Genetic programming for automatic skin cancer image classification
Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situati...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 197; S. 116680 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
01.07.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike “black-box” algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations.
•Proposed methods construct new models with texture, color, and wavelet features.•Evolved features are highly informative to discriminate between skin image classes.•New features improve classification accuracy, efficient in real-time clinic situation.•Identify prominent visual features to help the dermatologist in making a diagnosis.•Achieved 86.77% accuracy on difficult dataset, outperforming the state-of-the-arts. |
|---|---|
| AbstractList | Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike “black-box” algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations.
•Proposed methods construct new models with texture, color, and wavelet features.•Evolved features are highly informative to discriminate between skin image classes.•New features improve classification accuracy, efficient in real-time clinic situation.•Identify prominent visual features to help the dermatologist in making a diagnosis.•Achieved 86.77% accuracy on difficult dataset, outperforming the state-of-the-arts. Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing the behaviors of algorithms is as important as developing new systems in order to establish the effectiveness of a system in real-time situations which impacts greatly how well it can assist the dermatologist in making a diagnosis. Unlike many machine learning approaches such as Artificial Neural Networks, Genetic Programming (GP) automatically evolves models with its dynamic representation and flexibility. This study aims at analyzing recently developed GP-based approaches to skin image classification. These approaches have utilized the intrinsic feature selection and feature construction ability of GP to effectively construct informative features from a variety of pre-extracted features. These features encompass local, global, texture, color and multi-scale image properties of skin images. The performance of these GP methods is assessed using two real-world skin image datasets captured from standard camera and specialized instruments, and compared with six commonly used classification algorithms as well as existing GP methods. The results reveal that these constructed features greatly help improve the performance of the machine learning classification algorithms. Unlike "black-box" algorithms like deep neural networks, GP models are interpretable, therefore, our analysis shows that these methods can help dermatologists identify prominent skin image features. Further, it can help researchers identify suitable feature extraction methods for images captured from a specific instrument. Being fast, these methods can be deployed for making a quick and effective diagnosis in actual clinic situations. |
| ArticleNumber | 116680 |
| Author | Xue, Bing Zhang, Mengjie Al-Sahaf, Harith Ain, Qurrat Ul |
| Author_xml | – sequence: 1 givenname: Qurrat Ul orcidid: 0000-0002-6891-9887 surname: Ain fullname: Ain, Qurrat Ul email: qurrat.ul.ain@ecs.vuw.ac.nz – sequence: 2 givenname: Harith orcidid: 0000-0003-4633-6135 surname: Al-Sahaf fullname: Al-Sahaf, Harith email: harith.al-sahaf@ecs.vuw.ac.nz – sequence: 3 givenname: Bing surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz – sequence: 4 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxJxgOx92JBaooCBVYoHZul7syqFxip2C-Pc4hImB6Ya75-7eZ0FmrneakEtGM0ZZdd1mOnxCxinnGWNVJekJmTMp8rQSdT4jc1qXIi2YKM7IIoSWUiYoFXNyt9ZODxaTg-93HrrOul1iep_Aceg7GDvhzboEwaH2ie1gpxPcQwjWWIz93p2TUwP7oC9-65K8Pty_rB7TzfP6aXW7STEXfEhLjhoZNGCMkUxjtaVQb3OoEQRsJSuanJYlFobyAoQAQKp5wyWWjIqmqfIluZr2xlffjzoMqu2P3sWTilel5FLKQsQpOU2h70Pw2ii0w8-fgwe7V4yq0Zhq1WhMjcbUZCyi_A968DGw__ofupkgHaN_WO1VQKujrMZ6jYNqevsf_g35iofy |
| CitedBy_id | crossref_primary_10_1142_S2196888823500197 crossref_primary_10_1016_j_eswa_2025_128426 crossref_primary_10_3390_app14166923 crossref_primary_10_1007_s40747_025_02004_6 crossref_primary_10_1007_s12293_025_00472_4 crossref_primary_10_3390_app12136661 crossref_primary_10_1016_j_eswa_2024_124958 crossref_primary_10_1007_s11356_023_28576_9 crossref_primary_10_1016_j_bspc_2023_105618 crossref_primary_10_1080_0952813X_2023_2183267 crossref_primary_10_1109_TEVC_2022_3225509 crossref_primary_10_1007_s11831_023_10005_2 crossref_primary_10_1109_ACCESS_2025_3565462 crossref_primary_10_1109_TCYB_2022_3182474 crossref_primary_10_1007_s10710_024_09497_z crossref_primary_10_1007_s11042_023_16529_w |
| Cites_doi | 10.1016/j.artmed.2019.101756 10.1016/j.eswa.2017.08.010 10.1016/0031-3203(95)00067-4 10.1109/83.242353 10.1109/TMI.2016.2633551 10.1109/JTEHM.2017.2648797 10.1038/nature21056 10.1109/TITB.2009.2017529 10.1007/s12293-015-0173-y 10.1049/iet-ipr.2015.0385 10.1109/TEVC.2004.825567 10.1109/TBME.2014.2348323 10.1109/ACCESS.2020.3003890 10.1145/1656274.1656278 10.1001/archderm.134.12.1563 10.1109/TITB.2012.2212282 10.1162/089976603321891855 10.1109/TEVC.2015.2504420 10.1109/TMI.2016.2642839 10.1038/nature14544 10.1109/TEVC.2017.2657556 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2022.116680 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_116680 S0957417422001634 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c372t-52cec1adafff81ec6b0a9b3a9ca7ab814d3055c4f024a77aac0e2d28c5107dd63 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792297500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 08:34:57 EST 2025 Sat Nov 29 07:04:11 EST 2025 Tue Nov 18 20:55:30 EST 2025 Fri Feb 23 02:39:55 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimensionality reduction Feature selection Feature construction Genetic programming Image classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-52cec1adafff81ec6b0a9b3a9ca7ab814d3055c4f024a77aac0e2d28c5107dd63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6891-9887 0000-0003-4633-6135 0000-0003-4463-9538 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Genetic_programming_for_automatic_skin_cancer_image_classification/25814785 |
| PQID | 2658288847 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2658288847 crossref_citationtrail_10_1016_j_eswa_2022_116680 crossref_primary_10_1016_j_eswa_2022_116680 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116680 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ain, Xue, Al-Sahaf, Zhang (b5) 2019 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b18) 2009; 11 Tran, Xue, Zhang (b43) 2015; 8 Matthews, Li, Qureshi, Weinstock, Cho (b29) 2017 Shimizu, Iyatomi, Celebi, Norton, Tanaka (b39) 2015; 62 Lensen, Al-Sahaf, Zhang, Xue (b27) 2016 Choi, Choi (b13) 2010 Zhang, Ciesielski, Andreae (b50) 2003 Zhang, Cai, Wang, Tian, Wang, Badami (b49) 2020; 102 Tackett (b42) 1993 Menegola, Fornaciali, Pires, Bittencourt, Avila, Valle (b31) 2017 Poli (b36) 1996 Ain, Xue, Al-Sahaf, Zhang (b4) 2018 Mendonça, Ferreira, Marques, Marcal, Rozeira (b30) 2013 Perez, Vasconcelos, Avila, Valle (b35) 2018 Harangi, Baran, Hajdu (b19) 2018 Stolz, Riemann, Cognetta, Pillet, Abmayr, Holzel, Bilek, Nachbar, Landthaler (b41) 1994; 4 Chang, Kuo (b12) 1993; 2 Kawahara, BenTaieb, Hamarneh (b23) 2016 Barata, Marques (b11) 2019 Ahmed, Zhang, Peng, Xue (b1) 2014 Eiben, Smith (b15) 2015; 521 Esteva, Kuprel (b16) 2017; 542 Koza (b25) 1992 Iqbal, Xue, Al-Sahaf, Zhang (b20) 2017; 21 Siegel, Miller, Jemal (b40) 2019; 69 Codella, Cai, Abedini, Garnavi, Halpern, Smith (b14) 2015 Ain, Xue, Al-Sahaf, Zhang (b3) 2017 Al-Sahaf, Xue, Zhang (b7) 2017 Kasmi, Mokrani (b21) 2016; 10 Al-Sahaf, Al-Sahaf, Xue, Johnston, Zhang (b6) 2017; 21 Maglogiannis, Doukas (b28) 2009; 13 Ballerini, Fisher, Aldridge, Rees (b10) 2013 Keerthi, Lin (b24) 2003; 15 Satheesha, Satyanarayana, Prasad, Dhruve (b38) 2017; 5 Xie, Fan, Li, Jiang, Meng, Bovik (b46) 2017; 36 Ain, Al-Sahaf, Xue, Zhang (b2) 2018; 11320 Xue, Zhang, Browne, Yao (b47) 2016; 20 Argenziano, Fabbrocini, Carli, De Giorgi, Sammarco, Delfino (b9) 1998; 134 Ryan, Krawiec, O’Reilly, Fitzgerald, Medernach (b37) 2014 Tran, Zhang, Xue (b44) 2016 Oltean, Dumitrescu (b34) 2006 Yu, Chen, Dou, Qin, Heng (b48) 2017; 36 Ojala, Pietikäinen, Harwood (b33) 1996; 29 Kassem, Hosny, Fouad (b22) 2020; 8 Koza, Poli (b26) 2003; vol. 8 Muni, Pal, Das (b32) 2004; 8 Valle, Fornaciali, Menegola, Tavares, Bittencourt, Li, Avila (b45) 2017 Garnavi, Aldeen, Bailey (b17) 2012; 16 Alfed, Khelifi (b8) 2017; 90 Tran (10.1016/j.eswa.2022.116680_b43) 2015; 8 Alfed (10.1016/j.eswa.2022.116680_b8) 2017; 90 Oltean (10.1016/j.eswa.2022.116680_b34) 2006 Keerthi (10.1016/j.eswa.2022.116680_b24) 2003; 15 Ain (10.1016/j.eswa.2022.116680_b4) 2018 Choi (10.1016/j.eswa.2022.116680_b13) 2010 Mendonça (10.1016/j.eswa.2022.116680_b30) 2013 Valle (10.1016/j.eswa.2022.116680_b45) 2017 Koza (10.1016/j.eswa.2022.116680_b26) 2003; vol. 8 Matthews (10.1016/j.eswa.2022.116680_b29) 2017 Harangi (10.1016/j.eswa.2022.116680_b19) 2018 Chang (10.1016/j.eswa.2022.116680_b12) 1993; 2 Iqbal (10.1016/j.eswa.2022.116680_b20) 2017; 21 Muni (10.1016/j.eswa.2022.116680_b32) 2004; 8 Stolz (10.1016/j.eswa.2022.116680_b41) 1994; 4 Zhang (10.1016/j.eswa.2022.116680_b50) 2003 Yu (10.1016/j.eswa.2022.116680_b48) 2017; 36 Codella (10.1016/j.eswa.2022.116680_b14) 2015 Shimizu (10.1016/j.eswa.2022.116680_b39) 2015; 62 Ain (10.1016/j.eswa.2022.116680_b5) 2019 Kassem (10.1016/j.eswa.2022.116680_b22) 2020; 8 Maglogiannis (10.1016/j.eswa.2022.116680_b28) 2009; 13 Ojala (10.1016/j.eswa.2022.116680_b33) 1996; 29 Ryan (10.1016/j.eswa.2022.116680_b37) 2014 Garnavi (10.1016/j.eswa.2022.116680_b17) 2012; 16 Argenziano (10.1016/j.eswa.2022.116680_b9) 1998; 134 Zhang (10.1016/j.eswa.2022.116680_b49) 2020; 102 Satheesha (10.1016/j.eswa.2022.116680_b38) 2017; 5 Poli (10.1016/j.eswa.2022.116680_b36) 1996 Al-Sahaf (10.1016/j.eswa.2022.116680_b7) 2017 Kasmi (10.1016/j.eswa.2022.116680_b21) 2016; 10 Tackett (10.1016/j.eswa.2022.116680_b42) 1993 Al-Sahaf (10.1016/j.eswa.2022.116680_b6) 2017; 21 Ain (10.1016/j.eswa.2022.116680_b2) 2018; 11320 Menegola (10.1016/j.eswa.2022.116680_b31) 2017 Hall (10.1016/j.eswa.2022.116680_b18) 2009; 11 Ahmed (10.1016/j.eswa.2022.116680_b1) 2014 Tran (10.1016/j.eswa.2022.116680_b44) 2016 Perez (10.1016/j.eswa.2022.116680_b35) 2018 Siegel (10.1016/j.eswa.2022.116680_b40) 2019; 69 Xue (10.1016/j.eswa.2022.116680_b47) 2016; 20 Ain (10.1016/j.eswa.2022.116680_b3) 2017 Ballerini (10.1016/j.eswa.2022.116680_b10) 2013 Kawahara (10.1016/j.eswa.2022.116680_b23) 2016 Lensen (10.1016/j.eswa.2022.116680_b27) 2016 Koza (10.1016/j.eswa.2022.116680_b25) 1992 Xie (10.1016/j.eswa.2022.116680_b46) 2017; 36 Barata (10.1016/j.eswa.2022.116680_b11) 2019 Esteva (10.1016/j.eswa.2022.116680_b16) 2017; 542 Eiben (10.1016/j.eswa.2022.116680_b15) 2015; 521 |
| References_xml | – volume: 20 start-page: 606 year: 2016 end-page: 626 ident: b47 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Transactions on Evolutionary Computation – start-page: 4353 year: 2010 end-page: 4356 ident: b13 article-title: Computer-aided detection of pulmonary nodules using genetic programming publication-title: Proceedings of the international conference on image processing – start-page: 118 year: 2015 end-page: 126 ident: b14 article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images publication-title: International workshop on machine learning in medical imaging – start-page: 1 year: 2016 end-page: 8 ident: b44 article-title: Multiple feature construction in classification on high-dimensional data using GP publication-title: 2016 IEEE symposium series on computational intelligence (SSCI) – start-page: 841 year: 2019 end-page: 845 ident: b11 article-title: Deep learning for skin cancer diagnosis with hierarchical architectures publication-title: Proceedings of the international symposium on biomedical imaging – year: 1992 ident: b25 article-title: Genetic programming: On the programming of computers by means of natural selection – volume: 16 start-page: 1239 year: 2012 end-page: 1252 ident: b17 article-title: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 4 start-page: 521 year: 1994 end-page: 527 ident: b41 article-title: ABCD Rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma publication-title: European Journal of Dermatology – year: 2017 ident: b29 article-title: Epidemiology of melanoma publication-title: Cutaneous Melanoma: Etiology and Therapy [Internet] – volume: 102 start-page: 101756 year: 2020 ident: b49 article-title: Skin cancer diagnosis based on optimized convolutional neural network publication-title: Artificial Intelligence in Medicine – volume: 11320 start-page: 111 year: 2018 end-page: 123 ident: b2 article-title: A multi-tree genetic programming representation for melanoma detection using local and global features publication-title: Proceedings of the 31st australasian joint conference on artificial intelligence – volume: 10 start-page: 448 year: 2016 end-page: 455 ident: b21 article-title: Classification of malignant melanoma and benign skin lesions: Implementation of automatic ABCD rule publication-title: IET Image Processing – start-page: 303 year: 2018 end-page: 311 ident: b35 article-title: Data augmentation for skin lesion analysis publication-title: OR 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis – start-page: 499 year: 2017 end-page: 511 ident: b7 article-title: A multitree genetic programming representation for automatically evolving texture image descriptors publication-title: Asia-pacific conference on simulated evolution and learning – volume: 69 start-page: 7 year: 2019 end-page: 34 ident: b40 article-title: Cancer statistics, 2019 publication-title: CA: A Cancer Journal for Clinicians – start-page: 1 year: 2019 end-page: 6 ident: b5 article-title: Genetic programming for multiple feature construction in skin cancer image classification publication-title: Proceedings of the 34th international conference on image and vision computing New Zealand – volume: 134 start-page: 1563 year: 1998 end-page: 1570 ident: b9 article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis publication-title: Archives of Dermatology – volume: vol. 8 year: 2003 ident: b26 article-title: A genetic programming tutorial publication-title: Introductory tutorials in optimization, search and decision support – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: b16 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 8 start-page: 114822 year: 2020 end-page: 114832 ident: b22 article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning publication-title: IEEE Access – start-page: 303 year: 1993 end-page: 311 ident: b42 article-title: Genetic programming for feature discovery and image discrimination publication-title: Proceedings of the 5th international conference on genetic algorithms – start-page: 2420 year: 2017 end-page: 2427 ident: b3 article-title: Genetic programming for skin cancer detection in dermoscopic images publication-title: Proceedings of the Congress on Evolutionary Computation – start-page: 363 year: 1996 end-page: 368 ident: b36 article-title: Genetic programming for image analysis publication-title: Proceedings of the 1st annual conference on genetic programming – volume: 62 start-page: 274 year: 2015 end-page: 283 ident: b39 article-title: Four-class classification of skin lesions with task decomposition strategy publication-title: IEEE Transactions on Biomedical Engineering – start-page: 297 year: 2017 end-page: 300 ident: b31 article-title: Knowledge transfer for melanoma screening with deep learning publication-title: Proceedings of the 14th international symposium on biomedical imaging – volume: 36 start-page: 849 year: 2017 end-page: 858 ident: b46 article-title: Melanoma classification on dermoscopy images using a neural network ensemble model publication-title: IEEE Transactions on Medical Imaging – volume: 2 start-page: 429 year: 1993 end-page: 441 ident: b12 article-title: Texture analysis and classification with tree-structured wavelet transform publication-title: IEEE Transactions on Image Processing – start-page: 51 year: 2016 end-page: 67 ident: b27 article-title: Genetic programming for region detection, feature extraction, feature construction and classification in image data publication-title: Proceedings of the european conference on genetic programming – volume: 8 start-page: 3 year: 2015 end-page: 15 ident: b43 article-title: Genetic programming for feature construction and selection in classification on high-dimensional data publication-title: Memetic Computing – volume: 36 start-page: 994 year: 2017 end-page: 1004 ident: b48 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Transactions on Medical Imaging – start-page: 63 year: 2013 end-page: 86 ident: b10 article-title: A color and texture based hierarchical k-NN approach to the classification of non-melanoma skin lesions publication-title: Color medical image analysis – start-page: 162 year: 2014 end-page: 173 ident: b37 article-title: Building a stage 1 computer aided detector for breast cancer using genetic programming publication-title: Proceedings of the european conference on genetic programming – volume: 21 start-page: 83 year: 2017 end-page: 101 ident: b6 article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming publication-title: IEEE Transactions on Evolutionary Computation – start-page: 249 year: 2014 end-page: 256 ident: b1 article-title: Multiple feature construction for effective biomarker identification and classification using genetic programming publication-title: Proceedings of the 2014 annual conference on genetic and evolutionary computation – start-page: 841 year: 2003 end-page: -859 ident: b50 article-title: A domain-independent window approach to multiclass object detection using genetic programming publication-title: EURASIP Journal on Advances in Signal Processing – volume: 21 start-page: 569 year: 2017 end-page: 587 ident: b20 article-title: Cross-domain reuse of extracted knowledge in genetic programming for image classification publication-title: IEEE Transactions on Evolutionary Computation – volume: 5 start-page: 1 year: 2017 end-page: 17 ident: b38 article-title: Melanoma is Skin Deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification publication-title: IEEE Journal of Translational Engineering in Health and Medicine – start-page: 1397 year: 2016 end-page: 1400 ident: b23 article-title: Deep features to classify skin lesions publication-title: Proceedings of the 13th international symposium on biomedical imaging – volume: 15 start-page: 1667 year: 2003 end-page: 1689 ident: b24 article-title: Asymptotic behaviors of support vector machines with Gaussian kernel publication-title: Neural Computation – start-page: 5437 year: 2013 end-page: 5440 ident: b30 article-title: PH publication-title: Proceedings of the 35th annual international conference of the IEEE engineering in medicine and biology society – volume: 521 start-page: 476 year: 2015 ident: b15 article-title: From evolutionary computation to the evolution of things publication-title: Nature – start-page: 2575 year: 2018 end-page: 2578 ident: b19 article-title: Classification of skin lesions using an ensemble of deep neural networks publication-title: Proceddings of the 40th annual international conference of the IEEE engineering in medicine and biology society – volume: 90 start-page: 101 year: 2017 end-page: 110 ident: b8 article-title: Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images publication-title: Expert Systems with Applications – volume: 13 start-page: 721 year: 2009 end-page: 733 ident: b28 article-title: Overview of advanced computer vision systems for skin lesions characterization publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: b33 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognition – year: 2006 ident: b34 article-title: Multi expression programming – volume: 8 start-page: 183 year: 2004 end-page: 196 ident: b32 article-title: A novel approach to design classifiers using genetic programming publication-title: IEEE Transactions on Evolutionary Computation – start-page: 770 year: 2017 end-page: 778 ident: b45 article-title: Data, depth, and design: Learning reliable models for melanoma screening – start-page: 732 year: 2018 end-page: 745 ident: b4 article-title: Genetic programming for feature selection and feature construction in skin cancer image classification publication-title: Proceedings of the 15th pacific rim international conference on artificial intelligence – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: b18 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations Newsletter – volume: 102 start-page: 101756 year: 2020 ident: 10.1016/j.eswa.2022.116680_b49 article-title: Skin cancer diagnosis based on optimized convolutional neural network publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2019.101756 – start-page: 841 issue: 8 year: 2003 ident: 10.1016/j.eswa.2022.116680_b50 article-title: A domain-independent window approach to multiclass object detection using genetic programming publication-title: EURASIP Journal on Advances in Signal Processing – volume: 90 start-page: 101 year: 2017 ident: 10.1016/j.eswa.2022.116680_b8 article-title: Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.010 – year: 2006 ident: 10.1016/j.eswa.2022.116680_b34 – start-page: 303 year: 2018 ident: 10.1016/j.eswa.2022.116680_b35 article-title: Data augmentation for skin lesion analysis – start-page: 2420 year: 2017 ident: 10.1016/j.eswa.2022.116680_b3 article-title: Genetic programming for skin cancer detection in dermoscopic images – start-page: 162 year: 2014 ident: 10.1016/j.eswa.2022.116680_b37 article-title: Building a stage 1 computer aided detector for breast cancer using genetic programming – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 10.1016/j.eswa.2022.116680_b33 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00067-4 – volume: 2 start-page: 429 issue: 4 year: 1993 ident: 10.1016/j.eswa.2022.116680_b12 article-title: Texture analysis and classification with tree-structured wavelet transform publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.242353 – volume: 36 start-page: 849 issue: 3 year: 2017 ident: 10.1016/j.eswa.2022.116680_b46 article-title: Melanoma classification on dermoscopy images using a neural network ensemble model publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2633551 – start-page: 4353 year: 2010 ident: 10.1016/j.eswa.2022.116680_b13 article-title: Computer-aided detection of pulmonary nodules using genetic programming – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2022.116680_b38 article-title: Melanoma is Skin Deep: A 3D reconstruction technique for computerized dermoscopic skin lesion classification publication-title: IEEE Journal of Translational Engineering in Health and Medicine doi: 10.1109/JTEHM.2017.2648797 – volume: vol. 8 year: 2003 ident: 10.1016/j.eswa.2022.116680_b26 article-title: A genetic programming tutorial – start-page: 363 year: 1996 ident: 10.1016/j.eswa.2022.116680_b36 article-title: Genetic programming for image analysis – start-page: 249 year: 2014 ident: 10.1016/j.eswa.2022.116680_b1 article-title: Multiple feature construction for effective biomarker identification and classification using genetic programming – start-page: 2575 year: 2018 ident: 10.1016/j.eswa.2022.116680_b19 article-title: Classification of skin lesions using an ensemble of deep neural networks – volume: 69 start-page: 7 issue: 1 year: 2019 ident: 10.1016/j.eswa.2022.116680_b40 article-title: Cancer statistics, 2019 publication-title: CA: A Cancer Journal for Clinicians – volume: 4 start-page: 521 issue: 7 year: 1994 ident: 10.1016/j.eswa.2022.116680_b41 article-title: ABCD Rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma publication-title: European Journal of Dermatology – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.eswa.2022.116680_b16 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – start-page: 732 year: 2018 ident: 10.1016/j.eswa.2022.116680_b4 article-title: Genetic programming for feature selection and feature construction in skin cancer image classification – volume: 13 start-page: 721 issue: 5 year: 2009 ident: 10.1016/j.eswa.2022.116680_b28 article-title: Overview of advanced computer vision systems for skin lesions characterization publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2017529 – start-page: 770 year: 2017 ident: 10.1016/j.eswa.2022.116680_b45 – start-page: 1397 year: 2016 ident: 10.1016/j.eswa.2022.116680_b23 article-title: Deep features to classify skin lesions – volume: 8 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.eswa.2022.116680_b43 article-title: Genetic programming for feature construction and selection in classification on high-dimensional data publication-title: Memetic Computing doi: 10.1007/s12293-015-0173-y – volume: 11320 start-page: 111 year: 2018 ident: 10.1016/j.eswa.2022.116680_b2 article-title: A multi-tree genetic programming representation for melanoma detection using local and global features – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2022.116680_b44 article-title: Multiple feature construction in classification on high-dimensional data using GP – start-page: 5437 year: 2013 ident: 10.1016/j.eswa.2022.116680_b30 article-title: PH2 - A Dermoscopic image database for research and benchmarking – volume: 10 start-page: 448 issue: 6 year: 2016 ident: 10.1016/j.eswa.2022.116680_b21 article-title: Classification of malignant melanoma and benign skin lesions: Implementation of automatic ABCD rule publication-title: IET Image Processing doi: 10.1049/iet-ipr.2015.0385 – start-page: 303 year: 1993 ident: 10.1016/j.eswa.2022.116680_b42 article-title: Genetic programming for feature discovery and image discrimination – year: 1992 ident: 10.1016/j.eswa.2022.116680_b25 – start-page: 499 year: 2017 ident: 10.1016/j.eswa.2022.116680_b7 article-title: A multitree genetic programming representation for automatically evolving texture image descriptors – volume: 8 start-page: 183 issue: 2 year: 2004 ident: 10.1016/j.eswa.2022.116680_b32 article-title: A novel approach to design classifiers using genetic programming publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.825567 – start-page: 841 year: 2019 ident: 10.1016/j.eswa.2022.116680_b11 article-title: Deep learning for skin cancer diagnosis with hierarchical architectures – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2022.116680_b5 article-title: Genetic programming for multiple feature construction in skin cancer image classification – volume: 62 start-page: 274 issue: 1 year: 2015 ident: 10.1016/j.eswa.2022.116680_b39 article-title: Four-class classification of skin lesions with task decomposition strategy publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2014.2348323 – volume: 8 start-page: 114822 year: 2020 ident: 10.1016/j.eswa.2022.116680_b22 article-title: Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003890 – start-page: 63 year: 2013 ident: 10.1016/j.eswa.2022.116680_b10 article-title: A color and texture based hierarchical k-NN approach to the classification of non-melanoma skin lesions – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.eswa.2022.116680_b18 article-title: The WEKA data mining software: An update publication-title: SIGKDD Explorations Newsletter doi: 10.1145/1656274.1656278 – volume: 134 start-page: 1563 issue: 12 year: 1998 ident: 10.1016/j.eswa.2022.116680_b9 article-title: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis publication-title: Archives of Dermatology doi: 10.1001/archderm.134.12.1563 – volume: 16 start-page: 1239 issue: 6 year: 2012 ident: 10.1016/j.eswa.2022.116680_b17 article-title: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2012.2212282 – volume: 15 start-page: 1667 issue: 7 year: 2003 ident: 10.1016/j.eswa.2022.116680_b24 article-title: Asymptotic behaviors of support vector machines with Gaussian kernel publication-title: Neural Computation doi: 10.1162/089976603321891855 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 10.1016/j.eswa.2022.116680_b47 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2504420 – start-page: 51 year: 2016 ident: 10.1016/j.eswa.2022.116680_b27 article-title: Genetic programming for region detection, feature extraction, feature construction and classification in image data – volume: 36 start-page: 994 issue: 4 year: 2017 ident: 10.1016/j.eswa.2022.116680_b48 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2642839 – volume: 521 start-page: 476 issue: 7553 year: 2015 ident: 10.1016/j.eswa.2022.116680_b15 article-title: From evolutionary computation to the evolution of things publication-title: Nature doi: 10.1038/nature14544 – year: 2017 ident: 10.1016/j.eswa.2022.116680_b29 article-title: Epidemiology of melanoma – start-page: 118 year: 2015 ident: 10.1016/j.eswa.2022.116680_b14 article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images – volume: 21 start-page: 569 issue: 4 year: 2017 ident: 10.1016/j.eswa.2022.116680_b20 article-title: Cross-domain reuse of extracted knowledge in genetic programming for image classification publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2657556 – start-page: 297 year: 2017 ident: 10.1016/j.eswa.2022.116680_b31 article-title: Knowledge transfer for melanoma screening with deep learning – volume: 21 start-page: 83 issue: 1 year: 2017 ident: 10.1016/j.eswa.2022.116680_b6 article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming publication-title: IEEE Transactions on Evolutionary Computation |
| SSID | ssj0017007 |
| Score | 2.5303984 |
| Snippet | Developing a computer-aided diagnostic system for detecting various types of skin malignancies from images has attracted many researchers. However, analyzing... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116680 |
| SubjectTerms | Algorithms Artificial neural networks Classification Diagnostic systems Dimensionality reduction Feature construction Feature extraction Feature selection Genetic algorithms Genetic programming Image classification Machine learning Medical imaging Neural networks Performance enhancement System effectiveness |
| Title | Genetic programming for automatic skin cancer image classification |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.116680 https://www.proquest.com/docview/2658288847 |
| Volume | 197 |
| WOSCitedRecordID | wos000792297500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXapYdeKLRFpXzIB26roMT5sHNcKhCgChUB0t4sx3HEbpeAkizl5zOOHWdZBCoHLlEUJZbleRmPx89vENpLVBbnvq88kWWFF1Hqe4JIuAtjXwgVQsjbquv_pmdnbDxO_9hUdt2WE6BlyR4e0rt3NTU8A2Pro7NvMLdrFB7APRgdrmB2uP6X4bWQtFZhtcyrG0eVnDe3Rp-1_qvJ59rc1XByo0k7UsfQmjTU22nqOHqqaqzgc3cUbmHT2wHGaBGczyuA1PDK8TZGM-9CXItW-vEY1uWNSz-P520u9aCbOxez15prO52oxZQE6emrfW6RelFgyu84N2t4uNZRBkGSmBJOz3y4SSdM91X9TwtDEbLfv_xUMHtpInP0wo65NuW6Da7b4KaNj2iFwArJH6CV0cnh-NRtOFHfnKzvem7PVxkq4HJPXophlmbzNkS5XEOrdm2BRwYT6-iDKr-iL13dDmzd-Dd0YCGCFyCCASLYQQRriGADEdxCBD-FyHd0dXR4-evYs7U0PBlS0ngxkUoGIhdFUbBAySTzRZqFIpWCiowFUa6l32RUQMwmKBVC-orkhEnw2TTPk3ADDcrbUv1AOGUU4mQqkyIKo0KkjFCmaJyRIIsKWE5soqAbHS6t0LyudzLjL9tlEw3dN3dGZuXVt-Nu0LkNFE0AyAFDr3633VmI2z-25iTRO8cMorSfb-rEFvrcY38bDZpqrnbQJ3nfTOpq1-LrEWfMlLY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+programming+for+automatic+skin+cancer+image+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Ain%2C+Qurrat+Ul&rft.au=Al-Sahaf%2C+Harith&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2022-07-01&rft.issn=0957-4174&rft.volume=197&rft.spage=116680&rft_id=info:doi/10.1016%2Fj.eswa.2022.116680&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116680 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |