Numerical solution of nonlinear differential boundary value problems using adaptive non-overlapping domain decomposition method
This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we sho...
Uloženo v:
| Vydáno v: | Applicable analysis Ročník 101; číslo 6; s. 2044 - 2065 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
13.04.2022
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0003-6811, 1563-504X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we show the existence of a non-negative weak solution if we assume the existence of a super-solution. Second, we present a numerical algorithm to compute an approximation of the non-negative weak solution. The proposed algorithm is decomposed in two steps, the first one is devoted to computing a super-solution, and in the second one, the algorithm computes a sequence of solutions of an intermediate problem obtained by using the Yosida approximation of the nonlinearity. This sequence converges to the non-negative weak solution of the nonlinear equation. The numerical method is an application of the Newton method to the discretized version of the problem, but at each iteration, the resulting system can be indefinite. To overcome this difficulty, we introduce an adaptive non-overlapping domain decomposition method. |
|---|---|
| AbstractList | This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we show the existence of a non-negative weak solution if we assume the existence of a super-solution. Second, we present a numerical algorithm to compute an approximation of the non-negative weak solution. The proposed algorithm is decomposed in two steps, the first one is devoted to computing a super-solution, and in the second one, the algorithm computes a sequence of solutions of an intermediate problem obtained by using the Yosida approximation of the nonlinearity. This sequence converges to the non-negative weak solution of the nonlinear equation. The numerical method is an application of the Newton method to the discretized version of the problem, but at each iteration, the resulting system can be indefinite. To overcome this difficulty, we introduce an adaptive non-overlapping domain decomposition method. |
| Author | Roche, Jean R. Khenissi, Moez Naceur, Nahed |
| Author_xml | – sequence: 1 givenname: Nahed surname: Naceur fullname: Naceur, Nahed email: nahed.naceur@univ-lorraine.fr organization: Université de Lorraine, CNRS, IECL – sequence: 2 givenname: Moez surname: Khenissi fullname: Khenissi, Moez organization: ESST Hammam Sousse, LAMMDA, Université de Sousse – sequence: 3 givenname: Jean R. surname: Roche fullname: Roche, Jean R. organization: Université de Lorraine, CNRS, IECL |
| BackLink | https://hal.science/hal-02930177$$DView record in HAL |
| BookMark | eNqFkUtv1TAQhS1UJG4LPwEpEisWaf2InVhsqCqgSFewAYmdNX5RV44d7ORWXfHXSXrbDQtYjTTznZk5OqfoJOXkEHpN8DnBA77AGDMxEHJOMV1bA8aik8_QjnDBWo67HydotzHtBr1Ap7XeYkzowMUO_f6yjK4EA7GpOS5zyKnJvlkvxJAclMYG711xaQ4rovOSLJT75gBxcc1Uso5urM1SQ_rZgIVpDge3qdt8cCXCNG0Dm0cIqbHO5HHKNTxcGd18k-1L9NxDrO7VYz1D3z9--HZ13e6_fvp8dblvDevp3HKqKZfeUAtEOk40GI0FY45TAcRLzawlepACuBi00BIMEMx9L3sOzGB2ht4e995AVFMJ4-pCZQjq-nKvth6mkmHS9weysm-O7Orv1-LqrG7zUtL6nqKCc9mJrqMr9e5ImZJrLc4rE2bYrM0FQlQEqy0d9ZSO2tJRj-msav6X-ump_-neH3Uh-VxGuMslWjXDfczFF0gmVMX-veIPaPyq0A |
| CitedBy_id | crossref_primary_10_1080_00036811_2025_2521803 |
| Cites_doi | 10.1007/s00009-005-0048-4 10.1093/oso/9780198501787.001.0001 10.1007/978-3-662-08542-4 10.1137/0728010 10.1137/0723038 10.1007/BF00249679 10.1080/01630569208816491 10.1007/s002110050168 10.1007/978-3-540-77209-5 10.7494/OpMath.2014.34.2.387 10.1051/m2an:2001104 10.1137/0730049 10.1137/0913013 10.1137/0914014 10.1023/A:1017571906739 10.1512/iumj.1978.27.27050 10.1007/978-3-642-61317-3_13 10.1137/1023039 10.1145/502800.502801 10.1137/0908047 10.1016/0362-546X(89)90045-X 10.1017/CBO9780511615542 10.1515/JAA.2005.81 10.1137/1.9781611971231 10.1006/jmaa.2000.7163 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 1XC |
| DOI | 10.1080/00036811.2020.1800649 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1563-504X |
| EndPage | 2065 |
| ExternalDocumentID | oai:HAL:hal-02930177v1 10_1080_00036811_2020_1800649 1800649 |
| Genre | Research Article |
| GroupedDBID | --Z -~X .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABUFD ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ~S~ AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 1XC |
| ID | FETCH-LOGICAL-c372t-52b259fc2da19e51bacb0633e526a1f9b3dd1b896a568b6b9aca105f7975a3c03 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556067900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-6811 |
| IngestDate | Wed Nov 05 07:39:39 EST 2025 Wed Aug 13 06:51:22 EDT 2025 Tue Nov 18 21:22:24 EST 2025 Sat Nov 29 05:34:57 EST 2025 Mon Oct 20 23:48:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | nonlinear PDE's Nonlinear ODE's variational method domain decomposition finite elements |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-52b259fc2da19e51bacb0633e526a1f9b3dd1b896a568b6b9aca105f7975a3c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2655946442 |
| PQPubID | 53162 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2655946442 informaworld_taylorfrancis_310_1080_00036811_2020_1800649 crossref_citationtrail_10_1080_00036811_2020_1800649 hal_primary_oai_HAL_hal_02930177v1 crossref_primary_10_1080_00036811_2020_1800649 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-13 |
| PublicationDateYYYYMMDD | 2022-04-13 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Applicable analysis |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Cash JR (CIT0041) 2013; 39 H. Amann H (CIT0008) 1978; 7 CIT0032 CIT0031 CIT0034 Alaa N (CIT0011) 2005; 11 Alaa N (CIT0005) 2005; 2 Alaa N (CIT0012) 2001; 253 CIT0014 CIT0036 Bensoussan A (CIT0007) 1989; 5 CIT0013 CIT0038 CIT0037 Ghosh P. (CIT0039) 2018 Smith BF (CIT0015) 1996 CIT0017 Agmon S. (CIT0029) 1965 Hani H (CIT0004) 2015; 268 Mazzia F (CIT0040) 2014; 34 Ascher UM (CIT0033) 1981; 23 Boccardo L (CIT0009) 1989; 13 CIT0020 CIT0001 Badea L. (CIT0022) 1991; 28 CIT0023 Deuflhard P. (CIT0030) 2000 Baras P (CIT0010) 1984; 24 A. Quarteroni A (CIT0016) 1999 Hoffmann K-H (CIT0021) 1992; 13 Zou J (CIT0019) 1992; 10 CIT0003 CIT0025 CIT0002 CIT0024 Zou J. (CIT0018) 1987; 5 CIT0026 CIT0006 CIT0028 Lui SH. (CIT0027) 2001; 35 Ascher U. (CIT0035) 1986; 23 |
| References_xml | – volume: 2 start-page: 327 year: 2005 ident: CIT0005 publication-title: Mediterr J Math doi: 10.1007/s00009-005-0048-4 – ident: CIT0038 – volume-title: Domain decomposition methods for partial differential equations year: 1999 ident: CIT0016 doi: 10.1093/oso/9780198501787.001.0001 – ident: CIT0001 doi: 10.1007/978-3-662-08542-4 – ident: CIT0013 – volume: 28 start-page: 179 year: 1991 ident: CIT0022 publication-title: SIAM J Numer Anal doi: 10.1137/0728010 – volume: 23 start-page: 596 year: 1986 ident: CIT0035 publication-title: SIAM J Numer Anal doi: 10.1137/0723038 – ident: CIT0006 doi: 10.1007/BF00249679 – ident: CIT0020 doi: 10.1080/01630569208816491 – ident: CIT0026 doi: 10.1007/s002110050168 – ident: CIT0017 doi: 10.1007/978-3-540-77209-5 – volume: 34 start-page: 387 year: 2014 ident: CIT0040 publication-title: Opuscula Math doi: 10.7494/OpMath.2014.34.2.387 – volume: 35 start-page: 1 issue: 1 year: 2001 ident: CIT0027 publication-title: ESAIM: Math Modell Numer Anal doi: 10.1051/m2an:2001104 – volume: 10 start-page: 47 year: 1992 ident: CIT0019 publication-title: J Comput Math – ident: CIT0023 doi: 10.1137/0730049 – ident: CIT0024 doi: 10.1137/0913013 – volume: 39 year: 2013 ident: CIT0041 publication-title: ACM Trans Math Softw – ident: CIT0025 doi: 10.1137/0914014 – ident: CIT0031 doi: 10.1023/A:1017571906739 – volume-title: Lectures on elliptic boundary value problems year: 1965 ident: CIT0029 – volume: 7 start-page: 779 year: 1978 ident: CIT0008 publication-title: Indiana Univ Math J doi: 10.1512/iumj.1978.27.27050 – ident: CIT0002 doi: 10.1007/978-3-642-61317-3_13 – volume: 23 start-page: 238 year: 1981 ident: CIT0033 publication-title: SIAM Rev doi: 10.1137/1023039 – ident: CIT0036 doi: 10.1145/502800.502801 – volume-title: Newton methods for nonlinear problems year: 2000 ident: CIT0030 – ident: CIT0034 doi: 10.1137/0908047 – volume: 13 start-page: 373 year: 1989 ident: CIT0009 publication-title: Nonlinear Anal Theory Method Appl doi: 10.1016/0362-546X(89)90045-X – volume: 268 start-page: 1199 year: 2015 ident: CIT0004 publication-title: Appl Math Comput – ident: CIT0014 – volume-title: Numerical, symbolic and statistical computing for chemical engineers using MATLAB year: 2018 ident: CIT0039 – volume: 5 start-page: 347 year: 1989 ident: CIT0007 publication-title: Ann Inst Henri Poincaré – volume-title: Domain decomposition: parallel multilevel algorithms for elliptic partial differential equations year: 1996 ident: CIT0015 – ident: CIT0037 doi: 10.1017/CBO9780511615542 – ident: CIT0003 – volume: 11 start-page: 81 year: 2005 ident: CIT0011 publication-title: J Appl Anal doi: 10.1515/JAA.2005.81 – ident: CIT0032 doi: 10.1137/1.9781611971231 – ident: CIT0028 – volume: 24 start-page: 1985 year: 1984 ident: CIT0010 publication-title: Ann Fourier Grenoble – volume: 5 start-page: 325 year: 1987 ident: CIT0018 publication-title: J Comput Math – volume: 253 start-page: 532 year: 2001 ident: CIT0012 publication-title: J Math Anal Appl doi: 10.1006/jmaa.2000.7163 – volume: 13 start-page: 31 issue: 1 year: 1992 ident: CIT0021 publication-title: IMA J Numer Funct Anal |
| SSID | ssj0012856 |
| Score | 2.2320962 |
| Snippet | This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution... |
| SourceID | hal proquest crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2044 |
| SubjectTerms | Algorithms Analysis of PDEs Approximation Boundary value problems Decomposition domain decomposition Domain decomposition methods finite elements Iterative methods Mathematics Newton methods Nonlinear equations Nonlinear ODE's nonlinear PDE's Nonlinearity Numerical Analysis Numerical methods variational method |
| Title | Numerical solution of nonlinear differential boundary value problems using adaptive non-overlapping domain decomposition method |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00036811.2020.1800649 https://www.proquest.com/docview/2655946442 https://hal.science/hal-02930177 |
| Volume | 101 |
| WOSCitedRecordID | wos000556067900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1563-504X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012856 issn: 0003-6811 databaseCode: TFW dateStart: 19710401 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUo4tAeSoFWXUorq-o17TrOh31EVVcc6KoHULlZ4y-KtF3QZkHqqX-dGceJqBDiQK9WxnGc8XgmeX6PsU9RtbaxhJ7yLRQVAHFAClVghgSygiZKSOz6x-18rs7O9I-MJuwyrJJq6NgTRaRYTYsbbDcg4r4kEhUlqLorsUnRtkpH-DCzJx8_mf0c_yOUKum3kkVBJsMZnod6-Wd3evYrYSPvMpjei9hpG5pt_4cHeMVe5hyUH_ZOs8M2wnKXbed8lOfV3u2yF99HTtduj_2dX_d_dxZ88Fd-GfmyHwGs-KC1gjFjwW2Sa1r94cQmHnjWrek44ezPOXi4ojhL1gWBSBdAPBHn3F_-hosl94Gg7hlPxnuV69fsdPbt5OtRkeUbCifbco0lrsXaKrrSg9ChxpfvLCZEMtRlAyJqK70XVukG6kahw2hwgNlebHVbg3RT-YZt4ijCW8atc40Ep20lbFUFAbWW1k-VB-w0RDdh1fDajMvc5iSxsTBipEDtp9zQlJs85RP2eTS76sk9HjP4iD4xXkvU3EeHx4bappg3YXRrb8SE6bsuY9bp00vsdVKMfOQGB4N_mRxMOlM2WPZVmLiW-0_o-h17XtLRDeKplAdsc726Du_ZlrtZX3SrD2nZ3AI4hRUP |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoQYIeKBQQCwUsxDWwjvOwjxXqahHbPS2iN2v8SKm0bKvNthIn_npnHCdahFAP5RplHMcez8P-_A1jHxpV28oSesrXkBUAxAEpVIYREsgCqkZCZNef1fO5Oj3V23dhCFZJOXTTEUVEW02Lmzaje0jcp8iiogSldzk-UuRX9Q67X6KvJVjfYvJ9OEnIVazgSiIZyfS3eP7VzB_-aedHREduc5j-ZbOjI5rs_49feMIepzCUH3V685TdC6sDtp9CUp4WfHvA9k4GWtf2Gfs9v-oOeJa8V1l-0fBV1wVY877cCpqNJbexYtP6FydC8cBT6ZqWE9T-jIOHSzK1JJ0RjnQJRBVxxv3FTzhfcR8I7Z4gZbwrdP2cfZscLz5Ps1TBIXOyzjeY5VpMrxqXexA6lDj_zmJMJEOZVyAabaX3wipdQVkp1BkNDjDga2pdlyDdWL5gu9iL8JJx61wlwWlbCFsUQQBOtvVj5QEbDY0bsaKfN-MSvTlV2VgaMbCgdkNuaMhNGvIR-ziIXXb8HrcJvEelGN4ldu7p0czQszGGTmjg6msxYnpbZ8wm7r40XakUI2_5wGGvYCbZk9bkFWZ-Bcau-as7NP2OPZwuTmZm9mX-9TV7lNNNDqKtlIdsd7O-Cm_YA3e9OW_Xb-MaugGXLBkw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3RglA5UCigLhSwENfAJs6HfaxoV0Usqx6K6M0af5VKy3a12VbixF_H4zhREap6KFcr4zjOeDwTv7wH8N6LRtea0FO2waxEJA7IXGQhQ0JeYu05Rnb9aTObidNTeZzQhG2CVVIN7TuiiBiraXEvre8RcR8jiYrIqborQpOgbVVuwP1IjhVc-mTyfThIKEQUcCWTjGz6n3hu6uav7WnjRwRHXqcw_Sdkx31osv0fnuAJPE5JKNvvvOYp3HOLHdhOCSlLy73dgUdfB1LX9hn8nl12xztz1jssu_Bs0Y0AV6wXWwlBY8501Gta_WJEJ-5YEq5pGQHtzxhaXFKgJeuMUKRzJKKIM2YvfuL5gllHWPcEKGOdzPVz-DY5PPl0lCX9hszwpliHGleH4sqbwmIuXRXevtEhI-KuKmrMvdTc2lwLWWNVi-AxEg2GdM83sqmQmzF_AZthFG4XmDam5mikLnNdli7HSnJtx8Ji6NR5M4Kyf23KJHJz0tiYq3zgQO2mXNGUqzTlI_gwmC07do_bDN4FnxiuJW7uo_2porZxSJxCeGuu8hHI6y6j1vHbi--EUhS_5QZ7vX-pFE1aVdSh7itD5lq8vEPXb-Hh8cFETT_PvryCrYJ-4yDOSr4Hm-vVpXsND8zV-rxdvYkr6A8EyBfU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+nonlinear+differential+boundary+value+problems+using+adaptive+non-overlapping+domain+decomposition+method&rft.jtitle=Applicable+analysis&rft.au=Naceur%2C+Nahed&rft.au=Khenissi%2C+Moez&rft.au=Roche%2C+Jean&rft.date=2022-04-13&rft.pub=Taylor+%26+Francis&rft.issn=0003-6811&rft.eissn=1563-504X&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1080%2F00036811.2020.1800649&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02930177v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon |