Numerical solution of nonlinear differential boundary value problems using adaptive non-overlapping domain decomposition method

This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis Jg. 101; H. 6; S. 2044 - 2065
Hauptverfasser: Naceur, Nahed, Khenissi, Moez, Roche, Jean R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 13.04.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:0003-6811, 1563-504X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we show the existence of a non-negative weak solution if we assume the existence of a super-solution. Second, we present a numerical algorithm to compute an approximation of the non-negative weak solution. The proposed algorithm is decomposed in two steps, the first one is devoted to computing a super-solution, and in the second one, the algorithm computes a sequence of solutions of an intermediate problem obtained by using the Yosida approximation of the nonlinearity. This sequence converges to the non-negative weak solution of the nonlinear equation. The numerical method is an application of the Newton method to the discretized version of the problem, but at each iteration, the resulting system can be indefinite. To overcome this difficulty, we introduce an adaptive non-overlapping domain decomposition method.
AbstractList This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution and its first derivative. We assume that the source term can be non-smooth and the nonlinearity can grow faster than quadratic. First, we show the existence of a non-negative weak solution if we assume the existence of a super-solution. Second, we present a numerical algorithm to compute an approximation of the non-negative weak solution. The proposed algorithm is decomposed in two steps, the first one is devoted to computing a super-solution, and in the second one, the algorithm computes a sequence of solutions of an intermediate problem obtained by using the Yosida approximation of the nonlinearity. This sequence converges to the non-negative weak solution of the nonlinear equation. The numerical method is an application of the Newton method to the discretized version of the problem, but at each iteration, the resulting system can be indefinite. To overcome this difficulty, we introduce an adaptive non-overlapping domain decomposition method.
Author Roche, Jean R.
Khenissi, Moez
Naceur, Nahed
Author_xml – sequence: 1
  givenname: Nahed
  surname: Naceur
  fullname: Naceur, Nahed
  email: nahed.naceur@univ-lorraine.fr
  organization: Université de Lorraine, CNRS, IECL
– sequence: 2
  givenname: Moez
  surname: Khenissi
  fullname: Khenissi, Moez
  organization: ESST Hammam Sousse, LAMMDA, Université de Sousse
– sequence: 3
  givenname: Jean R.
  surname: Roche
  fullname: Roche, Jean R.
  organization: Université de Lorraine, CNRS, IECL
BackLink https://hal.science/hal-02930177$$DView record in HAL
BookMark eNqFkUtv1TAQhS1UJG4LPwEpEisWaf2InVhsqCqgSFewAYmdNX5RV44d7ORWXfHXSXrbDQtYjTTznZk5OqfoJOXkEHpN8DnBA77AGDMxEHJOMV1bA8aik8_QjnDBWo67HydotzHtBr1Ap7XeYkzowMUO_f6yjK4EA7GpOS5zyKnJvlkvxJAclMYG711xaQ4rovOSLJT75gBxcc1Uso5urM1SQ_rZgIVpDge3qdt8cCXCNG0Dm0cIqbHO5HHKNTxcGd18k-1L9NxDrO7VYz1D3z9--HZ13e6_fvp8dblvDevp3HKqKZfeUAtEOk40GI0FY45TAcRLzawlepACuBi00BIMEMx9L3sOzGB2ht4e995AVFMJ4-pCZQjq-nKvth6mkmHS9weysm-O7Orv1-LqrG7zUtL6nqKCc9mJrqMr9e5ImZJrLc4rE2bYrM0FQlQEqy0d9ZSO2tJRj-msav6X-ump_-neH3Uh-VxGuMslWjXDfczFF0gmVMX-veIPaPyq0A
CitedBy_id crossref_primary_10_1080_00036811_2025_2521803
Cites_doi 10.1007/s00009-005-0048-4
10.1093/oso/9780198501787.001.0001
10.1007/978-3-662-08542-4
10.1137/0728010
10.1137/0723038
10.1007/BF00249679
10.1080/01630569208816491
10.1007/s002110050168
10.1007/978-3-540-77209-5
10.7494/OpMath.2014.34.2.387
10.1051/m2an:2001104
10.1137/0730049
10.1137/0913013
10.1137/0914014
10.1023/A:1017571906739
10.1512/iumj.1978.27.27050
10.1007/978-3-642-61317-3_13
10.1137/1023039
10.1145/502800.502801
10.1137/0908047
10.1016/0362-546X(89)90045-X
10.1017/CBO9780511615542
10.1515/JAA.2005.81
10.1137/1.9781611971231
10.1006/jmaa.2000.7163
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
1XC
DOI 10.1080/00036811.2020.1800649
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1563-504X
EndPage 2065
ExternalDocumentID oai:HAL:hal-02930177v1
10_1080_00036811_2020_1800649
1800649
Genre Research Article
GroupedDBID --Z
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
1XC
ID FETCH-LOGICAL-c372t-52b259fc2da19e51bacb0633e526a1f9b3dd1b896a568b6b9aca105f7975a3c03
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556067900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-6811
IngestDate Wed Nov 05 07:39:39 EST 2025
Wed Aug 13 06:51:22 EDT 2025
Tue Nov 18 21:22:24 EST 2025
Sat Nov 29 05:34:57 EST 2025
Mon Oct 20 23:48:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords nonlinear PDE's
Nonlinear ODE's
variational method
domain decomposition
finite elements
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-52b259fc2da19e51bacb0633e526a1f9b3dd1b896a568b6b9aca105f7975a3c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2655946442
PQPubID 53162
PageCount 22
ParticipantIDs proquest_journals_2655946442
informaworld_taylorfrancis_310_1080_00036811_2020_1800649
crossref_citationtrail_10_1080_00036811_2020_1800649
hal_primary_oai_HAL_hal_02930177v1
crossref_primary_10_1080_00036811_2020_1800649
PublicationCentury 2000
PublicationDate 2022-04-13
PublicationDateYYYYMMDD 2022-04-13
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-13
  day: 13
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Applicable analysis
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Cash JR (CIT0041) 2013; 39
H. Amann H (CIT0008) 1978; 7
CIT0032
CIT0031
CIT0034
Alaa N (CIT0011) 2005; 11
Alaa N (CIT0005) 2005; 2
Alaa N (CIT0012) 2001; 253
CIT0014
CIT0036
Bensoussan A (CIT0007) 1989; 5
CIT0013
CIT0038
CIT0037
Ghosh P. (CIT0039) 2018
Smith BF (CIT0015) 1996
CIT0017
Agmon S. (CIT0029) 1965
Hani H (CIT0004) 2015; 268
Mazzia F (CIT0040) 2014; 34
Ascher UM (CIT0033) 1981; 23
Boccardo L (CIT0009) 1989; 13
CIT0020
CIT0001
Badea L. (CIT0022) 1991; 28
CIT0023
Deuflhard P. (CIT0030) 2000
Baras P (CIT0010) 1984; 24
A. Quarteroni A (CIT0016) 1999
Hoffmann K-H (CIT0021) 1992; 13
Zou J (CIT0019) 1992; 10
CIT0003
CIT0025
CIT0002
CIT0024
Zou J. (CIT0018) 1987; 5
CIT0026
CIT0006
CIT0028
Lui SH. (CIT0027) 2001; 35
Ascher U. (CIT0035) 1986; 23
References_xml – volume: 2
  start-page: 327
  year: 2005
  ident: CIT0005
  publication-title: Mediterr J Math
  doi: 10.1007/s00009-005-0048-4
– ident: CIT0038
– volume-title: Domain decomposition methods for partial differential equations
  year: 1999
  ident: CIT0016
  doi: 10.1093/oso/9780198501787.001.0001
– ident: CIT0001
  doi: 10.1007/978-3-662-08542-4
– ident: CIT0013
– volume: 28
  start-page: 179
  year: 1991
  ident: CIT0022
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0728010
– volume: 23
  start-page: 596
  year: 1986
  ident: CIT0035
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0723038
– ident: CIT0006
  doi: 10.1007/BF00249679
– ident: CIT0020
  doi: 10.1080/01630569208816491
– ident: CIT0026
  doi: 10.1007/s002110050168
– ident: CIT0017
  doi: 10.1007/978-3-540-77209-5
– volume: 34
  start-page: 387
  year: 2014
  ident: CIT0040
  publication-title: Opuscula Math
  doi: 10.7494/OpMath.2014.34.2.387
– volume: 35
  start-page: 1
  issue: 1
  year: 2001
  ident: CIT0027
  publication-title: ESAIM: Math Modell Numer Anal
  doi: 10.1051/m2an:2001104
– volume: 10
  start-page: 47
  year: 1992
  ident: CIT0019
  publication-title: J Comput Math
– ident: CIT0023
  doi: 10.1137/0730049
– ident: CIT0024
  doi: 10.1137/0913013
– volume: 39
  year: 2013
  ident: CIT0041
  publication-title: ACM Trans Math Softw
– ident: CIT0025
  doi: 10.1137/0914014
– ident: CIT0031
  doi: 10.1023/A:1017571906739
– volume-title: Lectures on elliptic boundary value problems
  year: 1965
  ident: CIT0029
– volume: 7
  start-page: 779
  year: 1978
  ident: CIT0008
  publication-title: Indiana Univ Math J
  doi: 10.1512/iumj.1978.27.27050
– ident: CIT0002
  doi: 10.1007/978-3-642-61317-3_13
– volume: 23
  start-page: 238
  year: 1981
  ident: CIT0033
  publication-title: SIAM Rev
  doi: 10.1137/1023039
– ident: CIT0036
  doi: 10.1145/502800.502801
– volume-title: Newton methods for nonlinear problems
  year: 2000
  ident: CIT0030
– ident: CIT0034
  doi: 10.1137/0908047
– volume: 13
  start-page: 373
  year: 1989
  ident: CIT0009
  publication-title: Nonlinear Anal Theory Method Appl
  doi: 10.1016/0362-546X(89)90045-X
– volume: 268
  start-page: 1199
  year: 2015
  ident: CIT0004
  publication-title: Appl Math Comput
– ident: CIT0014
– volume-title: Numerical, symbolic and statistical computing for chemical engineers using MATLAB
  year: 2018
  ident: CIT0039
– volume: 5
  start-page: 347
  year: 1989
  ident: CIT0007
  publication-title: Ann Inst Henri Poincaré
– volume-title: Domain decomposition: parallel multilevel algorithms for elliptic partial differential equations
  year: 1996
  ident: CIT0015
– ident: CIT0037
  doi: 10.1017/CBO9780511615542
– ident: CIT0003
– volume: 11
  start-page: 81
  year: 2005
  ident: CIT0011
  publication-title: J Appl Anal
  doi: 10.1515/JAA.2005.81
– ident: CIT0032
  doi: 10.1137/1.9781611971231
– ident: CIT0028
– volume: 24
  start-page: 1985
  year: 1984
  ident: CIT0010
  publication-title: Ann Fourier Grenoble
– volume: 5
  start-page: 325
  year: 1987
  ident: CIT0018
  publication-title: J Comput Math
– volume: 253
  start-page: 532
  year: 2001
  ident: CIT0012
  publication-title: J Math Anal Appl
  doi: 10.1006/jmaa.2000.7163
– volume: 13
  start-page: 31
  issue: 1
  year: 1992
  ident: CIT0021
  publication-title: IMA J Numer Funct Anal
SSID ssj0012856
Score 2.2320962
Snippet This work aims is to study a nonlinear second-order boundary value differential elliptic problem in one dimension where the nonlinearity concerns the solution...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2044
SubjectTerms Algorithms
Analysis of PDEs
Approximation
Boundary value problems
Decomposition
domain decomposition
Domain decomposition methods
finite elements
Iterative methods
Mathematics
Newton methods
Nonlinear equations
Nonlinear ODE's
nonlinear PDE's
Nonlinearity
Numerical Analysis
Numerical methods
variational method
Title Numerical solution of nonlinear differential boundary value problems using adaptive non-overlapping domain decomposition method
URI https://www.tandfonline.com/doi/abs/10.1080/00036811.2020.1800649
https://www.proquest.com/docview/2655946442
https://hal.science/hal-02930177
Volume 101
WOSCitedRecordID wos000556067900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1563-504X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012856
  issn: 0003-6811
  databaseCode: TFW
  dateStart: 19710401
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELVgxQEOpUCrLtDKQlwDGzufR4RYcaCrHkBws8ZfFGm7oM2yUk_968w4TgRCiAO9RhnHccbjN_H4PcYOIctcacAmmfYOExQrE6BkpfRlbVNhi5EJqiUX5WRS3dzUv2I1YRPLKimH9i1RRIjVNLlBN11F3HEgUalSyu4EXqpoWaUjfIjsyccvx9f9PoKogn4rWSRk0p3heauVF6vT6u9QG_mcwfRVxA7L0HjzP7zAZ_YpYlB-0jrNFltxs222GfEoj7O92WYbP3tO12aH_Zs8trs7U975K7_3fNb2AOa801rBmDHlOsg1zf9yYhN3POrWNJzq7G85WHigOEvWCRWRToF4Im65vf8DdzNuHZW6x3oy3qpcf2FX47PL0_MkyjckRpZigSmuxtzKG2EhrV2eajAaAZF0uSgg9bWW1qa6qgvIi0oXugYDiPbQScocpBnJr2yAvXDfGK-lwxFDcARWZK4A7c3IZya3ZVbRPuiQZd1nUyZym5PExlSlPQVqO-SKhlzFIR-yo97soSX3eM_gAH2iv5eouc9PLhRdGyFuwuhWLtMhq5-7jFqEXy--1UlR8p0H7Hf-pWIwaZQoMO3LELiK3Q80vcfWBR3dIJ5Kuc8Gi_mj-87WzHJx18x_hGnzBLIGFAM
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB7RUgk40FJABApYqNeFrL0vHytEFESaUyp6s8avUimkVTatxIm_jsfrXQUh1ANcrR2vd3Y8nrHH3wdwjEXhaoM2K7R3IUGxIkNKVmpfS5tzW41NZC2Z1fN5c34ut-_CUFkl5dC-A4qIvpomN21G9yVxHyKKSpNTesdDU0PrqtyB-2VYa6msbzH5Opwk8CYyuJJIRjL9LZ6_dfPb-rTzLVZHbmOY_uGz40I02f8fn3AAj1MYyk46u3kC99zqEPZTSMrShG8P4dHpAOvaPoWf85vugGfJepNlV56tuiHgmvV0K8FtLJmOjE3rH4wAxR1L1DUto1L7C4YWr8nVknRGdaRLJKiIC2avvuPlillH1e6ppIx1RNfP4GzyafFxmiUGh8yImm9ClqtDeuUNt5hLV-YajQ4xkXAlrzD3Ugtrc93ICsuq0ZWWaDAEfMFO6hKFGYvnsBtG4V4Ak8IFjYX4CC0vXIXam7EvTGnroqGj0BEU_X9TJsGbE8vGUuUDCmqnckUqV0nlI3g_iF13-B53CbwLRjE8S-jc05OZorZxCJ2Cg6tv8xHIbZtRm7j74juqFCXueMFRb2Aq-ZNW8SpkfkWIXfnLf-j6LTyYLk5navZ5_uUVPOR0k4NgK8UR7G7WN-417JnbzWW7fhPn0C8FQBgk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RglA5UCigLhSwENfAxnk4Pla0qyKWVQ9F9GaNX6XSsl1ttpU48dfxOE5UhKoeytXJOM5kPJ6xJ98H8B7L0gmDNiu1dyFBsUWGlKwIL6TNua3HJrKWTMVs1pyeyuNUTdimskrKoX0HFBF9NU3upfV9RdzHCKLS5JTd8dDU0LIqN-B-BMcKJn0y-T4cJPAmEriSSEYy_U88N3Xz1_K08SMWR16HMP3HZcd1aLL9H97gCTxOQSjb76zmKdxzix3YTgEpS9O93YFHXwdQ1_YZ_J5ddsc7c9YbLLvwbNGNAFesJ1sJTmPOdORrWv1iBCfuWCKuaRkV2p8xtLgkR0vSGVWRzpGAIs6YvfiJ5wtmHdW6p4Iy1tFcP4dvk8OTT0dZ4m_ITCH4OuS4OiRX3nCLuXRVrtHoEBEVruI15l7qwtpcN7LGqm50rSUaDOFesBJRYWHGxQvYDKNwu8Bk4YLGQnSElpeuRu3N2JemsqJs6CB0BGX_2ZRJ4ObEsTFX-YCB2qlckcpVUvkIPgxiyw7d4zaBd8EmhnsJm_tof6qobRwCp-DexFU-AnndZNQ67r34jihFFbc8YK-3L5W8Sat4HfK-MkSu_OUdun4LD48PJmr6efblFWzRFdpK4mIPNterS_caHpir9Xm7ehNn0B9zDRbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+nonlinear+differential+boundary+value+problems+using+adaptive+non-overlapping+domain+decomposition+method&rft.jtitle=Applicable+analysis&rft.au=Naceur%2C+Nahed&rft.au=Khenissi%2C+Moez&rft.au=Roche%2C+Jean&rft.date=2022-04-13&rft.pub=Taylor+%26+Francis&rft.issn=0003-6811&rft.eissn=1563-504X&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1080%2F00036811.2020.1800649&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02930177v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon