Genetic programming for automatic skin cancer image classification

Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 197; S. 116680
Hauptverfasser: Ain, Qurrat Ul, Al-Sahaf, Harith, Xue, Bing, Zhang, Mengjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.07.2022
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike “black-box” algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations. •Proposed methods construct new models with texture, color, and wavelet features.•Evolved features are highly informative to discriminate between skin image classes.•New features improve classification accuracy, efficient in real-time clinic situation.•Identify prominent visual features to help the dermatologist in making a diagnosis.•Achieved 86.77% accuracy on difficult dataset, outperforming the state-of-the-arts.
AbstractList Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike “black-box” algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations. •Proposed methods construct new models with texture, color, and wavelet features.•Evolved features are highly informative to discriminate between skin image classes.•New features improve classification accuracy, efficient in real-time clinic situation.•Identify prominent visual features to help the dermatologist in making a diagnosis.•Achieved 86.77% accuracy on difficult dataset, outperforming the state-of-the-arts.
Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike "black-box" algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations.
ArticleNumber 116680
Author Xue, Bing
Zhang, Mengjie
Al-Sahaf, Harith
Ain, Qurrat Ul
Author_xml – sequence: 1
  givenname: Qurrat Ul
  orcidid: 0000-0002-6891-9887
  surname: Ain
  fullname: Ain, Qurrat Ul
  email: qurrat.ul.ain@ecs.vuw.ac.nz
– sequence: 2
  givenname: Harith
  orcidid: 0000-0003-4633-6135
  surname: Al-Sahaf
  fullname: Al-Sahaf, Harith
  email: harith.al-sahaf@ecs.vuw.ac.nz
– sequence: 3
  givenname: Bing
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
– sequence: 4
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxJxgOx92JBaooCBVYoHZul7syqFxip2C-Pc4hImB6Ya75-7eZ0FmrneakEtGM0ZZdd1mOnxCxinnGWNVJekJmTMp8rQSdT4jc1qXIi2YKM7IIoSWUiYoFXNyt9ZODxaTg-93HrrOul1iep_Aceg7GDvhzboEwaH2ie1gpxPcQwjWWIz93p2TUwP7oC9-65K8Pty_rB7TzfP6aXW7STEXfEhLjhoZNGCMkUxjtaVQb3OoEQRsJSuanJYlFobyAoQAQKp5wyWWjIqmqfIluZr2xlffjzoMqu2P3sWTilel5FLKQsQpOU2h70Pw2ii0w8-fgwe7V4yq0Zhq1WhMjcbUZCyi_A968DGw__ofupkgHaN_WO1VQKujrMZ6jYNqevsf_g35iofy
CitedBy_id crossref_primary_10_1142_S2196888823500197
crossref_primary_10_1016_j_eswa_2025_128426
crossref_primary_10_3390_app14166923
crossref_primary_10_1007_s40747_025_02004_6
crossref_primary_10_1007_s12293_025_00472_4
crossref_primary_10_3390_app12136661
crossref_primary_10_1016_j_eswa_2024_124958
crossref_primary_10_1007_s11356_023_28576_9
crossref_primary_10_1016_j_bspc_2023_105618
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_1109_TEVC_2022_3225509
crossref_primary_10_1007_s11831_023_10005_2
crossref_primary_10_1109_ACCESS_2025_3565462
crossref_primary_10_1109_TCYB_2022_3182474
crossref_primary_10_1007_s10710_024_09497_z
crossref_primary_10_1007_s11042_023_16529_w
Cites_doi 10.1016/j.artmed.2019.101756
10.1016/j.eswa.2017.08.010
10.1016/0031-3203(95)00067-4
10.1109/83.242353
10.1109/TMI.2016.2633551
10.1109/JTEHM.2017.2648797
10.1038/nature21056
10.1109/TITB.2009.2017529
10.1007/s12293-015-0173-y
10.1049/iet-ipr.2015.0385
10.1109/TEVC.2004.825567
10.1109/TBME.2014.2348323
10.1109/ACCESS.2020.3003890
10.1145/1656274.1656278
10.1001/archderm.134.12.1563
10.1109/TITB.2012.2212282
10.1162/089976603321891855
10.1109/TEVC.2015.2504420
10.1109/TMI.2016.2642839
10.1038/nature14544
10.1109/TEVC.2017.2657556
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116680
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116680
S0957417422001634
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-52cec1adafff81ec6b0a9b3a9ca7ab814d3055c4f024a77aac0e2d28c5107dd63
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792297500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 08:34:57 EST 2025
Sat Nov 29 07:04:11 EST 2025
Tue Nov 18 20:55:30 EST 2025
Fri Feb 23 02:39:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Feature selection
Feature construction
Genetic programming
Image classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-52cec1adafff81ec6b0a9b3a9ca7ab814d3055c4f024a77aac0e2d28c5107dd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6891-9887
0000-0003-4633-6135
0000-0003-4463-9538
OpenAccessLink https://figshare.com/articles/journal_contribution/Genetic_programming_for_automatic_skin_cancer_image_classification/25814785
PQID 2658288847
PQPubID 2045477
ParticipantIDs proquest_journals_2658288847
crossref_citationtrail_10_1016_j_eswa_2022_116680
crossref_primary_10_1016_j_eswa_2022_116680
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116680
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ain, Xue, Al-Sahaf, Zhang (b5) 2019
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b18) 2009; 11
Tran, Xue, Zhang (b43) 2015; 8
Matthews, Li, Qureshi, Weinstock, Cho (b29) 2017
Shimizu, Iyatomi, Celebi, Norton, Tanaka (b39) 2015; 62
Lensen, Al-Sahaf, Zhang, Xue (b27) 2016
Choi, Choi (b13) 2010
Zhang, Ciesielski, Andreae (b50) 2003
Zhang, Cai, Wang, Tian, Wang, Badami (b49) 2020; 102
Tackett (b42) 1993
Menegola, Fornaciali, Pires, Bittencourt, Avila, Valle (b31) 2017
Poli (b36) 1996
Ain, Xue, Al-Sahaf, Zhang (b4) 2018
Mendonça, Ferreira, Marques, Marcal, Rozeira (b30) 2013
Perez, Vasconcelos, Avila, Valle (b35) 2018
Harangi, Baran, Hajdu (b19) 2018
Stolz, Riemann, Cognetta, Pillet, Abmayr, Holzel, Bilek, Nachbar, Landthaler (b41) 1994; 4
Chang, Kuo (b12) 1993; 2
Kawahara, BenTaieb, Hamarneh (b23) 2016
Barata, Marques (b11) 2019
Ahmed, Zhang, Peng, Xue (b1) 2014
Eiben, Smith (b15) 2015; 521
Esteva, Kuprel (b16) 2017; 542
Koza (b25) 1992
Iqbal, Xue, Al-Sahaf, Zhang (b20) 2017; 21
Siegel, Miller, Jemal (b40) 2019; 69
Codella, Cai, Abedini, Garnavi, Halpern, Smith (b14) 2015
Ain, Xue, Al-Sahaf, Zhang (b3) 2017
Al-Sahaf, Xue, Zhang (b7) 2017
Kasmi, Mokrani (b21) 2016; 10
Al-Sahaf, Al-Sahaf, Xue, Johnston, Zhang (b6) 2017; 21
Maglogiannis, Doukas (b28) 2009; 13
Ballerini, Fisher, Aldridge, Rees (b10) 2013
Keerthi, Lin (b24) 2003; 15
Satheesha, Satyanarayana, Prasad, Dhruve (b38) 2017; 5
Xie, Fan, Li, Jiang, Meng, Bovik (b46) 2017; 36
Ain, Al-Sahaf, Xue, Zhang (b2) 2018; 11320
Xue, Zhang, Browne, Yao (b47) 2016; 20
Argenziano, Fabbrocini, Carli, De Giorgi, Sammarco, Delfino (b9) 1998; 134
Ryan, Krawiec, O’Reilly, Fitzgerald, Medernach (b37) 2014
Tran, Zhang, Xue (b44) 2016
Oltean, Dumitrescu (b34) 2006
Yu, Chen, Dou, Qin, Heng (b48) 2017; 36
Ojala, Pietikäinen, Harwood (b33) 1996; 29
Kassem, Hosny, Fouad (b22) 2020; 8
Koza, Poli (b26) 2003; vol. 8
Muni, Pal, Das (b32) 2004; 8
Valle, Fornaciali, Menegola, Tavares, Bittencourt, Li, Avila (b45) 2017
Garnavi, Aldeen, Bailey (b17) 2012; 16
Alfed, Khelifi (b8) 2017; 90
Tran (10.1016/j.eswa.2022.116680_b43) 2015; 8
Alfed (10.1016/j.eswa.2022.116680_b8) 2017; 90
Oltean (10.1016/j.eswa.2022.116680_b34) 2006
Keerthi (10.1016/j.eswa.2022.116680_b24) 2003; 15
Ain (10.1016/j.eswa.2022.116680_b4) 2018
Choi (10.1016/j.eswa.2022.116680_b13) 2010
Mendonça (10.1016/j.eswa.2022.116680_b30) 2013
Valle (10.1016/j.eswa.2022.116680_b45) 2017
Koza (10.1016/j.eswa.2022.116680_b26) 2003; vol. 8
Matthews (10.1016/j.eswa.2022.116680_b29) 2017
Harangi (10.1016/j.eswa.2022.116680_b19) 2018
Chang (10.1016/j.eswa.2022.116680_b12) 1993; 2
Iqbal (10.1016/j.eswa.2022.116680_b20) 2017; 21
Muni (10.1016/j.eswa.2022.116680_b32) 2004; 8
Stolz (10.1016/j.eswa.2022.116680_b41) 1994; 4
Zhang (10.1016/j.eswa.2022.116680_b50) 2003
Yu (10.1016/j.eswa.2022.116680_b48) 2017; 36
Codella (10.1016/j.eswa.2022.116680_b14) 2015
Shimizu (10.1016/j.eswa.2022.116680_b39) 2015; 62
Ain (10.1016/j.eswa.2022.116680_b5) 2019
Kassem (10.1016/j.eswa.2022.116680_b22) 2020; 8
Maglogiannis (10.1016/j.eswa.2022.116680_b28) 2009; 13
Ojala (10.1016/j.eswa.2022.116680_b33) 1996; 29
Ryan (10.1016/j.eswa.2022.116680_b37) 2014
Garnavi (10.1016/j.eswa.2022.116680_b17) 2012; 16
Argenziano (10.1016/j.eswa.2022.116680_b9) 1998; 134
Zhang (10.1016/j.eswa.2022.116680_b49) 2020; 102
Satheesha (10.1016/j.eswa.2022.116680_b38) 2017; 5
Poli (10.1016/j.eswa.2022.116680_b36) 1996
Al-Sahaf (10.1016/j.eswa.2022.116680_b7) 2017
Kasmi (10.1016/j.eswa.2022.116680_b21) 2016; 10
Tackett (10.1016/j.eswa.2022.116680_b42) 1993
Al-Sahaf (10.1016/j.eswa.2022.116680_b6) 2017; 21
Ain (10.1016/j.eswa.2022.116680_b2) 2018; 11320
Menegola (10.1016/j.eswa.2022.116680_b31) 2017
Hall (10.1016/j.eswa.2022.116680_b18) 2009; 11
Ahmed (10.1016/j.eswa.2022.116680_b1) 2014
Tran (10.1016/j.eswa.2022.116680_b44) 2016
Perez (10.1016/j.eswa.2022.116680_b35) 2018
Siegel (10.1016/j.eswa.2022.116680_b40) 2019; 69
Xue (10.1016/j.eswa.2022.116680_b47) 2016; 20
Ain (10.1016/j.eswa.2022.116680_b3) 2017
Ballerini (10.1016/j.eswa.2022.116680_b10) 2013
Kawahara (10.1016/j.eswa.2022.116680_b23) 2016
Lensen (10.1016/j.eswa.2022.116680_b27) 2016
Koza (10.1016/j.eswa.2022.116680_b25) 1992
Xie (10.1016/j.eswa.2022.116680_b46) 2017; 36
Barata (10.1016/j.eswa.2022.116680_b11) 2019
Esteva (10.1016/j.eswa.2022.116680_b16) 2017; 542
Eiben (10.1016/j.eswa.2022.116680_b15) 2015; 521
References_xml – volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: b47
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 4353
  year: 2010
  end-page: 4356
  ident: b13
  article-title: Computer-aided detection of pulmonary nodules using genetic programming
  publication-title: Proceedings of the international conference on image processing
– start-page: 118
  year: 2015
  end-page: 126
  ident: b14
  article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images
  publication-title: International workshop on machine learning in medical imaging
– start-page: 1
  year: 2016
  end-page: 8
  ident: b44
  article-title: Multiple feature construction in classification on high-dimensional data using GP
  publication-title: 2016 IEEE symposium series on computational intelligence (SSCI)
– start-page: 841
  year: 2019
  end-page: 845
  ident: b11
  article-title: Deep learning for skin cancer diagnosis with hierarchical architectures
  publication-title: Proceedings of the international symposium on biomedical imaging
– year: 1992
  ident: b25
  article-title: Genetic programming: On the programming of computers by means of natural selection
– volume: 16
  start-page: 1239
  year: 2012
  end-page: 1252
  ident: b17
  article-title: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 4
  start-page: 521
  year: 1994
  end-page: 527
  ident: b41
  article-title: ABCD Rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma
  publication-title: European Journal of Dermatology
– year: 2017
  ident: b29
  article-title: Epidemiology of melanoma
  publication-title: Cutaneous Melanoma: Etiology and Therapy [Internet]
– volume: 102
  start-page: 101756
  year: 2020
  ident: b49
  article-title: Skin cancer diagnosis based on optimized convolutional neural network
  publication-title: Artificial Intelligence in Medicine
– volume: 11320
  start-page: 111
  year: 2018
  end-page: 123
  ident: b2
  article-title: A multi-tree genetic programming representation for melanoma detection using local and global features
  publication-title: Proceedings of the 31st australasian joint conference on artificial intelligence
– volume: 10
  start-page: 448
  year: 2016
  end-page: 455
  ident: b21
  article-title: Classification of malignant melanoma and benign skin lesions: Implementation of automatic ABCD rule
  publication-title: IET Image Processing
– start-page: 303
  year: 2018
  end-page: 311
  ident: b35
  article-title: Data augmentation for skin lesion analysis
  publication-title: OR 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis
– start-page: 499
  year: 2017
  end-page: 511
  ident: b7
  article-title: A multitree genetic programming representation for automatically evolving texture image descriptors
  publication-title: Asia-pacific conference on simulated evolution and learning
– volume: 69
  start-page: 7
  year: 2019
  end-page: 34
  ident: b40
  article-title: Cancer statistics, 2019
  publication-title: CA: A Cancer Journal for Clinicians
– start-page: 1
  year: 2019
  end-page: 6
  ident: b5
  article-title: Genetic programming for multiple feature construction in skin cancer image classification
  publication-title: Proceedings of the 34th international conference on image and vision computing New Zealand
– volume: 134
  start-page: 1563
  year: 1998
  end-page: 1570
  ident: b9
  article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis
  publication-title: Archives of Dermatology
– volume: vol. 8
  year: 2003
  ident: b26
  article-title: A genetic programming tutorial
  publication-title: Introductory tutorials in optimization, search and decision support
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: b16
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 8
  start-page: 114822
  year: 2020
  end-page: 114832
  ident: b22
  article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning
  publication-title: IEEE Access
– start-page: 303
  year: 1993
  end-page: 311
  ident: b42
  article-title: Genetic programming for feature discovery and image discrimination
  publication-title: Proceedings of the 5th international conference on genetic algorithms
– start-page: 2420
  year: 2017
  end-page: 2427
  ident: b3
  article-title: Genetic programming for skin cancer detection in dermoscopic images
  publication-title: Proceedings of the Congress on Evolutionary Computation
– start-page: 363
  year: 1996
  end-page: 368
  ident: b36
  article-title: Genetic programming for image analysis
  publication-title: Proceedings of the 1st annual conference on genetic programming
– volume: 62
  start-page: 274
  year: 2015
  end-page: 283
  ident: b39
  article-title: Four-class classification of skin lesions with task decomposition strategy
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 297
  year: 2017
  end-page: 300
  ident: b31
  article-title: Knowledge transfer for melanoma screening with deep learning
  publication-title: Proceedings of the 14th international symposium on biomedical imaging
– volume: 36
  start-page: 849
  year: 2017
  end-page: 858
  ident: b46
  article-title: Melanoma classification on dermoscopy images using a neural network ensemble model
  publication-title: IEEE Transactions on Medical Imaging
– volume: 2
  start-page: 429
  year: 1993
  end-page: 441
  ident: b12
  article-title: Texture analysis and classification with tree-structured wavelet transform
  publication-title: IEEE Transactions on Image Processing
– start-page: 51
  year: 2016
  end-page: 67
  ident: b27
  article-title: Genetic programming for region detection, feature extraction, feature construction and classification in image data
  publication-title: Proceedings of the european conference on genetic programming
– volume: 8
  start-page: 3
  year: 2015
  end-page: 15
  ident: b43
  article-title: Genetic programming for feature construction and selection in classification on high-dimensional data
  publication-title: Memetic Computing
– volume: 36
  start-page: 994
  year: 2017
  end-page: 1004
  ident: b48
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 63
  year: 2013
  end-page: 86
  ident: b10
  article-title: A color and texture based hierarchical k-NN approach to the classification of non-melanoma skin lesions
  publication-title: Color medical image analysis
– start-page: 162
  year: 2014
  end-page: 173
  ident: b37
  article-title: Building a stage 1 computer aided detector for breast cancer using genetic programming
  publication-title: Proceedings of the european conference on genetic programming
– volume: 21
  start-page: 83
  year: 2017
  end-page: 101
  ident: b6
  article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 249
  year: 2014
  end-page: 256
  ident: b1
  article-title: Multiple feature construction for effective biomarker identification and classification using genetic programming
  publication-title: Proceedings of the 2014 annual conference on genetic and evolutionary computation
– start-page: 841
  year: 2003
  end-page: -859
  ident: b50
  article-title: A domain-independent window approach to multiclass object detection using genetic programming
  publication-title: EURASIP Journal on Advances in Signal Processing
– volume: 21
  start-page: 569
  year: 2017
  end-page: 587
  ident: b20
  article-title: Cross-domain reuse of extracted knowledge in genetic programming for image classification
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 5
  start-page: 1
  year: 2017
  end-page: 17
  ident: b38
  article-title: Melanoma is Skin Deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
– start-page: 1397
  year: 2016
  end-page: 1400
  ident: b23
  article-title: Deep features to classify skin lesions
  publication-title: Proceedings of the 13th international symposium on biomedical imaging
– volume: 15
  start-page: 1667
  year: 2003
  end-page: 1689
  ident: b24
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Computation
– start-page: 5437
  year: 2013
  end-page: 5440
  ident: b30
  article-title: PH
  publication-title: Proceedings of the 35th annual international conference of the IEEE engineering in medicine and biology society
– volume: 521
  start-page: 476
  year: 2015
  ident: b15
  article-title: From evolutionary computation to the evolution of things
  publication-title: Nature
– start-page: 2575
  year: 2018
  end-page: 2578
  ident: b19
  article-title: Classification of skin lesions using an ensemble of deep neural networks
  publication-title: Proceddings of the 40th annual international conference of the IEEE engineering in medicine and biology society
– volume: 90
  start-page: 101
  year: 2017
  end-page: 110
  ident: b8
  article-title: Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 721
  year: 2009
  end-page: 733
  ident: b28
  article-title: Overview of advanced computer vision systems for skin lesions characterization
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: b33
  article-title: A comparative study of texture measures with classification based on feature distributions
  publication-title: Pattern Recognition
– year: 2006
  ident: b34
  article-title: Multi expression programming
– volume: 8
  start-page: 183
  year: 2004
  end-page: 196
  ident: b32
  article-title: A novel approach to design classifiers using genetic programming
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 770
  year: 2017
  end-page: 778
  ident: b45
  article-title: Data, depth, and design: Learning reliable models for melanoma screening
– start-page: 732
  year: 2018
  end-page: 745
  ident: b4
  article-title: Genetic programming for feature selection and feature construction in skin cancer image classification
  publication-title: Proceedings of the 15th pacific rim international conference on artificial intelligence
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b18
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explorations Newsletter
– volume: 102
  start-page: 101756
  year: 2020
  ident: 10.1016/j.eswa.2022.116680_b49
  article-title: Skin cancer diagnosis based on optimized convolutional neural network
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2019.101756
– start-page: 841
  issue: 8
  year: 2003
  ident: 10.1016/j.eswa.2022.116680_b50
  article-title: A domain-independent window approach to multiclass object detection using genetic programming
  publication-title: EURASIP Journal on Advances in Signal Processing
– volume: 90
  start-page: 101
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b8
  article-title: Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.010
– year: 2006
  ident: 10.1016/j.eswa.2022.116680_b34
– start-page: 303
  year: 2018
  ident: 10.1016/j.eswa.2022.116680_b35
  article-title: Data augmentation for skin lesion analysis
– start-page: 2420
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b3
  article-title: Genetic programming for skin cancer detection in dermoscopic images
– start-page: 162
  year: 2014
  ident: 10.1016/j.eswa.2022.116680_b37
  article-title: Building a stage 1 computer aided detector for breast cancer using genetic programming
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2022.116680_b33
  article-title: A comparative study of texture measures with classification based on feature distributions
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00067-4
– volume: 2
  start-page: 429
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2022.116680_b12
  article-title: Texture analysis and classification with tree-structured wavelet transform
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.242353
– volume: 36
  start-page: 849
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b46
  article-title: Melanoma classification on dermoscopy images using a neural network ensemble model
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2633551
– start-page: 4353
  year: 2010
  ident: 10.1016/j.eswa.2022.116680_b13
  article-title: Computer-aided detection of pulmonary nodules using genetic programming
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b38
  article-title: Melanoma is Skin Deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification
  publication-title: IEEE Journal of Translational Engineering in Health and Medicine
  doi: 10.1109/JTEHM.2017.2648797
– volume: vol. 8
  year: 2003
  ident: 10.1016/j.eswa.2022.116680_b26
  article-title: A genetic programming tutorial
– start-page: 363
  year: 1996
  ident: 10.1016/j.eswa.2022.116680_b36
  article-title: Genetic programming for image analysis
– start-page: 249
  year: 2014
  ident: 10.1016/j.eswa.2022.116680_b1
  article-title: Multiple feature construction for effective biomarker identification and classification using genetic programming
– start-page: 2575
  year: 2018
  ident: 10.1016/j.eswa.2022.116680_b19
  article-title: Classification of skin lesions using an ensemble of deep neural networks
– volume: 69
  start-page: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.116680_b40
  article-title: Cancer statistics, 2019
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 4
  start-page: 521
  issue: 7
  year: 1994
  ident: 10.1016/j.eswa.2022.116680_b41
  article-title: ABCD Rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma
  publication-title: European Journal of Dermatology
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b16
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 732
  year: 2018
  ident: 10.1016/j.eswa.2022.116680_b4
  article-title: Genetic programming for feature selection and feature construction in skin cancer image classification
– volume: 13
  start-page: 721
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2022.116680_b28
  article-title: Overview of advanced computer vision systems for skin lesions characterization
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2009.2017529
– start-page: 770
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b45
– start-page: 1397
  year: 2016
  ident: 10.1016/j.eswa.2022.116680_b23
  article-title: Deep features to classify skin lesions
– volume: 8
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2022.116680_b43
  article-title: Genetic programming for feature construction and selection in classification on high-dimensional data
  publication-title: Memetic Computing
  doi: 10.1007/s12293-015-0173-y
– volume: 11320
  start-page: 111
  year: 2018
  ident: 10.1016/j.eswa.2022.116680_b2
  article-title: A multi-tree genetic programming representation for melanoma detection using local and global features
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2022.116680_b44
  article-title: Multiple feature construction in classification on high-dimensional data using GP
– start-page: 5437
  year: 2013
  ident: 10.1016/j.eswa.2022.116680_b30
  article-title: PH2 - A Dermoscopic image database for research and benchmarking
– volume: 10
  start-page: 448
  issue: 6
  year: 2016
  ident: 10.1016/j.eswa.2022.116680_b21
  article-title: Classification of malignant melanoma and benign skin lesions: Implementation of automatic ABCD rule
  publication-title: IET Image Processing
  doi: 10.1049/iet-ipr.2015.0385
– start-page: 303
  year: 1993
  ident: 10.1016/j.eswa.2022.116680_b42
  article-title: Genetic programming for feature discovery and image discrimination
– year: 1992
  ident: 10.1016/j.eswa.2022.116680_b25
– start-page: 499
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b7
  article-title: A multitree genetic programming representation for automatically evolving texture image descriptors
– volume: 8
  start-page: 183
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2022.116680_b32
  article-title: A novel approach to design classifiers using genetic programming
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.825567
– start-page: 841
  year: 2019
  ident: 10.1016/j.eswa.2022.116680_b11
  article-title: Deep learning for skin cancer diagnosis with hierarchical architectures
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.116680_b5
  article-title: Genetic programming for multiple feature construction in skin cancer image classification
– volume: 62
  start-page: 274
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2022.116680_b39
  article-title: Four-class classification of skin lesions with task decomposition strategy
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2014.2348323
– volume: 8
  start-page: 114822
  year: 2020
  ident: 10.1016/j.eswa.2022.116680_b22
  article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003890
– start-page: 63
  year: 2013
  ident: 10.1016/j.eswa.2022.116680_b10
  article-title: A color and texture based hierarchical k-NN approach to the classification of non-melanoma skin lesions
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2022.116680_b18
  article-title: The WEKA data mining software: An update
  publication-title: SIGKDD Explorations Newsletter
  doi: 10.1145/1656274.1656278
– volume: 134
  start-page: 1563
  issue: 12
  year: 1998
  ident: 10.1016/j.eswa.2022.116680_b9
  article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis
  publication-title: Archives of Dermatology
  doi: 10.1001/archderm.134.12.1563
– volume: 16
  start-page: 1239
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2022.116680_b17
  article-title: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2012.2212282
– volume: 15
  start-page: 1667
  issue: 7
  year: 2003
  ident: 10.1016/j.eswa.2022.116680_b24
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Computation
  doi: 10.1162/089976603321891855
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2022.116680_b47
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2504420
– start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2022.116680_b27
  article-title: Genetic programming for region detection, feature extraction, feature construction and classification in image data
– volume: 36
  start-page: 994
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b48
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2642839
– volume: 521
  start-page: 476
  issue: 7553
  year: 2015
  ident: 10.1016/j.eswa.2022.116680_b15
  article-title: From evolutionary computation to the evolution of things
  publication-title: Nature
  doi: 10.1038/nature14544
– year: 2017
  ident: 10.1016/j.eswa.2022.116680_b29
  article-title: Epidemiology of melanoma
– start-page: 118
  year: 2015
  ident: 10.1016/j.eswa.2022.116680_b14
  article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images
– volume: 21
  start-page: 569
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b20
  article-title: Cross-domain reuse of extracted knowledge in genetic programming for image classification
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2657556
– start-page: 297
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b31
  article-title: Knowledge transfer for melanoma screening with deep learning
– volume: 21
  start-page: 83
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116680_b6
  article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming
  publication-title: IEEE Transactions on Evolutionary Computation
SSID ssj0017007
Score 2.5303984
Snippet Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116680
SubjectTerms Algorithms
Artificial neural networks
Classification
Diagnostic systems
Dimensionality reduction
Feature construction
Feature extraction
Feature selection
Genetic algorithms
Genetic programming
Image classification
Machine learning
Medical imaging
Neural networks
Performance enhancement
System effectiveness
Title Genetic programming for automatic skin cancer image classification
URI https://dx.doi.org/10.1016/j.eswa.2022.116680
https://www.proquest.com/docview/2658288847
Volume 197
WOSCitedRecordID wos000792297500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXapYdeKLRFpXzIB26roMT5sHNcKhCgChUB0t4sx3HEbpeAkizl5zOOHWdZBCoHLlEUJZbleRmPx89vENpLVBbnvq88kWWFF1Hqe4JIuAtjXwgVQsjbquv_pmdnbDxO_9hUdt2WE6BlyR4e0rt3NTU8A2Pro7NvMLdrFB7APRgdrmB2uP6X4bWQtFZhtcyrG0eVnDe3Rp-1_qvJ59rc1XByo0k7UsfQmjTU22nqOHqqaqzgc3cUbmHT2wHGaBGczyuA1PDK8TZGM-9CXItW-vEY1uWNSz-P520u9aCbOxez15prO52oxZQE6emrfW6RelFgyu84N2t4uNZRBkGSmBJOz3y4SSdM91X9TwtDEbLfv_xUMHtpInP0wo65NuW6Da7b4KaNj2iFwArJH6CV0cnh-NRtOFHfnKzvem7PVxkq4HJPXophlmbzNkS5XEOrdm2BRwYT6-iDKr-iL13dDmzd-Dd0YCGCFyCCASLYQQRriGADEdxCBD-FyHd0dXR4-evYs7U0PBlS0ngxkUoGIhdFUbBAySTzRZqFIpWCiowFUa6l32RUQMwmKBVC-orkhEnw2TTPk3ADDcrbUv1AOGUU4mQqkyIKo0KkjFCmaJyRIIsKWE5soqAbHS6t0LyudzLjL9tlEw3dN3dGZuXVt-Nu0LkNFE0AyAFDr3633VmI2z-25iTRO8cMorSfb-rEFvrcY38bDZpqrnbQJ3nfTOpq1-LrEWfMlLY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+programming+for+automatic+skin+cancer+image+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Ain%2C+Qurrat+Ul&rft.au=Al-Sahaf%2C+Harith&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2022-07-01&rft.issn=0957-4174&rft.volume=197&rft.spage=116680&rft_id=info:doi/10.1016%2Fj.eswa.2022.116680&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon