wHawySk8RjtzT6fLOfDyROZ6BB7O3ITaKV9AndHcpsys7Os97rK-VP02GwynJkmxzM0EvI5emILeDhGnr9AdCYdyxVHccXZ5IozcMVR2Dunv266taN58hJ9-3hyfvzJM7U0PO4T3HohpUEeBdPc92mcM0b4hIVxHGLKRMRAjRGC-amIc5LFPJ1M2SQnUeqTVGWUJJz7r9BYVlLsI4cSGmeEcNyrs2lKUwa9YsxFmBFKyQGa2klJuEk0r-qdlMntcBwgd_hmpdOs3Nk6tHOdGEVRK4AJUOfO744sMIn5Y5sEB8pmQGEuDu81iNfo0R_KH6FxW1-JN-gh79qiqd8aWv0GSyCSFw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Jaya+optimization+algorithm+with+L%C3%A9vy+flight&rft.jtitle=Expert+systems+with+applications&rft.au=Iacca%2C+Giovanni&rft.au=dos+Santos+Junior%2C+Vlademir+Celso&rft.au=Veloso+de+Melo%2C+Vin%C3%ADcius&rft.date=2021-03-01&rft.issn=0957-4174&rft.volume=165&rft.spage=113902&rft_id=info:doi/10.1016%2Fj.eswa.2020.113902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113902 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |