Micromechanical analysis of the effective stiffness of poroelastic composites

Within this work we investigate the role that the microstructure of a poroelastic material has on the resulting elastic parameters. We are considering the effect that multiple elastic and fluid phases at the same scale (LMRP model (L. Miller and R. Penta, 2020)) have on the estimation of the materia...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids Vol. 98; p. 104875
Main Authors: Miller, Laura, Penta, Raimondo
Format: Journal Article
Language:English
Published: Elsevier Masson SAS 01.03.2023
Subjects:
ISSN:0997-7538, 1873-7285
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Within this work we investigate the role that the microstructure of a poroelastic material has on the resulting elastic parameters. We are considering the effect that multiple elastic and fluid phases at the same scale (LMRP model (L. Miller and R. Penta, 2020)) have on the estimation of the materials elastic parameters when compared with a standard poroelastic approach. We present a summary of both the LMRP model and the comparable standard poroelastic approach both derived via the asymptotic homogenization approach. We provide the 3D periodic cell problems with associated boundary loads that are required to be solved to obtain the effective elasticity tensor for both model setups. We then perform a 2D reduction of the cell problems, again presenting the 2D boundary loads that are required to solve the problems numerically. The results of our numerical simulations show that whenever investigating a poroelastic composite material with porosity exceeding 5% then the LMRP model should be considered more appropriate in incorporating the structural details in the Young’s moduli E1 and E3 and the shear C44. Whenever the porosity exceeds 20% it should also be used to investigate the shear C66. We find that for materials with less than 5% porosity that the voids are so small that a standard poroelastic approach or the LMRP model produce the same results. •A widely applicable computational platform for poroelastic composites is presented.•The 3D to 2D model reduction is presented in detail.•The effect of both fluid and solid phases at the same scale is encoded in the coefficients.•The LMRP model should be considered over standard poroelasticity for porosity > 5%.•The LMRP model should be considered over standard poroelasticity for inhomogeneities.
AbstractList Within this work we investigate the role that the microstructure of a poroelastic material has on the resulting elastic parameters. We are considering the effect that multiple elastic and fluid phases at the same scale (LMRP model (L. Miller and R. Penta, 2020)) have on the estimation of the materials elastic parameters when compared with a standard poroelastic approach. We present a summary of both the LMRP model and the comparable standard poroelastic approach both derived via the asymptotic homogenization approach. We provide the 3D periodic cell problems with associated boundary loads that are required to be solved to obtain the effective elasticity tensor for both model setups. We then perform a 2D reduction of the cell problems, again presenting the 2D boundary loads that are required to solve the problems numerically. The results of our numerical simulations show that whenever investigating a poroelastic composite material with porosity exceeding 5% then the LMRP model should be considered more appropriate in incorporating the structural details in the Young’s moduli E1 and E3 and the shear C44. Whenever the porosity exceeds 20% it should also be used to investigate the shear C66. We find that for materials with less than 5% porosity that the voids are so small that a standard poroelastic approach or the LMRP model produce the same results. •A widely applicable computational platform for poroelastic composites is presented.•The 3D to 2D model reduction is presented in detail.•The effect of both fluid and solid phases at the same scale is encoded in the coefficients.•The LMRP model should be considered over standard poroelasticity for porosity > 5%.•The LMRP model should be considered over standard poroelasticity for inhomogeneities.
ArticleNumber 104875
Author Miller, Laura
Penta, Raimondo
Author_xml – sequence: 1
  givenname: Laura
  surname: Miller
  fullname: Miller, Laura
– sequence: 2
  givenname: Raimondo
  orcidid: 0000-0003-1202-8775
  surname: Penta
  fullname: Penta, Raimondo
  email: Raimondo.Penta@glasgow.ac.uk
BookMark eNqNkE1LAzEQhoNUsFX_w_oDtuZjd5OcRIpf0OJFzyFNJjRluylJLPTfm7oexFNPAzPzPsw8MzQZwgAI3RE8J5h099s5fMWwA7NJoZ9TTGnpN4K3F2hKBGc1p6KdoCmWkte8ZeIKzVLaYozLLpmi1cqbMa8Hb3Rf6UH3x-RTFVyVN1CBc2CyP0CVsndugPQz2ocYoNelZyoTdvuQfIZ0gy6d7hPc_tZr9Pn89LF4rZfvL2-Lx2VtGKe5bgXBa6qJdqJhklIM3VpabTmzklnbSN1x2VpqKV0T2uCGUQYERMu0ZY517BrJkVtuTymCU_vodzoeFcHq5EVt1R8v6uRFjV5K9uFf1vissw9Djtr3ZxEWIwHKiwcPUSXjYTBgfSyulA3-DMo3ucCK7A
CitedBy_id crossref_primary_10_1007_s10483_024_3144_7
crossref_primary_10_1007_s10237_025_01931_0
crossref_primary_10_1016_j_jmbbm_2024_106486
crossref_primary_10_1016_j_rineng_2025_105019
crossref_primary_10_1177_10812865231207600
crossref_primary_10_1016_j_euromechsol_2023_105219
crossref_primary_10_1002_mma_10973
crossref_primary_10_1016_j_advwatres_2025_105069
crossref_primary_10_1007_s00161_023_01247_3
crossref_primary_10_1007_s00707_025_04315_8
crossref_primary_10_1016_j_apm_2023_10_008
crossref_primary_10_1007_s10237_023_01742_1
crossref_primary_10_1016_j_jcomc_2025_100625
crossref_primary_10_1016_j_mechmat_2024_105215
Cites_doi 10.1177/089686080102103S04
10.1115/1.4011213
10.1007/s00161-020-00864-6
10.1016/j.advwatres.2013.09.006
10.1121/1.1908241
10.1016/j.euromechsol.2022.104617
10.1016/S0079-6107(98)00020-0
10.1016/S0021-9290(98)00161-4
10.1007/s00466-009-0452-x
10.1016/j.mechrescom.2019.02.004
10.1016/j.compstruc.2020.106404
10.1016/j.wavemoti.2006.03.003
10.1016/S1361-8415(03)00032-X
10.1016/j.euromechsol.2020.103996
10.1017/S0956792518000657
10.1016/j.jmps.2008.02.003
10.1007/s00707-021-03030-4
10.1063/1.1728759
10.1016/0020-7225(79)90022-3
10.1016/j.jbiomech.2011.11.026
10.1146/annurev.matsci.28.1.271
10.1115/1.4007174
10.3390/app11146611
10.1016/j.jmps.2012.01.013
10.1080/00036811.2013.839780
10.1007/3-540-45015-7_21
10.1063/1.1721956
10.1007/s11012-017-0625-1
10.1016/j.biomaterials.2005.02.002
10.1016/j.survophthal.2006.12.007
10.1016/S0167-6636(99)00020-4
10.1007/s00161-015-0475-9
10.1007/s00791-015-0257-8
10.1121/1.386945
10.1088/2053-1591/aaf5b9
10.1093/qjmam/hbt024
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.euromechsol.2022.104875
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
ExternalDocumentID 10_1016_j_euromechsol_2022_104875
S0997753822003059
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-5810b2a1af8439220e6b9dad73d93dd49a6795d2d22b12404323e1e853ad3f363
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017687900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0997-7538
IngestDate Sat Nov 29 07:04:16 EST 2025
Tue Nov 18 21:12:14 EST 2025
Fri Feb 23 02:37:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Asymptotic homogenization
Poroelasticity
Computational modelling
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-5810b2a1af8439220e6b9dad73d93dd49a6795d2d22b12404323e1e853ad3f363
ORCID 0000-0003-1202-8775
OpenAccessLink https://dx.doi.org/10.1016/j.euromechsol.2022.104875
ParticipantIDs crossref_primary_10_1016_j_euromechsol_2022_104875
crossref_citationtrail_10_1016_j_euromechsol_2022_104875
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2022_104875
PublicationCentury 2000
PublicationDate March-April 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March-April 2023
PublicationDecade 2020
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Dehghani, Noll, Penta, Menzel, Merodio (b18) 2020; 83
Royer, Recho, Verdier (b42) 2019; 96
Chapelle, Gerbeau, Sainte-Marie, Vignon-Clementel (b11) 2010; 46
Hu, Metaxas, Axel (b23) 2003; 7
Lévy (b26) 1979; 17
Bottaro, Ansaldi (b6) 2012; 134
Bukac, Yotov, Zakerzadeh, Zunino (b8) 2015
Parnell, Abrahams (b33) 2008; 56
Rohan, Naili, Lemaire (b40) 2015; 28
Penta, Ambrosi, Shipley (b34) 2014; 67
Hori, Nemat-Nasser (b22) 1999; 31
Rohan, Naili, Cimrman, Lemaire (b39) 2012; 60
Chen, Kimpton, Whiteley, Castilho, Malda, Please, Waters, Byrne (b12) 2020; 31
Dehghani, Penta, Merodio (b19) 2018; 6
Miller, Penta (b29) 2020; 32
Brown, Popov, Efendiev (b7) 2014; 93
Parnell, Abrahams (b32) 2006; 43
Holmes (b21) 2012
Miller, Penta (b31) 2021; 11
Penta, Merodio (b36) 2017; 52
Cowin (b15) 1999; 32
Wang (b43) 2017
Biot (b4) 1956; 28
Flessner (b20) 2001; 21
Penta, Gerisch (b35) 2015; 17
Biot (b3) 1956; 23
Karageorgiou, Kaplan (b25) 2005; 26
Biot (b5) 1962; 33
Collis, Brown, Hubbard, O’Dea (b13) 2017
Hu, Metaxas, Axel (b24) 2003; 2673
Rohan, Turjanicová, Lukeš (b41) 2021; 251
Auriault, Boutin, Geindreau (b1) 2010
Chalasani, Poole-Warren, Conway, Ben-Nissan (b10) 2007; 52
Cookson, Lee, Michler, Chabiniok, Hyde, Nordsletten, Sinclair, Siebes, Smith (b14) 2012; 45
Davit, Bell, Byrne, Chapman, Kimpton, Lang, Leonard, Oliver, Pearson, Shipley (b17) 2013; 62
Penta, Miller, Grillo, Ramírez-Torres, Mascheroni, Rodríguez-Ramos (b37) 2020
Biot (b2) 1955; 26
Weiner, Wagner (b44) 1998; 28
Burridge, Keller (b9) 1981; 70
Mei, Vernescu (b28) 2010
Rohan, Cimrman (b38) 2010; 8
May-Newman, McCulloch (b27) 1998; 69
Cruz-González, Ramírez-Torres, Rodríguez-Ramos, Penta, Lebon (b16) 2022; 95
Miller, Penta (b30) 2021; 232
Biot (10.1016/j.euromechsol.2022.104875_b2) 1955; 26
Biot (10.1016/j.euromechsol.2022.104875_b5) 1962; 33
Cowin (10.1016/j.euromechsol.2022.104875_b15) 1999; 32
Cruz-González (10.1016/j.euromechsol.2022.104875_b16) 2022; 95
Davit (10.1016/j.euromechsol.2022.104875_b17) 2013; 62
Miller (10.1016/j.euromechsol.2022.104875_b30) 2021; 232
Parnell (10.1016/j.euromechsol.2022.104875_b33) 2008; 56
Dehghani (10.1016/j.euromechsol.2022.104875_b19) 2018; 6
Bukac (10.1016/j.euromechsol.2022.104875_b8) 2015
Burridge (10.1016/j.euromechsol.2022.104875_b9) 1981; 70
Cookson (10.1016/j.euromechsol.2022.104875_b14) 2012; 45
Bottaro (10.1016/j.euromechsol.2022.104875_b6) 2012; 134
Dehghani (10.1016/j.euromechsol.2022.104875_b18) 2020; 83
Rohan (10.1016/j.euromechsol.2022.104875_b40) 2015; 28
Chalasani (10.1016/j.euromechsol.2022.104875_b10) 2007; 52
Biot (10.1016/j.euromechsol.2022.104875_b4) 1956; 28
Miller (10.1016/j.euromechsol.2022.104875_b29) 2020; 32
Chapelle (10.1016/j.euromechsol.2022.104875_b11) 2010; 46
Penta (10.1016/j.euromechsol.2022.104875_b36) 2017; 52
Hu (10.1016/j.euromechsol.2022.104875_b23) 2003; 7
Hori (10.1016/j.euromechsol.2022.104875_b22) 1999; 31
Rohan (10.1016/j.euromechsol.2022.104875_b38) 2010; 8
Rohan (10.1016/j.euromechsol.2022.104875_b39) 2012; 60
Weiner (10.1016/j.euromechsol.2022.104875_b44) 1998; 28
Penta (10.1016/j.euromechsol.2022.104875_b35) 2015; 17
Rohan (10.1016/j.euromechsol.2022.104875_b41) 2021; 251
Auriault (10.1016/j.euromechsol.2022.104875_b1) 2010
Wang (10.1016/j.euromechsol.2022.104875_b43) 2017
Lévy (10.1016/j.euromechsol.2022.104875_b26) 1979; 17
Flessner (10.1016/j.euromechsol.2022.104875_b20) 2001; 21
Parnell (10.1016/j.euromechsol.2022.104875_b32) 2006; 43
Miller (10.1016/j.euromechsol.2022.104875_b31) 2021; 11
Holmes (10.1016/j.euromechsol.2022.104875_b21) 2012
Chen (10.1016/j.euromechsol.2022.104875_b12) 2020; 31
Penta (10.1016/j.euromechsol.2022.104875_b34) 2014; 67
Royer (10.1016/j.euromechsol.2022.104875_b42) 2019; 96
Collis (10.1016/j.euromechsol.2022.104875_b13) 2017
Mei (10.1016/j.euromechsol.2022.104875_b28) 2010
Biot (10.1016/j.euromechsol.2022.104875_b3) 1956; 23
Brown (10.1016/j.euromechsol.2022.104875_b7) 2014; 93
Karageorgiou (10.1016/j.euromechsol.2022.104875_b25) 2005; 26
Hu (10.1016/j.euromechsol.2022.104875_b24) 2003; 2673
Penta (10.1016/j.euromechsol.2022.104875_b37) 2020
May-Newman (10.1016/j.euromechsol.2022.104875_b27) 1998; 69
References_xml – year: 2010
  ident: b1
  article-title: Homogenization of coupled phenomena in heterogenous media
– volume: 52
  start-page: 145
  year: 2007
  end-page: 155
  ident: b10
  article-title: Porous orbital implants in enucleation: a systematic review
  publication-title: Surv. Ophthalmol.
– year: 2017
  ident: b13
  article-title: Effective equations governing an active poroelastic medium
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 23
  start-page: 91
  year: 1956
  end-page: 96
  ident: b3
  article-title: General solutions of the equations of elasticity and consolidation for a porous material
  publication-title: J. Appl. Mech.
– volume: 67
  start-page: 69
  year: 2014
  end-page: 91
  ident: b34
  article-title: Effective governing equations for poroelastic growing media
  publication-title: Quart. J. Mech. Appl. Math.
– volume: 26
  start-page: 5474
  year: 2005
  end-page: 5491
  ident: b25
  article-title: Porosity of 3D biomaterial scaffolds and osteogenesis
  publication-title: Biomaterials
– volume: 43
  start-page: 474
  year: 2006
  end-page: 498
  ident: b32
  article-title: Dynamic homogenization in periodic fibre reinforcedmedia. Quasi-static limit for SH waves
  publication-title: Wave Motion
– volume: 52
  start-page: 3321
  year: 2017
  end-page: 3343
  ident: b36
  article-title: Homogenized modeling for vascularized poroelastic materials
  publication-title: Meccanica
– volume: 96
  start-page: 19
  year: 2019
  end-page: 23
  ident: b42
  article-title: On the quasi-static effective behaviour of poroelastic media containing elastic inclusions
  publication-title: Mech. Res. Commun.
– volume: 17
  start-page: 185
  year: 2015
  end-page: 201
  ident: b35
  article-title: Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study
  publication-title: Comput. Vis. Sci.
– start-page: 311
  year: 2020
  end-page: 356
  ident: b37
  article-title: Porosity and diffusion in biological tissues. Recent advances and further perspectives
  publication-title: Constitutive Modelling of Solid Continua
– volume: 70
  start-page: 1140
  year: 1981
  end-page: 1146
  ident: b9
  article-title: Poroelasticity equations derived from microstructure
  publication-title: J. Acoust. Soc. Am.
– volume: 45
  start-page: 850
  year: 2012
  end-page: 855
  ident: b14
  article-title: A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics
  publication-title: J. Biomech.
– year: 2010
  ident: b28
  article-title: Homogenization Methods for Multiscale Mechanics
– volume: 28
  start-page: 179
  year: 1956
  end-page: 191
  ident: b4
  article-title: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
  publication-title: J. Acoust. Soc. Am.
– volume: 31
  start-page: 143
  year: 2020
  end-page: 171
  ident: b12
  article-title: Multiscale modelling and homogenisation of fibre-reinforced hydrogels for tissue engineering
  publication-title: European J. Appl. Math.
– volume: 31
  start-page: 667
  year: 1999
  end-page: 682
  ident: b22
  article-title: On two micromechanics theories for determining micro-macro relations in heterogeneous solid
  publication-title: Mech. Mater.
– volume: 11
  start-page: 6611
  year: 2021
  ident: b31
  article-title: Homogenized balance equations for nonlinear poroelastic composites
  publication-title: Appl. Sci.
– volume: 95
  year: 2022
  ident: b16
  article-title: Hierarchical heterogeneous one-dimensional problem in linear viscoelastic media
  publication-title: Eur. J. Mech. A Solids
– year: 2017
  ident: b43
  article-title: Theory of Linear Poroelasticity with Applications To Geomechanics and Hydrogeology
– volume: 46
  start-page: 91
  year: 2010
  end-page: 101
  ident: b11
  article-title: A poroelastic model valid in large strains with applications to perfusion in cardiac modeling
  publication-title: Comput. Mech.
– volume: 7
  start-page: 435
  year: 2003
  end-page: 444
  ident: b23
  article-title: In vivo strain and stress estimation of the heart left and right ventricles from MRI images
  publication-title: Med. Image Anal.
– volume: 60
  start-page: 857
  year: 2012
  end-page: 881
  ident: b39
  article-title: Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone
  publication-title: J. Mech. Phys. Solids
– volume: 134
  year: 2012
  ident: b6
  article-title: On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium
  publication-title: J. Biomech. Eng.
– volume: 32
  start-page: 1533
  year: 2020
  end-page: 1557
  ident: b29
  article-title: Effective balance equations for poroelastic composites
  publication-title: Contin. Mech. Thermodyn.
– year: 2012
  ident: b21
  article-title: Introduction To Perturbation Methods
– volume: 83
  year: 2020
  ident: b18
  article-title: The role of microscale solid matrix compressibility on the mechanical behaviour of poroelastic materials
  publication-title: Eur. J. Mech. A Solids
– volume: 17
  start-page: 1005
  year: 1979
  end-page: 1014
  ident: b26
  article-title: Propagation of waves in a fluid-saturated porous elastic solid
  publication-title: Internat. J. Engrg. Sci.
– volume: 28
  start-page: 271
  year: 1998
  end-page: 298
  ident: b44
  article-title: The material bone: structure-mechanical function relations
  publication-title: Annu. Rev. Mater. Sci.
– volume: 93
  start-page: 771
  year: 2014
  end-page: 790
  ident: b7
  article-title: Effective equations for fluid-structure interaction with applications to poroelasticity
  publication-title: Appl. Anal.: Int. J.
– volume: 6
  year: 2018
  ident: b19
  article-title: The role of porosity and solid matrix compressibility on the mechanical behavior of poroelastic tissues
  publication-title: Mater. Res. Express
– volume: 251
  year: 2021
  ident: b41
  article-title: Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model
  publication-title: Comput. Struct.
– volume: 69
  start-page: 463
  year: 1998
  end-page: 481
  ident: b27
  article-title: Homogenization modeling for the mechanics of perfused myocardium
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 28
  start-page: 1263
  year: 2015
  end-page: 1293
  ident: b40
  article-title: Double porosity in fluid-saturated elastic media: deriving effective parameters by hierarchical homogenization of static problem
  publication-title: Cont. Mech. Therm.
– volume: 56
  start-page: 2521
  year: 2008
  end-page: 2540
  ident: b33
  article-title: Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theory
  publication-title: J. Mech. Phys. Solids
– volume: 26
  start-page: 182
  year: 1955
  end-page: 185
  ident: b2
  article-title: Theory of elasticity and consolidation for a porous anisotropic solid
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: S24
  year: 2001
  end-page: S29
  ident: b20
  article-title: The role of extracellular matrix in transperitoneal transport of water and solutes
  publication-title: Perit. Dial. Int.
– start-page: 197
  year: 2015
  end-page: 220
  ident: b8
  article-title: Effects of poroelasticity on fluid-structure interaction in arteries: a computational sensitivity study
  publication-title: Modeling the Heart and the Circulatory System
– volume: 32
  start-page: 217
  year: 1999
  end-page: 238
  ident: b15
  article-title: Bone poroelasticity
  publication-title: J. Biomech.
– volume: 62
  start-page: 178
  year: 2013
  end-page: 206
  ident: b17
  article-title: Homogenization via formal multiscale asymptoticsand volume averaging:how do the two techniques compare?
  publication-title: Adv. Water Resour.
– volume: 232
  start-page: 3801
  year: 2021
  end-page: 3823
  ident: b30
  article-title: Double poroelasticity derived from the microstructure
  publication-title: Acta Mech.
– volume: 8
  year: 2010
  ident: b38
  article-title: Two-scale modeling of tissue perfusion problem using homogenization of dual porous media
  publication-title: Int. J. Multiscale Comput. Eng.
– volume: 33
  start-page: 1482
  year: 1962
  end-page: 1498
  ident: b5
  article-title: Mechanics of deformation and acoustic propagation in porous media
  publication-title: J. Appl. Phys.
– volume: 2673
  year: 2003
  ident: b24
  article-title: Left ventricle composite material model for stress-strain analysis
  publication-title: Surg. Simul. Soft Tissue Model.
– volume: 21
  start-page: S24
  issue: Suppl 3
  year: 2001
  ident: 10.1016/j.euromechsol.2022.104875_b20
  article-title: The role of extracellular matrix in transperitoneal transport of water and solutes
  publication-title: Perit. Dial. Int.
  doi: 10.1177/089686080102103S04
– volume: 23
  start-page: 91
  issue: 1
  year: 1956
  ident: 10.1016/j.euromechsol.2022.104875_b3
  article-title: General solutions of the equations of elasticity and consolidation for a porous material
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4011213
– volume: 32
  start-page: 1533
  issue: 6
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104875_b29
  article-title: Effective balance equations for poroelastic composites
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/s00161-020-00864-6
– volume: 62
  start-page: 178
  year: 2013
  ident: 10.1016/j.euromechsol.2022.104875_b17
  article-title: Homogenization via formal multiscale asymptoticsand volume averaging:how do the two techniques compare?
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.09.006
– volume: 28
  start-page: 179
  issue: 2
  year: 1956
  ident: 10.1016/j.euromechsol.2022.104875_b4
  article-title: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1908241
– year: 2017
  ident: 10.1016/j.euromechsol.2022.104875_b13
  article-title: Effective equations governing an active poroelastic medium
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 95
  year: 2022
  ident: 10.1016/j.euromechsol.2022.104875_b16
  article-title: Hierarchical heterogeneous one-dimensional problem in linear viscoelastic media
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2022.104617
– volume: 69
  start-page: 463
  issue: 2
  year: 1998
  ident: 10.1016/j.euromechsol.2022.104875_b27
  article-title: Homogenization modeling for the mechanics of perfused myocardium
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/S0079-6107(98)00020-0
– volume: 32
  start-page: 217
  issue: 3
  year: 1999
  ident: 10.1016/j.euromechsol.2022.104875_b15
  article-title: Bone poroelasticity
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00161-4
– volume: 46
  start-page: 91
  issue: 1
  year: 2010
  ident: 10.1016/j.euromechsol.2022.104875_b11
  article-title: A poroelastic model valid in large strains with applications to perfusion in cardiac modeling
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-009-0452-x
– volume: 96
  start-page: 19
  year: 2019
  ident: 10.1016/j.euromechsol.2022.104875_b42
  article-title: On the quasi-static effective behaviour of poroelastic media containing elastic inclusions
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.02.004
– volume: 251
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104875_b41
  article-title: Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106404
– volume: 43
  start-page: 474
  year: 2006
  ident: 10.1016/j.euromechsol.2022.104875_b32
  article-title: Dynamic homogenization in periodic fibre reinforcedmedia. Quasi-static limit for SH waves
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2006.03.003
– volume: 7
  start-page: 435
  issue: 4
  year: 2003
  ident: 10.1016/j.euromechsol.2022.104875_b23
  article-title: In vivo strain and stress estimation of the heart left and right ventricles from MRI images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(03)00032-X
– volume: 83
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104875_b18
  article-title: The role of microscale solid matrix compressibility on the mechanical behaviour of poroelastic materials
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2020.103996
– volume: 31
  start-page: 143
  issue: 1
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104875_b12
  article-title: Multiscale modelling and homogenisation of fibre-reinforced hydrogels for tissue engineering
  publication-title: European J. Appl. Math.
  doi: 10.1017/S0956792518000657
– volume: 8
  issue: 1
  year: 2010
  ident: 10.1016/j.euromechsol.2022.104875_b38
  article-title: Two-scale modeling of tissue perfusion problem using homogenization of dual porous media
  publication-title: Int. J. Multiscale Comput. Eng.
– volume: 56
  start-page: 2521
  year: 2008
  ident: 10.1016/j.euromechsol.2022.104875_b33
  article-title: Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I-Theory
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2008.02.003
– volume: 232
  start-page: 3801
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104875_b30
  article-title: Double poroelasticity derived from the microstructure
  publication-title: Acta Mech.
  doi: 10.1007/s00707-021-03030-4
– volume: 33
  start-page: 1482
  issue: 4
  year: 1962
  ident: 10.1016/j.euromechsol.2022.104875_b5
  article-title: Mechanics of deformation and acoustic propagation in porous media
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728759
– volume: 17
  start-page: 1005
  issue: 9
  year: 1979
  ident: 10.1016/j.euromechsol.2022.104875_b26
  article-title: Propagation of waves in a fluid-saturated porous elastic solid
  publication-title: Internat. J. Engrg. Sci.
  doi: 10.1016/0020-7225(79)90022-3
– start-page: 311
  year: 2020
  ident: 10.1016/j.euromechsol.2022.104875_b37
  article-title: Porosity and diffusion in biological tissues. Recent advances and further perspectives
– volume: 45
  start-page: 850
  issue: 5
  year: 2012
  ident: 10.1016/j.euromechsol.2022.104875_b14
  article-title: A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.026
– year: 2012
  ident: 10.1016/j.euromechsol.2022.104875_b21
– volume: 28
  start-page: 271
  issue: 1
  year: 1998
  ident: 10.1016/j.euromechsol.2022.104875_b44
  article-title: The material bone: structure-mechanical function relations
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.28.1.271
– volume: 134
  issue: 8
  year: 2012
  ident: 10.1016/j.euromechsol.2022.104875_b6
  article-title: On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4007174
– volume: 11
  start-page: 6611
  issue: 14
  year: 2021
  ident: 10.1016/j.euromechsol.2022.104875_b31
  article-title: Homogenized balance equations for nonlinear poroelastic composites
  publication-title: Appl. Sci.
  doi: 10.3390/app11146611
– volume: 60
  start-page: 857
  year: 2012
  ident: 10.1016/j.euromechsol.2022.104875_b39
  article-title: Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.01.013
– volume: 93
  start-page: 771
  issue: 4
  year: 2014
  ident: 10.1016/j.euromechsol.2022.104875_b7
  article-title: Effective equations for fluid-structure interaction with applications to poroelasticity
  publication-title: Appl. Anal.: Int. J.
  doi: 10.1080/00036811.2013.839780
– volume: 2673
  year: 2003
  ident: 10.1016/j.euromechsol.2022.104875_b24
  article-title: Left ventricle composite material model for stress-strain analysis
  publication-title: Surg. Simul. Soft Tissue Model.
  doi: 10.1007/3-540-45015-7_21
– volume: 26
  start-page: 182
  issue: 2
  year: 1955
  ident: 10.1016/j.euromechsol.2022.104875_b2
  article-title: Theory of elasticity and consolidation for a porous anisotropic solid
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721956
– volume: 52
  start-page: 3321
  issue: 14
  year: 2017
  ident: 10.1016/j.euromechsol.2022.104875_b36
  article-title: Homogenized modeling for vascularized poroelastic materials
  publication-title: Meccanica
  doi: 10.1007/s11012-017-0625-1
– volume: 26
  start-page: 5474
  issue: 27
  year: 2005
  ident: 10.1016/j.euromechsol.2022.104875_b25
  article-title: Porosity of 3D biomaterial scaffolds and osteogenesis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.02.002
– volume: 52
  start-page: 145
  issue: 2
  year: 2007
  ident: 10.1016/j.euromechsol.2022.104875_b10
  article-title: Porous orbital implants in enucleation: a systematic review
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2006.12.007
– volume: 31
  start-page: 667
  year: 1999
  ident: 10.1016/j.euromechsol.2022.104875_b22
  article-title: On two micromechanics theories for determining micro-macro relations in heterogeneous solid
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(99)00020-4
– year: 2017
  ident: 10.1016/j.euromechsol.2022.104875_b43
– year: 2010
  ident: 10.1016/j.euromechsol.2022.104875_b1
– year: 2010
  ident: 10.1016/j.euromechsol.2022.104875_b28
– volume: 28
  start-page: 1263
  year: 2015
  ident: 10.1016/j.euromechsol.2022.104875_b40
  article-title: Double porosity in fluid-saturated elastic media: deriving effective parameters by hierarchical homogenization of static problem
  publication-title: Cont. Mech. Therm.
  doi: 10.1007/s00161-015-0475-9
– volume: 17
  start-page: 185
  issue: 4
  year: 2015
  ident: 10.1016/j.euromechsol.2022.104875_b35
  article-title: Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-015-0257-8
– volume: 70
  start-page: 1140
  issue: 4
  year: 1981
  ident: 10.1016/j.euromechsol.2022.104875_b9
  article-title: Poroelasticity equations derived from microstructure
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.386945
– volume: 6
  issue: 3
  year: 2018
  ident: 10.1016/j.euromechsol.2022.104875_b19
  article-title: The role of porosity and solid matrix compressibility on the mechanical behavior of poroelastic tissues
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaf5b9
– start-page: 197
  year: 2015
  ident: 10.1016/j.euromechsol.2022.104875_b8
  article-title: Effects of poroelasticity on fluid-structure interaction in arteries: a computational sensitivity study
– volume: 67
  start-page: 69
  issue: 1
  year: 2014
  ident: 10.1016/j.euromechsol.2022.104875_b34
  article-title: Effective governing equations for poroelastic growing media
  publication-title: Quart. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbt024
SSID ssj0002021
Score 2.4352589
Snippet Within this work we investigate the role that the microstructure of a poroelastic material has on the resulting elastic parameters. We are considering the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104875
SubjectTerms Asymptotic homogenization
Computational modelling
Poroelasticity
Title Micromechanical analysis of the effective stiffness of poroelastic composites
URI https://dx.doi.org/10.1016/j.euromechsol.2022.104875
Volume 98
WOSCitedRecordID wos001017687900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-7285
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002021
  issn: 0997-7538
  databaseCode: AIEXJ
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBddMkZf2n3StN3QYK-GRLItGfoSSko7mlJoN_JmZEmGhGKXJCv983tnyR9kHcsYfTHGQZa5-_n8u8t9EPJNWx3JOIsDqTF0o5QIsgirgHVspbaRHlbjfH5eiqsrOZsl177ielWNExBFIR8fk_sXVTVcA2Vj6ew_qLu5KVyAc1A6HEHtcNxK8dMqxc5iRa_vBNC2HWkzODBhCN7uPK9MHaY9l8vSApXGBq6YZ47JXD6_8LnAvSex9T5upnEVSi3v5qYh6m2pIRZgq9YQF561KsBKYcpu8IHxNvvKRcTqqpgpMH20b-Objv3CRq_gDTnzap19lYIHgrkpPbUBdmOof7PlLqywwAaYldRAOeDPM4Z_S0s3bmWjVfYNbok7Mlb5Rskr0mciSsDa9ccXk9n35hsN96lmKdaP-IZ8bTP__rDh88ylw0Zu35I970bQsVP_O7Jji_dk37sU1Bvs1Qcy3UADrdFAy5wCGmiDBtqgAX_qoIG2aPhIfpxNbk_PAz9BI9BcsHUQydEwY2qkcgnEE6Ri4ywxyghuEm5MmKhYJJFhhrEMiB62Z-R2ZIHCKcNzHvNPpFeUhT0gVAgs0gtFqDId8thkYSRyw9XQhlYDqx4QWUsn1b69PE45uUvrPMJF2hFsioJNnWAHhDVL712PlW0WndQqSD1ZdCQwBfz8ffnh_y0_Irvt63BMeuvlL_uZvNYP6_lq-cWj7Qmj45gB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromechanical+analysis+of+the+effective+stiffness+of+poroelastic+composites&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Miller%2C+Laura&rft.au=Penta%2C+Raimondo&rft.date=2023-03-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=98&rft_id=info:doi/10.1016%2Fj.euromechsol.2022.104875&rft.externalDocID=S0997753822003059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon