FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images

Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confi...

Full description

Saved in:
Bibliographic Details
Published in:International journal for computer assisted radiology and surgery Vol. 13; no. 11; pp. 1707 - 1716
Main Authors: Villa, M., Dardenne, G., Nasan, M., Letissier, H., Hamitouche, C., Stindel, E.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.11.2018
Springer Nature B.V
Subjects:
ISSN:1861-6410, 1861-6429, 1861-6429
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.
AbstractList A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).PURPOSEA new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).METHODSThe dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.RESULTSThe intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.CONCLUSIONThe FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.
Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.
PurposeA new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).MethodsThe dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).ResultsThe intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.ConclusionThe FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.
Author Hamitouche, C.
Villa, M.
Nasan, M.
Stindel, E.
Letissier, H.
Dardenne, G.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0001-5636-9542
  surname: Villa
  fullname: Villa, M.
  email: mvilla701@hotmail.com
  organization: CHU Brest, LaTIM, INSERM, UMR 1101, SFR IBSAM
– sequence: 2
  givenname: G.
  surname: Dardenne
  fullname: Dardenne, G.
  organization: CHU Brest, LaTIM, INSERM, UMR 1101, SFR IBSAM
– sequence: 3
  givenname: M.
  surname: Nasan
  fullname: Nasan, M.
  organization: Université de Bretagne Occidentale, UBL, LaTIM, INSERM, UMR 1101, SFR IBSAM
– sequence: 4
  givenname: H.
  surname: Letissier
  fullname: Letissier, H.
  organization: CHU Brest, Université de Bretagne Occidentale, UBL, LaTIM, INSERM, UMR 1101, SFR IBSAM
– sequence: 5
  givenname: C.
  surname: Hamitouche
  fullname: Hamitouche, C.
  organization: Department ITI, IMT-Atlantique Bretagne – Pays de la Loire, LaTIM, INSERM, UMR 1101, SFR IBSAM
– sequence: 6
  givenname: E.
  surname: Stindel
  fullname: Stindel, E.
  organization: CHU Brest, Université de Bretagne Occidentale, UBL, LaTIM, INSERM, UMR 1101, SFR IBSAM
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30194565$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaR7tD-imCLrJxqmuLVvSsgx5QWg3CV0KWbqecbClqWTD5N9Hg5MpBNLVvYvv6B6dc0qOfPBIyFdgF8CY-JEAai4LBrIAWTfF7gM5AdlA0fBSHR12YMfkNKVHxngtqvoTOa4YKF439Qn5c7X6VbQmoaNmu43B2A3tQqTTBqmZpzCaqbc04XpEP-U9eBo62mYfNM2xMxYT7T2dhymaFGbvaD-aNabP5GNnhoRfXuYZebi6vF_dFHe_r29XP-8KW4lyKrgzgu2tKNVY45RD7kB20rEKOqlKVzouW2uhbJmTqkIuFEqoO4EVMO6qM3K-vJu9_50xTXrsk8VhMB7DnHQJDMpGMYCMfn-DPoY5-uwuUyBA1A2Tmfr2Qs3tiE5vY_5QfNKvkWUAFsDGkFLE7oAA0_ta9FKLzrXofS16lzXijcb2S5o5tn74r7JclClf8WuM_0y_L3oGYhmgoQ
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110661
crossref_primary_10_1109_LGRS_2023_3291170
crossref_primary_10_1109_ACCESS_2020_3033480
crossref_primary_10_1111_mice_13527
crossref_primary_10_1007_s11548_020_02184_1
crossref_primary_10_1038_s41598_025_92380_3
crossref_primary_10_1016_j_jag_2025_104413
crossref_primary_10_1016_j_jag_2025_104577
crossref_primary_10_7717_peerj_cs_1628
crossref_primary_10_1134_S1995080223010055
crossref_primary_10_1007_s11831_024_10171_x
crossref_primary_10_3390_land14010022
crossref_primary_10_3390_sym14061076
crossref_primary_10_1007_s11517_024_03123_x
crossref_primary_10_1016_j_bspc_2024_106021
crossref_primary_10_1109_TGRS_2023_3328334
crossref_primary_10_3390_s22093258
crossref_primary_10_1080_03772063_2025_2508327
crossref_primary_10_1109_JBHI_2024_3391387
crossref_primary_10_1038_s41598_025_99027_3
crossref_primary_10_1109_ACCESS_2022_3165936
crossref_primary_10_1109_ACCESS_2023_3312219
crossref_primary_10_1016_j_ultrasmedbio_2019_12_014
crossref_primary_10_1016_j_cmpb_2021_106580
crossref_primary_10_12677_AAM_2023_128357
crossref_primary_10_1007_s11548_019_01934_0
crossref_primary_10_1016_j_compmedimag_2023_102205
crossref_primary_10_7717_peerj_cs_1264
crossref_primary_10_1155_2022_5466173
crossref_primary_10_1109_TGRS_2022_3226778
crossref_primary_10_1155_int_9987190
crossref_primary_10_1007_s11548_020_02221_z
crossref_primary_10_1007_s11831_020_09469_3
crossref_primary_10_3390_fishes8100514
crossref_primary_10_1016_j_compmedimag_2020_101766
crossref_primary_10_1016_j_foodchem_2025_143955
crossref_primary_10_3390_s25082361
crossref_primary_10_3390_bioengineering11050447
crossref_primary_10_3390_agriculture13071425
crossref_primary_10_3390_s22218101
crossref_primary_10_3390_agronomy14102325
crossref_primary_10_1080_01431161_2024_2343432
crossref_primary_10_1007_s42399_023_01608_8
crossref_primary_10_1109_TASE_2024_3411784
crossref_primary_10_1088_2057_1976_ad3bba
crossref_primary_10_1016_j_bspc_2024_106644
crossref_primary_10_1007_s11517_022_02681_2
crossref_primary_10_1016_j_bdr_2024_100465
crossref_primary_10_1109_JSTARS_2023_3326962
crossref_primary_10_1016_j_cmpb_2022_107031
crossref_primary_10_3390_agronomy13102503
crossref_primary_10_1016_j_compbiomed_2025_110435
crossref_primary_10_1134_S0030400X20070152
Cites_doi 10.1109/TMI.2017.2738612
10.1080/10929080500229975
10.1016/j.irbm.2013.08.005
10.1109/TSMCC.2011.2161285
10.1007/978-3-319-24574-4_28
10.1016/j.media.2017.07.005
10.1016/j.compbiomed.2016.03.018
10.1142/S2339547817300049
10.1016/j.ultrasmedbio.2011.10.009
10.1016/j.media.2012.07.005
10.3109/10929080209146026
10.4055/cios.2013.5.1.1
10.1016/j.media.2016.06.036
10.1007/s10776-002-0623-6
10.1117/12.535984
10.1016/j.ultrasmedbio.2004.11.001
10.1007/978-3-319-46723-8_30
10.1007/978-3-319-13909-8_10
10.1109/ISBI.2016.7493435
10.1109/CVPR.2015.7298965
10.1145/2647868.2654889
ContentType Journal Article
Copyright CARS 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: CARS 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-018-1856-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 1716
ExternalDocumentID 30194565
10_1007_s11548_018_1856_x
Genre Validation Studies
Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
7X7
88E
8FI
8FJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3
IEDL.DBID RSV
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451461700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-6410
1861-6429
IngestDate Wed Nov 05 02:58:12 EST 2025
Tue Oct 07 06:57:41 EDT 2025
Mon Jul 21 05:57:30 EDT 2025
Sat Nov 29 01:30:15 EST 2025
Tue Nov 18 21:28:36 EST 2025
Fri Feb 21 02:42:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Fully conventional network
Computer-assisted orthopedic surgery
Bone
Segmentation
Ultrasound
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-5636-9542
PMID 30194565
PQID 2117175608
PQPubID 2043910
PageCount 10
ParticipantIDs proquest_miscellaneous_2101269011
proquest_journals_2117175608
pubmed_primary_30194565
crossref_primary_10_1007_s11548_018_1856_x
crossref_citationtrail_10_1007_s11548_018_1856_x
springer_journals_10_1007_s11548_018_1856_x
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Rushi Longadge, Snehlata, Dongre, Malik (CR24) 2013; 2
Baka, Leenstra, van Walsum (CR22) 2017; 36
Ozdemir, Ozkan, Goksel (CR9) 2016
Quader, Hodgson, Abugharbieh (CR14) 2014; 8680
CR17
Joskowicz, Hazan (CR1) 2016; 33
CR12
Chatelain, Krupa, Navab (CR29) 2015; 2
Sugano (CR2) 2013
Stindel, Gil, Briard, Merloz, Dé, Dubrana, Lefevre (CR5) 2005; 10
Jain, Taylor (CR21) 2004; 5373
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (CR18) 2017
Salehi, Prevost, Moctezuma, Navab, Wein (CR19) 2017
Dib, Dardenne, Poirier, Huet, Lefevre, Stindel (CR4) 2013; 34
Schumann (CR10) 2016
Mercier, Langø, Lindseth, Collins (CR8) 2005; 31
Berton, Cheriet, Miron, Laporte (CR13) 2016
CR27
Hacihaliloglu, Abugharbieh, Hodgson, Rohling, Guy (CR11) 2012
CR26
Karamalis, Wein, Klein, Navab (CR15) 2012; 16
CR25
Ben-David, Shalev-Shwartz (CR28) 2014
Stindel, Briard, Lverloz, Dubrana, Troccaz (CR6) 2002; 7
Hacihaliloglu (CR7) 2017; 5
CR20
Ronneberger, Fischer, Brox (CR16) 2015
Sugano (CR3) 2003; 8
Galar, Fernandez, Barrenechea, Bustince, Herrera (CR23) 2012; 42
N Quader (1856_CR14) 2014; 8680
1856_CR20
M Rushi Longadge (1856_CR24) 2013; 2
E Stindel (1856_CR5) 2005; 10
Firat Ozdemir (1856_CR9) 2016
O Ronneberger (1856_CR16) 2015
N Baka (1856_CR22) 2017; 36
1856_CR25
I Hacihaliloglu (1856_CR7) 2017; 5
1856_CR27
1856_CR26
G Litjens (1856_CR18) 2017
S Schumann (1856_CR10) 2016
S Ben-David (1856_CR28) 2014
Mehrdad Salehi (1856_CR19) 2017
F Berton (1856_CR13) 2016
1856_CR12
N Sugano (1856_CR3) 2003; 8
Laurence Mercier (1856_CR8) 2005; 31
P Chatelain (1856_CR29) 2015; 2
A Karamalis (1856_CR15) 2012; 16
1856_CR17
I Hacihaliloglu (1856_CR11) 2012
N Sugano (1856_CR2) 2013
E Stindel (1856_CR6) 2002; 7
AK Jain (1856_CR21) 2004; 5373
Z Dib (1856_CR4) 2013; 34
M. Galar (1856_CR23) 2012; 42
L Joskowicz (1856_CR1) 2016; 33
References_xml – volume: 36
  start-page: 2138
  year: 2017
  end-page: 2147
  ident: CR22
  article-title: Ultrasound aided vertebral level localization for lumbar surgery
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2738612
– volume: 2
  start-page: 1410
  year: 2015
  end-page: 1424
  ident: CR29
  article-title: Confidence-driven control of an ultrasound probe
  publication-title: IEEE Int Conf Robot Autom
– volume: 10
  start-page: 133
  year: 2005
  end-page: 139
  ident: CR5
  article-title: Detection of the center of the hip joint in computer-assisted surgery: an evaluation study of the surgetics algorithm
  publication-title: Comput Aided Surg
  doi: 10.1080/10929080500229975
– year: 2014
  ident: CR28
  publication-title: Understanding machine learning: from theory to algorithms
– start-page: 271
  year: 2016
  end-page: 297
  ident: CR10
  publication-title: State of the art of ultrasound-based registration in computer assisted orthopedic interventions
– volume: 34
  start-page: 319
  year: 2013
  end-page: 321
  ident: CR4
  article-title: Detection of the hip center in computer-assisted surgery: an in vitro assessment study
  publication-title: IRBM
  doi: 10.1016/j.irbm.2013.08.005
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  end-page: 484
  ident: CR23
  article-title: A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2011.2161285
– year: 2015
  ident: CR16
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Miccai
  doi: 10.1007/978-3-319-24574-4_28
– year: 2017
  ident: CR18
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 2
  start-page: 2277
  year: 2013
  end-page: 5420
  ident: CR24
  article-title: Class imbalance problem in data mining: review
  publication-title: Int J Comput Sci Netw
– ident: CR12
– year: 2016
  ident: CR13
  article-title: Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.03.018
– volume: 5
  start-page: 74
  year: 2017
  end-page: 80
  ident: CR7
  article-title: Ultrasound imaging and segmentation of bone surfaces: a review
  publication-title: Technology
  doi: 10.1142/S2339547817300049
– year: 2012
  ident: CR11
  article-title: Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features
  publication-title: World Fed Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2011.10.009
– volume: 16
  start-page: 1101
  year: 2012
  end-page: 1112
  ident: CR15
  article-title: Ultrasound confidence maps using random walks
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.07.005
– ident: CR25
– ident: CR27
– volume: 7
  start-page: 156
  year: 2002
  end-page: 168
  ident: CR6
  article-title: Biomedical pear bone morphing: 3D morphological data for total knee arthroplasty
  publication-title: Comput Aided Surg
  doi: 10.3109/10929080209146026
– year: 2013
  ident: CR2
  article-title: Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty
  publication-title: Clin Orthop Surg
  doi: 10.4055/cios.2013.5.1.1
– volume: 33
  start-page: 84
  year: 2016
  end-page: 90
  ident: CR1
  article-title: Computer aided orthopaedic surgery: incremental shift or paradigm change?
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.036
– start-page: 682
  year: 2017
  end-page: 690
  ident: CR19
  article-title: Precise Ultrasound Bone Registration with Learning-Based Segmentation and Speed of Sound Calibration
  publication-title: Lecture Notes in Computer Science
– volume: 8
  start-page: 442
  year: 2003
  end-page: 448
  ident: CR3
  article-title: Computer-assisted orthopedic surgery
  publication-title: J Orthop Sci
  doi: 10.1007/s10776-002-0623-6
– ident: CR17
– volume: 5373
  start-page: 131
  year: 2004
  end-page: 142
  ident: CR21
  article-title: Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework
  publication-title: Proc SPIE
  doi: 10.1117/12.535984
– volume: 31
  start-page: 143
  issue: 2
  year: 2005
  end-page: 165
  ident: CR8
  article-title: A review of calibration techniques for freehand 3-D ultrasound systems
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/j.ultrasmedbio.2004.11.001
– start-page: 256
  year: 2016
  end-page: 264
  ident: CR9
  article-title: Graphical Modeling of Ultrasound Propagation in Tissue for Automatic Bone Segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
  doi: 10.1007/978-3-319-46723-8_30
– volume: 8680
  start-page: 76
  year: 2014
  end-page: 83
  ident: CR14
  article-title: Confidence weighted local phase features for robust bone surface segmentation in ultrasound
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-319-13909-8_10
– ident: CR26
– ident: CR20
– start-page: 271
  volume-title: State of the art of ultrasound-based registration in computer assisted orthopedic interventions
  year: 2016
  ident: 1856_CR10
– ident: 1856_CR27
– volume: 31
  start-page: 143
  issue: 2
  year: 2005
  ident: 1856_CR8
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/j.ultrasmedbio.2004.11.001
– ident: 1856_CR12
  doi: 10.1109/ISBI.2016.7493435
– year: 2012
  ident: 1856_CR11
  publication-title: World Fed Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2011.10.009
– ident: 1856_CR20
  doi: 10.1109/CVPR.2015.7298965
– start-page: 256
  volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
  year: 2016
  ident: 1856_CR9
  doi: 10.1007/978-3-319-46723-8_30
– year: 2016
  ident: 1856_CR13
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.03.018
– year: 2013
  ident: 1856_CR2
  publication-title: Clin Orthop Surg
  doi: 10.4055/cios.2013.5.1.1
– volume: 2
  start-page: 2277
  year: 2013
  ident: 1856_CR24
  publication-title: Int J Comput Sci Netw
– volume: 36
  start-page: 2138
  year: 2017
  ident: 1856_CR22
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2738612
– volume: 5373
  start-page: 131
  year: 2004
  ident: 1856_CR21
  publication-title: Proc SPIE
  doi: 10.1117/12.535984
– ident: 1856_CR25
  doi: 10.1145/2647868.2654889
– volume: 8
  start-page: 442
  year: 2003
  ident: 1856_CR3
  publication-title: J Orthop Sci
  doi: 10.1007/s10776-002-0623-6
– volume: 5
  start-page: 74
  year: 2017
  ident: 1856_CR7
  publication-title: Technology
  doi: 10.1142/S2339547817300049
– ident: 1856_CR26
– volume: 33
  start-page: 84
  year: 2016
  ident: 1856_CR1
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.036
– volume: 2
  start-page: 1410
  year: 2015
  ident: 1856_CR29
  publication-title: IEEE Int Conf Robot Autom
– year: 2015
  ident: 1856_CR16
  publication-title: Miccai
  doi: 10.1007/978-3-319-24574-4_28
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  ident: 1856_CR23
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2011.2161285
– volume: 16
  start-page: 1101
  year: 2012
  ident: 1856_CR15
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.07.005
– ident: 1856_CR17
– year: 2017
  ident: 1856_CR18
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 34
  start-page: 319
  year: 2013
  ident: 1856_CR4
  publication-title: IRBM
  doi: 10.1016/j.irbm.2013.08.005
– start-page: 682
  volume-title: Lecture Notes in Computer Science
  year: 2017
  ident: 1856_CR19
– volume-title: Understanding machine learning: from theory to algorithms
  year: 2014
  ident: 1856_CR28
– volume: 7
  start-page: 156
  year: 2002
  ident: 1856_CR6
  publication-title: Comput Aided Surg
  doi: 10.3109/10929080209146026
– volume: 8680
  start-page: 76
  year: 2014
  ident: 1856_CR14
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-319-13909-8_10
– volume: 10
  start-page: 133
  year: 2005
  ident: 1856_CR5
  publication-title: Comput Aided Surg
  doi: 10.1080/10929080500229975
SSID ssj0045735
Score 2.3976622
Snippet Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US)...
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The...
PurposeA new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US)...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1707
SubjectTerms Algorithms
Annotations
Artificial neural networks
Bone and Bones - diagnostic imaging
Computer Imaging
Computer Science
Health Informatics
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Medicine
Medicine & Public Health
Observer Variation
Original Article
Pattern Recognition and Graphics
Radiology
Recall
Reproducibility of Results
Root-mean-square errors
Sensitivity and Specificity
Surgery
Ultrasonic imaging
Ultrasonography - methods
Vision
Title FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images
URI https://link.springer.com/article/10.1007/s11548-018-1856-x
https://www.ncbi.nlm.nih.gov/pubmed/30194565
https://www.proquest.com/docview/2117175608
https://www.proquest.com/docview/2101269011
Volume 13
WOSCitedRecordID wos000451461700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPHF6bzVy4jgk1Jo2rRJH2U4fHGI172VpklloJ2srfjzPenaDZkK-tw0KSfn8p2e5HwAp66UwktYYHvCXMmRgtpCJtRGqKs8z0f_F8cV2QQfDMRwGN7U97jz5rR7U5KsPPX8sptB15j6YtYj_MBG4LiC0U4Yvobbu8fG_TKfV6yaVARmRTorZX43xddgtIAwF6qjVdDpt__1uZuwUWNMcjFVii1Y0lkH2g1_A6nNuQNr13VhfRue-r2BbSKaIk2XcYJwliA8JHFZjKvGriTXz6_1XaWMjFMix5kmeTlJzbkuMspI-VJM4twwNZHRK3qqfAce-pf3vSu75lywE4-7hc1UzDHj8wPMg5JYhUozRUUqFBp_KkJXuYrhZibUlY5CrKMZD7Wgfso1AkWmvF1oZbj4PhBPoPQTJSXVkgUqDBV3HBkLw2kecodZ4DTCj5K6IbnhxXiJ5q2UjQwjlGFkZBh9WHA2e-Vt2o3jt8FHzY5GtWHmEea7mMAizBMWnMweo0mZOkmc6XFpxmDUNkRd1IK9qSbMVkN_aKTjW3DebPt88h8_5eBPow9h3a30xvzoOYJWMSn1Mawm78Uon3RhmQ9Ft9L5T0Ht-NY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6IivrivFudGsEnpdC0aZs-ynAobkO8v5WmSWWwdbK24s_3pGs3xAvoc9OknJzLd3qS8wGc2EJwJ2ae6XB9JUdwanIRUxOhrnQcF_1fFJVkE36vx5-fg5vqHndWn3avS5Klp55ddtPoGlNfzHq465kIHBcYBizdMP_27rF2v8z1S1ZNyj29Ip2WMr-b4nMw-oIwv1RHy6DTbvzrc9dgtcKY5HyiFOswp9INaNT8DaQy5w1Y6laF9U14ard6po5oktRdxgnCWYLwkERFPiobu5JMvQyru0opGSVEjFJFsmKc6HNdpJ-SYpCPo0wzNZH-ED1VtgUP7Yv71qVZcS6YsePbuclk5GPG53qYB8WRDKRikvKESzT-hAe2tCXDzYypLSyJWEcxP1CcuomvECgy6WzDfIqL7wJxOEo_lkJQJZgng0D6liUirjnNA99iBli18MO4akiueTEG4ayVspZhiDIMtQzDdwNOp6-8Trpx_Da4We9oWBlmFmK-iwkswjxuwPH0MZqUrpNEqRoVegxGbU3URQ3YmWjCdDX0h1o6rgFn9bbPJv_xU_b-NPoIli_vu52wc9W73ocVu9Qh_dOnCfP5uFAHsBi_5f1sfFhq_gcW__rS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NDKG9jFE-lo2BJ_EEiogTJ3Eep24VE1BVGjDeojh2UKU2qZoE8efvLk1aobJJaM9x7Mj39bucfT-AE1cp6aUisD1JV3KU5LZUKbcR6mrP89H_JUlDNhEOh_L-Phq1PKdld9q9K0ku7jRQl6a8Op_p7Hx18Y2QNqbBmAFJP7ARRL4VdI6e0vVfd50rFn7YMGxyGdDqfFnWfGmK54FpDW2uVUqbADTY_u9P_wDvW-zJvi2UZQfemLwH2x2vA2vNvAdb123BfRd-D_pDmyKdZl33cYYwlyFsZEldFU3DV1aah2l7hylnRcZUkRtW1vOMznuxcc7qSTVPSmJwYuMperByD24HP276F3bLxWCnXuhWttBJiJmgH2B-lCY60kZoLjOp0SlkMnK1qwUKOeWucjRiICPCyEjuZ6FBACm0tw8bOS7-EZgnURKpVoobJQIdRTp0HJVI4jqPQkdY4HSCiNO2UTnxZUziVYtl2sMY9zCmPYyfLDhdvjJbdOn41-DDTrpxa7BljHkwJrYI_6QFX5eP0dSofpLkpqhpDEZzIvDiFhwstGK5GvpJ2h3fgrNOBVaT__VTPr1q9DFsjb4P4qufw8vP8M5tVIj-BR3CRjWvzRfYTB-rcTk_aozgD0_oA8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCN-based+approach+for+the+automatic+segmentation+of+bone+surfaces+in+ultrasound+images&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Villa%2C+M&rft.au=Dardenne%2C+G&rft.au=Nasan%2C+M&rft.au=Letissier%2C+H&rft.date=2018-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=11&rft.spage=1707&rft.epage=1716&rft_id=info:doi/10.1007%2Fs11548-018-1856-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon