FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images
Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confi...
Saved in:
| Published in: | International journal for computer assisted radiology and surgery Vol. 13; no. 11; pp. 1707 - 1716 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.11.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1861-6410, 1861-6429, 1861-6429 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).
Methods
The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).
Results
The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.
Conclusion
The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty. |
|---|---|
| AbstractList | A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).PURPOSEA new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).METHODSThe dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.RESULTSThe intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.CONCLUSIONThe FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty. A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty. Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty. PurposeA new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).MethodsThe dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).ResultsThe intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.ConclusionThe FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty. |
| Author | Hamitouche, C. Villa, M. Nasan, M. Stindel, E. Letissier, H. Dardenne, G. |
| Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0001-5636-9542 surname: Villa fullname: Villa, M. email: mvilla701@hotmail.com organization: CHU Brest, LaTIM, INSERM, UMR 1101, SFR IBSAM – sequence: 2 givenname: G. surname: Dardenne fullname: Dardenne, G. organization: CHU Brest, LaTIM, INSERM, UMR 1101, SFR IBSAM – sequence: 3 givenname: M. surname: Nasan fullname: Nasan, M. organization: Université de Bretagne Occidentale, UBL, LaTIM, INSERM, UMR 1101, SFR IBSAM – sequence: 4 givenname: H. surname: Letissier fullname: Letissier, H. organization: CHU Brest, Université de Bretagne Occidentale, UBL, LaTIM, INSERM, UMR 1101, SFR IBSAM – sequence: 5 givenname: C. surname: Hamitouche fullname: Hamitouche, C. organization: Department ITI, IMT-Atlantique Bretagne – Pays de la Loire, LaTIM, INSERM, UMR 1101, SFR IBSAM – sequence: 6 givenname: E. surname: Stindel fullname: Stindel, E. organization: CHU Brest, Université de Bretagne Occidentale, UBL, LaTIM, INSERM, UMR 1101, SFR IBSAM |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30194565$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVJaR7tD-imCLrJxqmuLVvSsgx5QWg3CV0KWbqecbClqWTD5N9Hg5MpBNLVvYvv6B6dc0qOfPBIyFdgF8CY-JEAai4LBrIAWTfF7gM5AdlA0fBSHR12YMfkNKVHxngtqvoTOa4YKF439Qn5c7X6VbQmoaNmu43B2A3tQqTTBqmZpzCaqbc04XpEP-U9eBo62mYfNM2xMxYT7T2dhymaFGbvaD-aNabP5GNnhoRfXuYZebi6vF_dFHe_r29XP-8KW4lyKrgzgu2tKNVY45RD7kB20rEKOqlKVzouW2uhbJmTqkIuFEqoO4EVMO6qM3K-vJu9_50xTXrsk8VhMB7DnHQJDMpGMYCMfn-DPoY5-uwuUyBA1A2Tmfr2Qs3tiE5vY_5QfNKvkWUAFsDGkFLE7oAA0_ta9FKLzrXofS16lzXijcb2S5o5tn74r7JclClf8WuM_0y_L3oGYhmgoQ |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110661 crossref_primary_10_1109_LGRS_2023_3291170 crossref_primary_10_1109_ACCESS_2020_3033480 crossref_primary_10_1111_mice_13527 crossref_primary_10_1007_s11548_020_02184_1 crossref_primary_10_1038_s41598_025_92380_3 crossref_primary_10_1016_j_jag_2025_104413 crossref_primary_10_1016_j_jag_2025_104577 crossref_primary_10_7717_peerj_cs_1628 crossref_primary_10_1134_S1995080223010055 crossref_primary_10_1007_s11831_024_10171_x crossref_primary_10_3390_land14010022 crossref_primary_10_3390_sym14061076 crossref_primary_10_1007_s11517_024_03123_x crossref_primary_10_1016_j_bspc_2024_106021 crossref_primary_10_1109_TGRS_2023_3328334 crossref_primary_10_3390_s22093258 crossref_primary_10_1080_03772063_2025_2508327 crossref_primary_10_1109_JBHI_2024_3391387 crossref_primary_10_1038_s41598_025_99027_3 crossref_primary_10_1109_ACCESS_2022_3165936 crossref_primary_10_1109_ACCESS_2023_3312219 crossref_primary_10_1016_j_ultrasmedbio_2019_12_014 crossref_primary_10_1016_j_cmpb_2021_106580 crossref_primary_10_12677_AAM_2023_128357 crossref_primary_10_1007_s11548_019_01934_0 crossref_primary_10_1016_j_compmedimag_2023_102205 crossref_primary_10_7717_peerj_cs_1264 crossref_primary_10_1155_2022_5466173 crossref_primary_10_1109_TGRS_2022_3226778 crossref_primary_10_1155_int_9987190 crossref_primary_10_1007_s11548_020_02221_z crossref_primary_10_1007_s11831_020_09469_3 crossref_primary_10_3390_fishes8100514 crossref_primary_10_1016_j_compmedimag_2020_101766 crossref_primary_10_1016_j_foodchem_2025_143955 crossref_primary_10_3390_s25082361 crossref_primary_10_3390_bioengineering11050447 crossref_primary_10_3390_agriculture13071425 crossref_primary_10_3390_s22218101 crossref_primary_10_3390_agronomy14102325 crossref_primary_10_1080_01431161_2024_2343432 crossref_primary_10_1007_s42399_023_01608_8 crossref_primary_10_1109_TASE_2024_3411784 crossref_primary_10_1088_2057_1976_ad3bba crossref_primary_10_1016_j_bspc_2024_106644 crossref_primary_10_1007_s11517_022_02681_2 crossref_primary_10_1016_j_bdr_2024_100465 crossref_primary_10_1109_JSTARS_2023_3326962 crossref_primary_10_1016_j_cmpb_2022_107031 crossref_primary_10_3390_agronomy13102503 crossref_primary_10_1016_j_compbiomed_2025_110435 crossref_primary_10_1134_S0030400X20070152 |
| Cites_doi | 10.1109/TMI.2017.2738612 10.1080/10929080500229975 10.1016/j.irbm.2013.08.005 10.1109/TSMCC.2011.2161285 10.1007/978-3-319-24574-4_28 10.1016/j.media.2017.07.005 10.1016/j.compbiomed.2016.03.018 10.1142/S2339547817300049 10.1016/j.ultrasmedbio.2011.10.009 10.1016/j.media.2012.07.005 10.3109/10929080209146026 10.4055/cios.2013.5.1.1 10.1016/j.media.2016.06.036 10.1007/s10776-002-0623-6 10.1117/12.535984 10.1016/j.ultrasmedbio.2004.11.001 10.1007/978-3-319-46723-8_30 10.1007/978-3-319-13909-8_10 10.1109/ISBI.2016.7493435 10.1109/CVPR.2015.7298965 10.1145/2647868.2654889 |
| ContentType | Journal Article |
| Copyright | CARS 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: CARS 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1007/s11548-018-1856-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1861-6429 |
| EndPage | 1716 |
| ExternalDocumentID | 30194565 10_1007_s11548_018_1856_x |
| Genre | Validation Studies Journal Article |
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 7X7 88E 8FI 8FJ AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION FYUFA HCIFZ HMCUK M1P PHGZM PHGZT PJZUB PPXIY PQGLB PSQYO UKHRP CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451461700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-6410 1861-6429 |
| IngestDate | Wed Nov 05 02:58:12 EST 2025 Tue Oct 07 06:57:41 EDT 2025 Mon Jul 21 05:57:30 EDT 2025 Sat Nov 29 01:30:15 EST 2025 Tue Nov 18 21:28:36 EST 2025 Fri Feb 21 02:42:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Fully conventional network Computer-assisted orthopedic surgery Bone Segmentation Ultrasound |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0001-5636-9542 |
| PMID | 30194565 |
| PQID | 2117175608 |
| PQPubID | 2043910 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2101269011 proquest_journals_2117175608 pubmed_primary_30194565 crossref_primary_10_1007_s11548_018_1856_x crossref_citationtrail_10_1007_s11548_018_1856_x springer_journals_10_1007_s11548_018_1856_x |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg |
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy |
| PublicationTitle | International journal for computer assisted radiology and surgery |
| PublicationTitleAbbrev | Int J CARS |
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Rushi Longadge, Snehlata, Dongre, Malik (CR24) 2013; 2 Baka, Leenstra, van Walsum (CR22) 2017; 36 Ozdemir, Ozkan, Goksel (CR9) 2016 Quader, Hodgson, Abugharbieh (CR14) 2014; 8680 CR17 Joskowicz, Hazan (CR1) 2016; 33 CR12 Chatelain, Krupa, Navab (CR29) 2015; 2 Sugano (CR2) 2013 Stindel, Gil, Briard, Merloz, Dé, Dubrana, Lefevre (CR5) 2005; 10 Jain, Taylor (CR21) 2004; 5373 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (CR18) 2017 Salehi, Prevost, Moctezuma, Navab, Wein (CR19) 2017 Dib, Dardenne, Poirier, Huet, Lefevre, Stindel (CR4) 2013; 34 Schumann (CR10) 2016 Mercier, Langø, Lindseth, Collins (CR8) 2005; 31 Berton, Cheriet, Miron, Laporte (CR13) 2016 CR27 Hacihaliloglu, Abugharbieh, Hodgson, Rohling, Guy (CR11) 2012 CR26 Karamalis, Wein, Klein, Navab (CR15) 2012; 16 CR25 Ben-David, Shalev-Shwartz (CR28) 2014 Stindel, Briard, Lverloz, Dubrana, Troccaz (CR6) 2002; 7 Hacihaliloglu (CR7) 2017; 5 CR20 Ronneberger, Fischer, Brox (CR16) 2015 Sugano (CR3) 2003; 8 Galar, Fernandez, Barrenechea, Bustince, Herrera (CR23) 2012; 42 N Quader (1856_CR14) 2014; 8680 1856_CR20 M Rushi Longadge (1856_CR24) 2013; 2 E Stindel (1856_CR5) 2005; 10 Firat Ozdemir (1856_CR9) 2016 O Ronneberger (1856_CR16) 2015 N Baka (1856_CR22) 2017; 36 1856_CR25 I Hacihaliloglu (1856_CR7) 2017; 5 1856_CR27 1856_CR26 G Litjens (1856_CR18) 2017 S Schumann (1856_CR10) 2016 S Ben-David (1856_CR28) 2014 Mehrdad Salehi (1856_CR19) 2017 F Berton (1856_CR13) 2016 1856_CR12 N Sugano (1856_CR3) 2003; 8 Laurence Mercier (1856_CR8) 2005; 31 P Chatelain (1856_CR29) 2015; 2 A Karamalis (1856_CR15) 2012; 16 1856_CR17 I Hacihaliloglu (1856_CR11) 2012 N Sugano (1856_CR2) 2013 E Stindel (1856_CR6) 2002; 7 AK Jain (1856_CR21) 2004; 5373 Z Dib (1856_CR4) 2013; 34 M. Galar (1856_CR23) 2012; 42 L Joskowicz (1856_CR1) 2016; 33 |
| References_xml | – volume: 36 start-page: 2138 year: 2017 end-page: 2147 ident: CR22 article-title: Ultrasound aided vertebral level localization for lumbar surgery publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2738612 – volume: 2 start-page: 1410 year: 2015 end-page: 1424 ident: CR29 article-title: Confidence-driven control of an ultrasound probe publication-title: IEEE Int Conf Robot Autom – volume: 10 start-page: 133 year: 2005 end-page: 139 ident: CR5 article-title: Detection of the center of the hip joint in computer-assisted surgery: an evaluation study of the surgetics algorithm publication-title: Comput Aided Surg doi: 10.1080/10929080500229975 – year: 2014 ident: CR28 publication-title: Understanding machine learning: from theory to algorithms – start-page: 271 year: 2016 end-page: 297 ident: CR10 publication-title: State of the art of ultrasound-based registration in computer assisted orthopedic interventions – volume: 34 start-page: 319 year: 2013 end-page: 321 ident: CR4 article-title: Detection of the hip center in computer-assisted surgery: an in vitro assessment study publication-title: IRBM doi: 10.1016/j.irbm.2013.08.005 – volume: 42 start-page: 463 issue: 4 year: 2012 end-page: 484 ident: CR23 article-title: A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2011.2161285 – year: 2015 ident: CR16 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Miccai doi: 10.1007/978-3-319-24574-4_28 – year: 2017 ident: CR18 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 2 start-page: 2277 year: 2013 end-page: 5420 ident: CR24 article-title: Class imbalance problem in data mining: review publication-title: Int J Comput Sci Netw – ident: CR12 – year: 2016 ident: CR13 article-title: Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.03.018 – volume: 5 start-page: 74 year: 2017 end-page: 80 ident: CR7 article-title: Ultrasound imaging and segmentation of bone surfaces: a review publication-title: Technology doi: 10.1142/S2339547817300049 – year: 2012 ident: CR11 article-title: Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features publication-title: World Fed Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2011.10.009 – volume: 16 start-page: 1101 year: 2012 end-page: 1112 ident: CR15 article-title: Ultrasound confidence maps using random walks publication-title: Med Image Anal doi: 10.1016/j.media.2012.07.005 – ident: CR25 – ident: CR27 – volume: 7 start-page: 156 year: 2002 end-page: 168 ident: CR6 article-title: Biomedical pear bone morphing: 3D morphological data for total knee arthroplasty publication-title: Comput Aided Surg doi: 10.3109/10929080209146026 – year: 2013 ident: CR2 article-title: Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty publication-title: Clin Orthop Surg doi: 10.4055/cios.2013.5.1.1 – volume: 33 start-page: 84 year: 2016 end-page: 90 ident: CR1 article-title: Computer aided orthopaedic surgery: incremental shift or paradigm change? publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.036 – start-page: 682 year: 2017 end-page: 690 ident: CR19 article-title: Precise Ultrasound Bone Registration with Learning-Based Segmentation and Speed of Sound Calibration publication-title: Lecture Notes in Computer Science – volume: 8 start-page: 442 year: 2003 end-page: 448 ident: CR3 article-title: Computer-assisted orthopedic surgery publication-title: J Orthop Sci doi: 10.1007/s10776-002-0623-6 – ident: CR17 – volume: 5373 start-page: 131 year: 2004 end-page: 142 ident: CR21 article-title: Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework publication-title: Proc SPIE doi: 10.1117/12.535984 – volume: 31 start-page: 143 issue: 2 year: 2005 end-page: 165 ident: CR8 article-title: A review of calibration techniques for freehand 3-D ultrasound systems publication-title: Ultrasound in Medicine & Biology doi: 10.1016/j.ultrasmedbio.2004.11.001 – start-page: 256 year: 2016 end-page: 264 ident: CR9 article-title: Graphical Modeling of Ultrasound Propagation in Tissue for Automatic Bone Segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 doi: 10.1007/978-3-319-46723-8_30 – volume: 8680 start-page: 76 year: 2014 end-page: 83 ident: CR14 article-title: Confidence weighted local phase features for robust bone surface segmentation in ultrasound publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-319-13909-8_10 – ident: CR26 – ident: CR20 – start-page: 271 volume-title: State of the art of ultrasound-based registration in computer assisted orthopedic interventions year: 2016 ident: 1856_CR10 – ident: 1856_CR27 – volume: 31 start-page: 143 issue: 2 year: 2005 ident: 1856_CR8 publication-title: Ultrasound in Medicine & Biology doi: 10.1016/j.ultrasmedbio.2004.11.001 – ident: 1856_CR12 doi: 10.1109/ISBI.2016.7493435 – year: 2012 ident: 1856_CR11 publication-title: World Fed Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2011.10.009 – ident: 1856_CR20 doi: 10.1109/CVPR.2015.7298965 – start-page: 256 volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 year: 2016 ident: 1856_CR9 doi: 10.1007/978-3-319-46723-8_30 – year: 2016 ident: 1856_CR13 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.03.018 – year: 2013 ident: 1856_CR2 publication-title: Clin Orthop Surg doi: 10.4055/cios.2013.5.1.1 – volume: 2 start-page: 2277 year: 2013 ident: 1856_CR24 publication-title: Int J Comput Sci Netw – volume: 36 start-page: 2138 year: 2017 ident: 1856_CR22 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2738612 – volume: 5373 start-page: 131 year: 2004 ident: 1856_CR21 publication-title: Proc SPIE doi: 10.1117/12.535984 – ident: 1856_CR25 doi: 10.1145/2647868.2654889 – volume: 8 start-page: 442 year: 2003 ident: 1856_CR3 publication-title: J Orthop Sci doi: 10.1007/s10776-002-0623-6 – volume: 5 start-page: 74 year: 2017 ident: 1856_CR7 publication-title: Technology doi: 10.1142/S2339547817300049 – ident: 1856_CR26 – volume: 33 start-page: 84 year: 2016 ident: 1856_CR1 publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.036 – volume: 2 start-page: 1410 year: 2015 ident: 1856_CR29 publication-title: IEEE Int Conf Robot Autom – year: 2015 ident: 1856_CR16 publication-title: Miccai doi: 10.1007/978-3-319-24574-4_28 – volume: 42 start-page: 463 issue: 4 year: 2012 ident: 1856_CR23 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2011.2161285 – volume: 16 start-page: 1101 year: 2012 ident: 1856_CR15 publication-title: Med Image Anal doi: 10.1016/j.media.2012.07.005 – ident: 1856_CR17 – year: 2017 ident: 1856_CR18 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 34 start-page: 319 year: 2013 ident: 1856_CR4 publication-title: IRBM doi: 10.1016/j.irbm.2013.08.005 – start-page: 682 volume-title: Lecture Notes in Computer Science year: 2017 ident: 1856_CR19 – volume-title: Understanding machine learning: from theory to algorithms year: 2014 ident: 1856_CR28 – volume: 7 start-page: 156 year: 2002 ident: 1856_CR6 publication-title: Comput Aided Surg doi: 10.3109/10929080209146026 – volume: 8680 start-page: 76 year: 2014 ident: 1856_CR14 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-319-13909-8_10 – volume: 10 start-page: 133 year: 2005 ident: 1856_CR5 publication-title: Comput Aided Surg doi: 10.1080/10929080500229975 |
| SSID | ssj0045735 |
| Score | 2.3976622 |
| Snippet | Purpose
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US)... A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The... PurposeA new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US)... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1707 |
| SubjectTerms | Algorithms Annotations Artificial neural networks Bone and Bones - diagnostic imaging Computer Imaging Computer Science Health Informatics Humans Image Processing, Computer-Assisted - methods Image segmentation Imaging Medicine Medicine & Public Health Observer Variation Original Article Pattern Recognition and Graphics Radiology Recall Reproducibility of Results Root-mean-square errors Sensitivity and Specificity Surgery Ultrasonic imaging Ultrasonography - methods Vision |
| Title | FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images |
| URI | https://link.springer.com/article/10.1007/s11548-018-1856-x https://www.ncbi.nlm.nih.gov/pubmed/30194565 https://www.proquest.com/docview/2117175608 https://www.proquest.com/docview/2101269011 |
| Volume | 13 |
| WOSCitedRecordID | wos000451461700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPHF6bzVy4jgk1Jo2rRJH2U4fHGI172VpklloJ2srfjzPenaDZkK-tw0KSfn8p2e5HwAp66UwktYYHvCXMmRgtpCJtRGqKs8z0f_F8cV2QQfDMRwGN7U97jz5rR7U5KsPPX8sptB15j6YtYj_MBG4LiC0U4Yvobbu8fG_TKfV6yaVARmRTorZX43xddgtIAwF6qjVdDpt__1uZuwUWNMcjFVii1Y0lkH2g1_A6nNuQNr13VhfRue-r2BbSKaIk2XcYJwliA8JHFZjKvGriTXz6_1XaWMjFMix5kmeTlJzbkuMspI-VJM4twwNZHRK3qqfAce-pf3vSu75lywE4-7hc1UzDHj8wPMg5JYhUozRUUqFBp_KkJXuYrhZibUlY5CrKMZD7Wgfso1AkWmvF1oZbj4PhBPoPQTJSXVkgUqDBV3HBkLw2kecodZ4DTCj5K6IbnhxXiJ5q2UjQwjlGFkZBh9WHA2e-Vt2o3jt8FHzY5GtWHmEea7mMAizBMWnMweo0mZOkmc6XFpxmDUNkRd1IK9qSbMVkN_aKTjW3DebPt88h8_5eBPow9h3a30xvzoOYJWMSn1Mawm78Uon3RhmQ9Ft9L5T0Ht-NY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6IivrivFudGsEnpdC0aZs-ynAobkO8v5WmSWWwdbK24s_3pGs3xAvoc9OknJzLd3qS8wGc2EJwJ2ae6XB9JUdwanIRUxOhrnQcF_1fFJVkE36vx5-fg5vqHndWn3avS5Klp55ddtPoGlNfzHq465kIHBcYBizdMP_27rF2v8z1S1ZNyj29Ip2WMr-b4nMw-oIwv1RHy6DTbvzrc9dgtcKY5HyiFOswp9INaNT8DaQy5w1Y6laF9U14ard6po5oktRdxgnCWYLwkERFPiobu5JMvQyru0opGSVEjFJFsmKc6HNdpJ-SYpCPo0wzNZH-ED1VtgUP7Yv71qVZcS6YsePbuclk5GPG53qYB8WRDKRikvKESzT-hAe2tCXDzYypLSyJWEcxP1CcuomvECgy6WzDfIqL7wJxOEo_lkJQJZgng0D6liUirjnNA99iBli18MO4akiueTEG4ayVspZhiDIMtQzDdwNOp6-8Trpx_Da4We9oWBlmFmK-iwkswjxuwPH0MZqUrpNEqRoVegxGbU3URQ3YmWjCdDX0h1o6rgFn9bbPJv_xU_b-NPoIli_vu52wc9W73ocVu9Qh_dOnCfP5uFAHsBi_5f1sfFhq_gcW__rS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NDKG9jFE-lo2BJ_EEiogTJ3Eep24VE1BVGjDeojh2UKU2qZoE8efvLk1aobJJaM9x7Mj39bucfT-AE1cp6aUisD1JV3KU5LZUKbcR6mrP89H_JUlDNhEOh_L-Phq1PKdld9q9K0ku7jRQl6a8Op_p7Hx18Y2QNqbBmAFJP7ARRL4VdI6e0vVfd50rFn7YMGxyGdDqfFnWfGmK54FpDW2uVUqbADTY_u9P_wDvW-zJvi2UZQfemLwH2x2vA2vNvAdb123BfRd-D_pDmyKdZl33cYYwlyFsZEldFU3DV1aah2l7hylnRcZUkRtW1vOMznuxcc7qSTVPSmJwYuMperByD24HP276F3bLxWCnXuhWttBJiJmgH2B-lCY60kZoLjOp0SlkMnK1qwUKOeWucjRiICPCyEjuZ6FBACm0tw8bOS7-EZgnURKpVoobJQIdRTp0HJVI4jqPQkdY4HSCiNO2UTnxZUziVYtl2sMY9zCmPYyfLDhdvjJbdOn41-DDTrpxa7BljHkwJrYI_6QFX5eP0dSofpLkpqhpDEZzIvDiFhwstGK5GvpJ2h3fgrNOBVaT__VTPr1q9DFsjb4P4qufw8vP8M5tVIj-BR3CRjWvzRfYTB-rcTk_aozgD0_oA8U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCN-based+approach+for+the+automatic+segmentation+of+bone+surfaces+in+ultrasound+images&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Villa%2C+M&rft.au=Dardenne%2C+G&rft.au=Nasan%2C+M&rft.au=Letissier%2C+H&rft.date=2018-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=11&rft.spage=1707&rft.epage=1716&rft_id=info:doi/10.1007%2Fs11548-018-1856-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |