A novel image compression–encryption hybrid algorithm based on the analysis sparse representation
Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression–encryption hybrid alg...
Uložené v:
| Vydané v: | Optics communications Ročník 392; s. 223 - 233 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.06.2017
|
| Predmet: | |
| ISSN: | 0030-4018, 1873-0310 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression–encryption hybrid algorithm. The analysis sparse representation of the original image is obtained with an overcomplete fixed dictionary that the order of the dictionary atoms is scrambled, and the sparse representation can be considered as an encrypted version of the image. Moreover, the sparse representation is compressed to reduce its dimension and re-encrypted by the compressive sensing simultaneously. To enhance the security of the algorithm, a pixel-scrambling method is employed to re-encrypt the measurements of the compressive sensing. Various simulation results verify that the proposed image compression–encryption hybrid algorithm could provide a considerable compression performance with a good security.
•A novel image compression–encryption hybrid algorithm is proposed with analysis sparse representation.•Using an atom-scrambled dictionary to obtain the sparse representation of the image.•The sparse representation is an encrypted version of the image.•Compressive sensing is utilized to compress and encrypt the sparse representation.•A pixel-scrambling method is introduced to enhance the security of the algorithm. |
|---|---|
| AbstractList | Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression–encryption hybrid algorithm. The analysis sparse representation of the original image is obtained with an overcomplete fixed dictionary that the order of the dictionary atoms is scrambled, and the sparse representation can be considered as an encrypted version of the image. Moreover, the sparse representation is compressed to reduce its dimension and re-encrypted by the compressive sensing simultaneously. To enhance the security of the algorithm, a pixel-scrambling method is employed to re-encrypt the measurements of the compressive sensing. Various simulation results verify that the proposed image compression–encryption hybrid algorithm could provide a considerable compression performance with a good security.
•A novel image compression–encryption hybrid algorithm is proposed with analysis sparse representation.•Using an atom-scrambled dictionary to obtain the sparse representation of the image.•The sparse representation is an encrypted version of the image.•Compressive sensing is utilized to compress and encrypt the sparse representation.•A pixel-scrambling method is introduced to enhance the security of the algorithm. |
| Author | Zhang, Ye Xu, Biao Zhou, Nanrun |
| Author_xml | – sequence: 1 givenname: Ye surname: Zhang fullname: Zhang, Ye email: zhangye@ncu.edu.cn – sequence: 2 givenname: Biao surname: Xu fullname: Xu, Biao email: biaoxu1992@163.com – sequence: 3 givenname: Nanrun surname: Zhou fullname: Zhou, Nanrun email: nrzhou@ncu.edu.cn |
| BookMark | eNqFkEtqwzAQhkVJoWnaG3ShC9gdPWI7XRRC6AsC3bRroUijRMGxjWQC3vUOvWFPUgV31UW7Gobh-5n_uySTpm2QkBsGOQNW3O7ztutNe8g5sDIHlkPBzsiUVaXIQDCYkCmAgEwCqy7IZYx7AGBSVFNilrRpj1hTf9BbpCmkCxijb5uvj09sTBi6Pi10N2yCt1TX2zb4fnegGx3R0nTpd0h1o-sh-khjp0NEGvCUgk2vT_AVOXe6jnj9M2fk_fHhbfWcrV-fXlbLdWZEyftMWsmEQyhLWTruNnbOBWpXGKsr58p0EMCdWJiFTKW45KawEkwFRWHnjqOYETnmmtDGGNCpLqRaYVAM1EmU2qtRlDqJUsBUEpWwu1-Y8ePjfdC-_g--H2FMxY4eg4rGJ29ofUDTK9v6vwO-AfIujLI |
| CitedBy_id | crossref_primary_10_1007_s13369_018_3355_3 crossref_primary_10_1016_j_sigpro_2019_03_022 crossref_primary_10_1007_s11071_024_10268_9 crossref_primary_10_3390_app122110807 crossref_primary_10_3233_JIFS_179568 crossref_primary_10_1007_s11220_020_00284_5 crossref_primary_10_1016_j_jnca_2022_103456 crossref_primary_10_3390_math13142324 crossref_primary_10_1007_s11042_023_15012_w crossref_primary_10_2478_amns_2023_2_01686 crossref_primary_10_1109_ACCESS_2019_2959017 crossref_primary_10_1007_s11042_023_17940_z crossref_primary_10_1016_j_image_2020_115829 crossref_primary_10_1155_2022_2628885 crossref_primary_10_1049_iet_ipr_2017_1016 crossref_primary_10_21307_ijssis_2018_004 crossref_primary_10_1016_j_image_2018_01_010 crossref_primary_10_1016_j_sigpro_2020_107563 crossref_primary_10_1007_s11831_018_9298_8 crossref_primary_10_1109_ACCESS_2019_2925839 crossref_primary_10_1088_1674_1056_26_12_120504 crossref_primary_10_1016_j_image_2021_116521 crossref_primary_10_1109_ACCESS_2018_2874336 crossref_primary_10_3390_math11153295 crossref_primary_10_1109_JIOT_2019_2953519 crossref_primary_10_1088_1757_899X_462_1_012035 crossref_primary_10_1109_ACCESS_2021_3074968 crossref_primary_10_1109_ACCESS_2023_3287858 crossref_primary_10_1109_JIOT_2018_2881129 crossref_primary_10_1109_ACCESS_2019_2897721 crossref_primary_10_1109_TNB_2017_2780881 crossref_primary_10_1016_j_optlastec_2018_06_016 crossref_primary_10_1016_j_yofte_2024_103848 crossref_primary_10_1007_s12083_024_01718_7 crossref_primary_10_1016_j_swevo_2021_100873 crossref_primary_10_1016_j_sigpro_2018_02_007 crossref_primary_10_1155_2018_9591768 crossref_primary_10_1016_j_image_2021_116418 crossref_primary_10_1007_s00340_020_07480_x crossref_primary_10_1109_ACCESS_2025_3578158 crossref_primary_10_3390_e22070772 crossref_primary_10_1007_s11042_019_7405_y crossref_primary_10_1109_ACCESS_2021_3094563 crossref_primary_10_1155_2021_5012496 crossref_primary_10_1088_1674_1056_27_3_034202 crossref_primary_10_3390_electronics10040385 crossref_primary_10_1371_journal_pone_0224382 crossref_primary_10_1109_ACCESS_2019_2946208 crossref_primary_10_1016_j_dsp_2024_104908 crossref_primary_10_1016_j_optlaseng_2018_05_014 crossref_primary_10_1016_j_optlastec_2019_105703 crossref_primary_10_1109_JIOT_2022_3218681 crossref_primary_10_3390_s19143081 crossref_primary_10_1007_s11071_018_4689_9 crossref_primary_10_1016_j_sigpro_2020_107629 crossref_primary_10_1007_s42979_020_00397_4 crossref_primary_10_1109_ACCESS_2019_2958319 crossref_primary_10_1016_j_jksuci_2022_08_007 crossref_primary_10_1007_s11042_020_08821_w crossref_primary_10_1145_3498342 crossref_primary_10_1016_j_ijleo_2021_167093 crossref_primary_10_1016_j_optlaseng_2019_03_006 |
| Cites_doi | 10.1016/j.optcom.2014.12.084 10.1109/ACCESS.2016.2569421 10.1016/j.ins.2014.11.018 10.1016/j.cnsns.2010.01.004 10.1109/ICASSP.2012.6289144 10.1137/090753504 10.1007/s11220-014-0085-9 10.1016/j.cnsns.2014.03.016 10.1109/97.995823 10.1016/j.sigpro.2016.10.002 10.1109/CyberneticsCom.2013.6865794 10.1080/09500340.2014.946565 10.1016/j.asoc.2009.12.011 10.1016/j.ijleo.2013.05.092 10.1109/TSP.2012.2226445 10.1109/IIHMSP.2011.53 10.1016/j.optlastec.2016.05.012 10.1016/j.ijleo.2014.06.054 10.1016/j.optlaseng.2012.11.001 10.1109/TIT.2006.871582 10.1109/iMac4s.2013.6526421 10.1016/j.ijleo.2012.08.017 10.1109/IIHMSP.2011.12 10.1364/AO.54.001782 10.1109/ICACC.2012.48 10.1016/j.optcom.2011.10.098 10.1109/MLSP.2013.6661910 10.1049/el.2016.0334 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optcom.2017.01.061 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-0310 |
| EndPage | 233 |
| ExternalDocumentID | 10_1016_j_optcom_2017_01_061 S0030401817300871 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LY7 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS F0J FEDTE FGOYB G-2 HMV HVGLF HZ~ MVM NDZJH R2- SET SEW SPG WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c372t-4d413fe07747f2fbd523eaf6cda8ff7e07302f39c94031242c6d40c8066d5f2e3 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395604500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0030-4018 |
| IngestDate | Tue Nov 18 21:44:03 EST 2025 Sat Nov 29 07:52:24 EST 2025 Fri Feb 23 02:25:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 99-00 Image encryption Compressive sensing Image compression Analysis sparse representation 00-01 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-4d413fe07747f2fbd523eaf6cda8ff7e07302f39c94031242c6d40c8066d5f2e3 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_optcom_2017_01_061 crossref_citationtrail_10_1016_j_optcom_2017_01_061 elsevier_sciencedirect_doi_10_1016_j_optcom_2017_01_061 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 2017-06-00 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Optics communications |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhou, Zhang, Wu, Pei, Yang (bib18) 2014; 125 M. Yaghoobi, S. Nam, R. Gribonval, M.E. Davies, Noise aware analysis operator learning for approximately cosparse signals, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 5409–5412. A.V. Sreedhanya, K.P. Soman, Secrecy of cryptography with compressed sensing, in: International Conference on Advances in Computing and Communications, Cochin, Kerala, 2012, pp. 207–210. Rawat, Kim, Muniraj, Situ, Lee (bib12) 2015; 54 Yang, Wong, Liao, Zhang, Wei (bib1) 2010; 15 X. Zhang, Y. Ren, G. Feng, Z. Qian, Compressing encrypted image using compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 222–225. Cai, Osher, Shen (bib27) 2009; 8 Liu, Cao, Lu, Lu, Li (bib11) 2013; 124 Wang, Bovik (bib30) 2002; 9 Mahmood, Shehab, Publication (bib14) 2014; 5 Zhang, Zhang, Zhou, Liu (bib22) 2016; 4 Chen, Zhang, Wu, Yuen (bib17) 2016; 84 Deng, Zhao, Wang, Wang, Wang, Sha (bib16) 2016 Hua, Zhou, Pun, Chen (bib28) 2014; 297 V. Athira, S.N. George, P.P. Deepthi, A novel encryption method based on compressive sensing, in: International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing, Kottayam, Kerala, 2013, pp. 271–275. Rubinstein, Peleg, Elad (bib25) 2013; 61 E.Y. Xie, C. Li, S. Yu, J. Lü, On the cryptanalysis of Fridrich's chaotic image encryption scheme, Signal Process. 132 (2016) 150–154. Wang, Wong, Liao, Chen (bib2) 2011; 11 R. Huang, K. Sakurai, A robust and compression-combined digital image encryption method based on compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 105–108. Zhou, Li, Wang, Pan, Zhou (bib19) 2015; 343 R.S. Endra, Compressive sensing-based image encryption with optimized sensing matrix, in: IEEE International Conference on Computational Intelligence and Cybernetics, Yogyakarta, Indonesia, 2013, pp. 122–125. Wang, Zhao, Liu (bib3) 2012; 285 Liu, Du (bib15) 2014; 61 Donoho (bib7) 2006; 52 Fang, Wang, Xu, Zhang (bib24) 2016; 52 Zhang, Hu, Liu, Wong, Gan (bib4) 2014; 19 Lu, Xu, Lu, Liu (bib29) 2013; 124 Zhang, Xiao (bib5) 2013; 51 George, Pattathil (bib20) 2014; 15 Y. Zhang, H. Wang, T. Yu, W. Wang, Subset pursuit for analysis dictionary learning, in: Signal Processing Conference, Marrakech, Morocco, 2013, pp. 1–5. Liu (10.1016/j.optcom.2017.01.061_bib11) 2013; 124 Zhou (10.1016/j.optcom.2017.01.061_bib18) 2014; 125 Fang (10.1016/j.optcom.2017.01.061_bib24) 2016; 52 10.1016/j.optcom.2017.01.061_bib6 Cai (10.1016/j.optcom.2017.01.061_bib27) 2009; 8 Wang (10.1016/j.optcom.2017.01.061_bib30) 2002; 9 10.1016/j.optcom.2017.01.061_bib8 10.1016/j.optcom.2017.01.061_bib9 10.1016/j.optcom.2017.01.061_bib23 Hua (10.1016/j.optcom.2017.01.061_bib28) 2014; 297 10.1016/j.optcom.2017.01.061_bib21 Lu (10.1016/j.optcom.2017.01.061_bib29) 2013; 124 Zhang (10.1016/j.optcom.2017.01.061_bib4) 2014; 19 Zhang (10.1016/j.optcom.2017.01.061_bib5) 2013; 51 Wang (10.1016/j.optcom.2017.01.061_bib3) 2012; 285 Zhang (10.1016/j.optcom.2017.01.061_bib22) 2016; 4 Rubinstein (10.1016/j.optcom.2017.01.061_bib25) 2013; 61 10.1016/j.optcom.2017.01.061_bib26 Rawat (10.1016/j.optcom.2017.01.061_bib12) 2015; 54 Wang (10.1016/j.optcom.2017.01.061_bib2) 2011; 11 Donoho (10.1016/j.optcom.2017.01.061_bib7) 2006; 52 Chen (10.1016/j.optcom.2017.01.061_bib17) 2016; 84 Deng (10.1016/j.optcom.2017.01.061_bib16) 2016 10.1016/j.optcom.2017.01.061_bib13 Zhou (10.1016/j.optcom.2017.01.061_bib19) 2015; 343 10.1016/j.optcom.2017.01.061_bib10 Mahmood (10.1016/j.optcom.2017.01.061_bib14) 2014; 5 George (10.1016/j.optcom.2017.01.061_bib20) 2014; 15 Yang (10.1016/j.optcom.2017.01.061_bib1) 2010; 15 Liu (10.1016/j.optcom.2017.01.061_bib15) 2014; 61 |
| References_xml | – volume: 15 start-page: 3507 year: 2010 end-page: 3517 ident: bib1 article-title: A fast image encryption and authentication scheme based on chaotic maps publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 4 start-page: 2507 year: 2016 end-page: 2519 ident: bib22 article-title: A review of compressive sensing in information security field publication-title: IEEE Access – volume: 5 start-page: 68 year: 2014 end-page: 84 ident: bib14 article-title: Image encryption and compression based on compressive sensing and chaos publication-title: Int. J. Comput. Eng. Technol. – volume: 9 start-page: 81 year: 2002 end-page: 84 ident: bib30 article-title: A universal image quality index publication-title: IEEE Signal Process. Lett. – volume: 285 start-page: 562 year: 2012 end-page: 566 ident: bib3 article-title: A new image encryption algorithm based on chaos publication-title: Opt. Commun. – volume: 124 start-page: 2514 year: 2013 end-page: 2518 ident: bib29 article-title: Digital image information encryption based on compressive sensing and double random-phase encoding technique publication-title: Optik – Int. J. Light Electron Opt. – start-page: 1 year: 2016 end-page: 21 ident: bib16 article-title: Image compression–encryption scheme combining 2D compressive sensing with discrete fractional random transform publication-title: Multimed. Tools Appl. – reference: Y. Zhang, H. Wang, T. Yu, W. Wang, Subset pursuit for analysis dictionary learning, in: Signal Processing Conference, Marrakech, Morocco, 2013, pp. 1–5. – reference: M. Yaghoobi, S. Nam, R. Gribonval, M.E. Davies, Noise aware analysis operator learning for approximately cosparse signals, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 5409–5412. – volume: 51 start-page: 472 year: 2013 end-page: 480 ident: bib5 article-title: Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform publication-title: Opt. Lasers Eng. – reference: A.V. Sreedhanya, K.P. Soman, Secrecy of cryptography with compressed sensing, in: International Conference on Advances in Computing and Communications, Cochin, Kerala, 2012, pp. 207–210. – reference: X. Zhang, Y. Ren, G. Feng, Z. Qian, Compressing encrypted image using compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 222–225. – volume: 52 start-page: 1112 year: 2016 end-page: 1114 ident: bib24 article-title: Blind source separation using analysis sparse constraint publication-title: Electron. Lett. – volume: 15 start-page: 1 year: 2014 end-page: 29 ident: bib20 article-title: A secure LFSR based random measurement matrix for compressive sensing publication-title: Sens. Imaging: Int. J. – reference: V. Athira, S.N. George, P.P. Deepthi, A novel encryption method based on compressive sensing, in: International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing, Kottayam, Kerala, 2013, pp. 271–275. – volume: 19 start-page: 3653 year: 2014 end-page: 3659 ident: bib4 article-title: A chaotic image encryption scheme owning temp-value feedback publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 343 start-page: 10 year: 2015 end-page: 21 ident: bib19 article-title: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform publication-title: Opt. Commun. – volume: 11 start-page: 514 year: 2011 end-page: 522 ident: bib2 article-title: A new chaos-based fast image encryption algorithm publication-title: Appl. Soft Comput. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: bib7 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 124 start-page: 6590 year: 2013 end-page: 6593 ident: bib11 article-title: Optical image encryption technique based on compressed sensing and Arnold transformation publication-title: Optik – Int. J. Light Electron Opt. – volume: 61 start-page: 1 year: 2014 end-page: 8 ident: bib15 article-title: Optical image encryption based on compressive sensing and chaos in the fractional fourier domain publication-title: J. Mod. Opt. – volume: 84 start-page: 118 year: 2016 end-page: 133 ident: bib17 article-title: Image encryption and compression based on Kronecker compressed sensing and elementary cellular automata scrambling publication-title: Opt. Laser Technol. – volume: 61 start-page: 661 year: 2013 end-page: 677 ident: bib25 article-title: Analysis K-SVD publication-title: IEEE Trans. Signal Process. – reference: E.Y. Xie, C. Li, S. Yu, J. Lü, On the cryptanalysis of Fridrich's chaotic image encryption scheme, Signal Process. 132 (2016) 150–154. – reference: R. Huang, K. Sakurai, A robust and compression-combined digital image encryption method based on compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 105–108. – volume: 8 start-page: 337 year: 2009 end-page: 369 ident: bib27 article-title: Split Bregman methods and frame based image restoration publication-title: SIAM J. Multiscale Model. Simul. – volume: 297 start-page: 80 year: 2014 end-page: 94 ident: bib28 article-title: 2D sine logistic modulation map for image encryption publication-title: Inf. Sci. – volume: 54 start-page: 1782 year: 2015 end-page: 1793 ident: bib12 article-title: Compressive sensing based robust multispectral double-image encryption publication-title: Appl. Opt. – reference: R.S. Endra, Compressive sensing-based image encryption with optimized sensing matrix, in: IEEE International Conference on Computational Intelligence and Cybernetics, Yogyakarta, Indonesia, 2013, pp. 122–125. – volume: 125 start-page: 5075 year: 2014 end-page: 5080 ident: bib18 article-title: Novel hybrid image compression–encryption algorithm based on compressive sensing publication-title: Optik – Int. J. Light Electron Opt. – volume: 343 start-page: 10 year: 2015 ident: 10.1016/j.optcom.2017.01.061_bib19 article-title: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.12.084 – volume: 4 start-page: 2507 year: 2016 ident: 10.1016/j.optcom.2017.01.061_bib22 article-title: A review of compressive sensing in information security field publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2569421 – volume: 297 start-page: 80 year: 2014 ident: 10.1016/j.optcom.2017.01.061_bib28 article-title: 2D sine logistic modulation map for image encryption publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.11.018 – volume: 15 start-page: 3507 issue: 11 year: 2010 ident: 10.1016/j.optcom.2017.01.061_bib1 article-title: A fast image encryption and authentication scheme based on chaotic maps publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.01.004 – ident: 10.1016/j.optcom.2017.01.061_bib26 doi: 10.1109/ICASSP.2012.6289144 – volume: 8 start-page: 337 issue: 2 year: 2009 ident: 10.1016/j.optcom.2017.01.061_bib27 article-title: Split Bregman methods and frame based image restoration publication-title: SIAM J. Multiscale Model. Simul. doi: 10.1137/090753504 – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.optcom.2017.01.061_bib20 article-title: A secure LFSR based random measurement matrix for compressive sensing publication-title: Sens. Imaging: Int. J. doi: 10.1007/s11220-014-0085-9 – start-page: 1 year: 2016 ident: 10.1016/j.optcom.2017.01.061_bib16 article-title: Image compression–encryption scheme combining 2D compressive sensing with discrete fractional random transform publication-title: Multimed. Tools Appl. – volume: 19 start-page: 3653 issue: 10 year: 2014 ident: 10.1016/j.optcom.2017.01.061_bib4 article-title: A chaotic image encryption scheme owning temp-value feedback publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.03.016 – volume: 9 start-page: 81 issue: 3 year: 2002 ident: 10.1016/j.optcom.2017.01.061_bib30 article-title: A universal image quality index publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.995823 – ident: 10.1016/j.optcom.2017.01.061_bib6 doi: 10.1016/j.sigpro.2016.10.002 – ident: 10.1016/j.optcom.2017.01.061_bib8 doi: 10.1109/CyberneticsCom.2013.6865794 – volume: 61 start-page: 1 issue: 19 year: 2014 ident: 10.1016/j.optcom.2017.01.061_bib15 article-title: Optical image encryption based on compressive sensing and chaos in the fractional fourier domain publication-title: J. Mod. Opt. doi: 10.1080/09500340.2014.946565 – volume: 11 start-page: 514 issue: 1 year: 2011 ident: 10.1016/j.optcom.2017.01.061_bib2 article-title: A new chaos-based fast image encryption algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.011 – volume: 124 start-page: 6590 issue: 24 year: 2013 ident: 10.1016/j.optcom.2017.01.061_bib11 article-title: Optical image encryption technique based on compressed sensing and Arnold transformation publication-title: Optik – Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2013.05.092 – volume: 61 start-page: 661 issue: 3 year: 2013 ident: 10.1016/j.optcom.2017.01.061_bib25 article-title: Analysis K-SVD publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2226445 – ident: 10.1016/j.optcom.2017.01.061_bib9 doi: 10.1109/IIHMSP.2011.53 – volume: 84 start-page: 118 year: 2016 ident: 10.1016/j.optcom.2017.01.061_bib17 article-title: Image encryption and compression based on Kronecker compressed sensing and elementary cellular automata scrambling publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2016.05.012 – volume: 125 start-page: 5075 issue: 18 year: 2014 ident: 10.1016/j.optcom.2017.01.061_bib18 article-title: Novel hybrid image compression–encryption algorithm based on compressive sensing publication-title: Optik – Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2014.06.054 – volume: 51 start-page: 472 issue: 4 year: 2013 ident: 10.1016/j.optcom.2017.01.061_bib5 article-title: Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2012.11.001 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.optcom.2017.01.061_bib7 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – ident: 10.1016/j.optcom.2017.01.061_bib10 doi: 10.1109/iMac4s.2013.6526421 – volume: 124 start-page: 2514 issue: 16 year: 2013 ident: 10.1016/j.optcom.2017.01.061_bib29 article-title: Digital image information encryption based on compressive sensing and double random-phase encoding technique publication-title: Optik – Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2012.08.017 – ident: 10.1016/j.optcom.2017.01.061_bib13 doi: 10.1109/IIHMSP.2011.12 – volume: 5 start-page: 68 issue: 1 year: 2014 ident: 10.1016/j.optcom.2017.01.061_bib14 article-title: Image encryption and compression based on compressive sensing and chaos publication-title: Int. J. Comput. Eng. Technol. – volume: 54 start-page: 1782 issue: 7 year: 2015 ident: 10.1016/j.optcom.2017.01.061_bib12 article-title: Compressive sensing based robust multispectral double-image encryption publication-title: Appl. Opt. doi: 10.1364/AO.54.001782 – ident: 10.1016/j.optcom.2017.01.061_bib21 doi: 10.1109/ICACC.2012.48 – volume: 285 start-page: 562 issue: 5 year: 2012 ident: 10.1016/j.optcom.2017.01.061_bib3 article-title: A new image encryption algorithm based on chaos publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.10.098 – ident: 10.1016/j.optcom.2017.01.061_bib23 doi: 10.1109/MLSP.2013.6661910 – volume: 52 start-page: 1112 issue: 13 year: 2016 ident: 10.1016/j.optcom.2017.01.061_bib24 article-title: Blind source separation using analysis sparse constraint publication-title: Electron. Lett. doi: 10.1049/el.2016.0334 |
| SSID | ssj0001438 |
| Score | 2.4656837 |
| Snippet | Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 223 |
| SubjectTerms | Analysis sparse representation Compressive sensing Image compression Image encryption |
| Title | A novel image compression–encryption hybrid algorithm based on the analysis sparse representation |
| URI | https://dx.doi.org/10.1016/j.optcom.2017.01.061 |
| Volume | 392 |
| WOSCitedRecordID | wos000395604500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-0310 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001438 issn: 0030-4018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkhcEE-xy0M-cKuCUjupnWOFFgGHBYlFKqco9YPtqptEaVp2b_wH_iG_hBk7LyjiJXGJqjROLM-X8Wdn5htCniqxjFSodZBoEwfR1IogW-IGvI11mEiGit6u2IQ4OZGLRfJ2NPrU5sLs1iLP5eVlUv5XU8M5MDamzv6Fububwgn4DUaHI5gdjn9k-PkkL3ZmPVldYDgOhoz7UNe8jWvg0NvqyruKsyvM2Jpk649FtarPLiY4q-nmC8IkaxVLwO1UGyywUvbZSvmQ174pndyzGqabdGy925T-0KFosXXAWmVFf1Gxbdx9tc2HmxFT0QdN-R2yvSwZ73V5COvUxs8a72il4AHKkg49Mfdl8Vpf6hORm2mZeb2MPY_vNx_OnxVljeE_2Cmnw-ol3n_Q0n7nvgSjRhnK9EvUHjhgIk7kmBzMXx0vXneTOFaF94qevutt1qULDdx_1s9ZzYCpnN4iN5slBp17aNwmI5PfIdddqK_a3CVqTh1AqAMIHQDk6-cvPTSohwbtoEEdNCj8A9CgLTSohwb9Hhr3yPsXx6fPXwZNqY1AccHqINJAZqwJYTEgLLNLHTNuMjtTOpPWCoMTAbM8UUkERgNap2Y6CpUEwqpjywy_T8Z5kZsHhMZSzyQzRgCzjlAuMswSrmLDmNFLxe0h4e1QparRocdyKOu0DTg8T_0ApzjAaThNYYAPSdC1Kr0Oy2-uF60V0oZLeo6YAnB-2fLon1s-JDf6d-IRGdfV1jwm19SuXm2qJw3CvgEsup3y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+compression%E2%80%93encryption+hybrid+algorithm+based+on+the+analysis+sparse+representation&rft.jtitle=Optics+communications&rft.au=Zhang%2C+Ye&rft.au=Xu%2C+Biao&rft.au=Zhou%2C+Nanrun&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.eissn=1873-0310&rft.volume=392&rft.spage=223&rft.epage=233&rft_id=info:doi/10.1016%2Fj.optcom.2017.01.061&rft.externalDocID=S0030401817300871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon |