A novel image compression–encryption hybrid algorithm based on the analysis sparse representation

Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression–encryption hybrid alg...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics communications Ročník 392; s. 223 - 233
Hlavní autori: Zhang, Ye, Xu, Biao, Zhou, Nanrun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2017
Predmet:
ISSN:0030-4018, 1873-0310
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression–encryption hybrid algorithm. The analysis sparse representation of the original image is obtained with an overcomplete fixed dictionary that the order of the dictionary atoms is scrambled, and the sparse representation can be considered as an encrypted version of the image. Moreover, the sparse representation is compressed to reduce its dimension and re-encrypted by the compressive sensing simultaneously. To enhance the security of the algorithm, a pixel-scrambling method is employed to re-encrypt the measurements of the compressive sensing. Various simulation results verify that the proposed image compression–encryption hybrid algorithm could provide a considerable compression performance with a good security. •A novel image compression–encryption hybrid algorithm is proposed with analysis sparse representation.•Using an atom-scrambled dictionary to obtain the sparse representation of the image.•The sparse representation is an encrypted version of the image.•Compressive sensing is utilized to compress and encrypt the sparse representation.•A pixel-scrambling method is introduced to enhance the security of the algorithm.
AbstractList Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression–encryption hybrid algorithm. The analysis sparse representation of the original image is obtained with an overcomplete fixed dictionary that the order of the dictionary atoms is scrambled, and the sparse representation can be considered as an encrypted version of the image. Moreover, the sparse representation is compressed to reduce its dimension and re-encrypted by the compressive sensing simultaneously. To enhance the security of the algorithm, a pixel-scrambling method is employed to re-encrypt the measurements of the compressive sensing. Various simulation results verify that the proposed image compression–encryption hybrid algorithm could provide a considerable compression performance with a good security. •A novel image compression–encryption hybrid algorithm is proposed with analysis sparse representation.•Using an atom-scrambled dictionary to obtain the sparse representation of the image.•The sparse representation is an encrypted version of the image.•Compressive sensing is utilized to compress and encrypt the sparse representation.•A pixel-scrambling method is introduced to enhance the security of the algorithm.
Author Zhang, Ye
Xu, Biao
Zhou, Nanrun
Author_xml – sequence: 1
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  email: zhangye@ncu.edu.cn
– sequence: 2
  givenname: Biao
  surname: Xu
  fullname: Xu, Biao
  email: biaoxu1992@163.com
– sequence: 3
  givenname: Nanrun
  surname: Zhou
  fullname: Zhou, Nanrun
  email: nrzhou@ncu.edu.cn
BookMark eNqFkEtqwzAQhkVJoWnaG3ShC9gdPWI7XRRC6AsC3bRroUijRMGxjWQC3vUOvWFPUgV31UW7Gobh-5n_uySTpm2QkBsGOQNW3O7ztutNe8g5sDIHlkPBzsiUVaXIQDCYkCmAgEwCqy7IZYx7AGBSVFNilrRpj1hTf9BbpCmkCxijb5uvj09sTBi6Pi10N2yCt1TX2zb4fnegGx3R0nTpd0h1o-sh-khjp0NEGvCUgk2vT_AVOXe6jnj9M2fk_fHhbfWcrV-fXlbLdWZEyftMWsmEQyhLWTruNnbOBWpXGKsr58p0EMCdWJiFTKW45KawEkwFRWHnjqOYETnmmtDGGNCpLqRaYVAM1EmU2qtRlDqJUsBUEpWwu1-Y8ePjfdC-_g--H2FMxY4eg4rGJ29ofUDTK9v6vwO-AfIujLI
CitedBy_id crossref_primary_10_1007_s13369_018_3355_3
crossref_primary_10_1016_j_sigpro_2019_03_022
crossref_primary_10_1007_s11071_024_10268_9
crossref_primary_10_3390_app122110807
crossref_primary_10_3233_JIFS_179568
crossref_primary_10_1007_s11220_020_00284_5
crossref_primary_10_1016_j_jnca_2022_103456
crossref_primary_10_3390_math13142324
crossref_primary_10_1007_s11042_023_15012_w
crossref_primary_10_2478_amns_2023_2_01686
crossref_primary_10_1109_ACCESS_2019_2959017
crossref_primary_10_1007_s11042_023_17940_z
crossref_primary_10_1016_j_image_2020_115829
crossref_primary_10_1155_2022_2628885
crossref_primary_10_1049_iet_ipr_2017_1016
crossref_primary_10_21307_ijssis_2018_004
crossref_primary_10_1016_j_image_2018_01_010
crossref_primary_10_1016_j_sigpro_2020_107563
crossref_primary_10_1007_s11831_018_9298_8
crossref_primary_10_1109_ACCESS_2019_2925839
crossref_primary_10_1088_1674_1056_26_12_120504
crossref_primary_10_1016_j_image_2021_116521
crossref_primary_10_1109_ACCESS_2018_2874336
crossref_primary_10_3390_math11153295
crossref_primary_10_1109_JIOT_2019_2953519
crossref_primary_10_1088_1757_899X_462_1_012035
crossref_primary_10_1109_ACCESS_2021_3074968
crossref_primary_10_1109_ACCESS_2023_3287858
crossref_primary_10_1109_JIOT_2018_2881129
crossref_primary_10_1109_ACCESS_2019_2897721
crossref_primary_10_1109_TNB_2017_2780881
crossref_primary_10_1016_j_optlastec_2018_06_016
crossref_primary_10_1016_j_yofte_2024_103848
crossref_primary_10_1007_s12083_024_01718_7
crossref_primary_10_1016_j_swevo_2021_100873
crossref_primary_10_1016_j_sigpro_2018_02_007
crossref_primary_10_1155_2018_9591768
crossref_primary_10_1016_j_image_2021_116418
crossref_primary_10_1007_s00340_020_07480_x
crossref_primary_10_1109_ACCESS_2025_3578158
crossref_primary_10_3390_e22070772
crossref_primary_10_1007_s11042_019_7405_y
crossref_primary_10_1109_ACCESS_2021_3094563
crossref_primary_10_1155_2021_5012496
crossref_primary_10_1088_1674_1056_27_3_034202
crossref_primary_10_3390_electronics10040385
crossref_primary_10_1371_journal_pone_0224382
crossref_primary_10_1109_ACCESS_2019_2946208
crossref_primary_10_1016_j_dsp_2024_104908
crossref_primary_10_1016_j_optlaseng_2018_05_014
crossref_primary_10_1016_j_optlastec_2019_105703
crossref_primary_10_1109_JIOT_2022_3218681
crossref_primary_10_3390_s19143081
crossref_primary_10_1007_s11071_018_4689_9
crossref_primary_10_1016_j_sigpro_2020_107629
crossref_primary_10_1007_s42979_020_00397_4
crossref_primary_10_1109_ACCESS_2019_2958319
crossref_primary_10_1016_j_jksuci_2022_08_007
crossref_primary_10_1007_s11042_020_08821_w
crossref_primary_10_1145_3498342
crossref_primary_10_1016_j_ijleo_2021_167093
crossref_primary_10_1016_j_optlaseng_2019_03_006
Cites_doi 10.1016/j.optcom.2014.12.084
10.1109/ACCESS.2016.2569421
10.1016/j.ins.2014.11.018
10.1016/j.cnsns.2010.01.004
10.1109/ICASSP.2012.6289144
10.1137/090753504
10.1007/s11220-014-0085-9
10.1016/j.cnsns.2014.03.016
10.1109/97.995823
10.1016/j.sigpro.2016.10.002
10.1109/CyberneticsCom.2013.6865794
10.1080/09500340.2014.946565
10.1016/j.asoc.2009.12.011
10.1016/j.ijleo.2013.05.092
10.1109/TSP.2012.2226445
10.1109/IIHMSP.2011.53
10.1016/j.optlastec.2016.05.012
10.1016/j.ijleo.2014.06.054
10.1016/j.optlaseng.2012.11.001
10.1109/TIT.2006.871582
10.1109/iMac4s.2013.6526421
10.1016/j.ijleo.2012.08.017
10.1109/IIHMSP.2011.12
10.1364/AO.54.001782
10.1109/ICACC.2012.48
10.1016/j.optcom.2011.10.098
10.1109/MLSP.2013.6661910
10.1049/el.2016.0334
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2017.01.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
EndPage 233
ExternalDocumentID 10_1016_j_optcom_2017_01_061
S0030401817300871
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SET
SEW
SPG
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c372t-4d413fe07747f2fbd523eaf6cda8ff7e07302f39c94031242c6d40c8066d5f2e3
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395604500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-4018
IngestDate Tue Nov 18 21:44:03 EST 2025
Sat Nov 29 07:52:24 EST 2025
Fri Feb 23 02:25:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 99-00
Image encryption
Compressive sensing
Image compression
Analysis sparse representation
00-01
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-4d413fe07747f2fbd523eaf6cda8ff7e07302f39c94031242c6d40c8066d5f2e3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_optcom_2017_01_061
crossref_citationtrail_10_1016_j_optcom_2017_01_061
elsevier_sciencedirect_doi_10_1016_j_optcom_2017_01_061
PublicationCentury 2000
PublicationDate 2017-06-01
2017-06-00
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Optics communications
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Zhang, Wu, Pei, Yang (bib18) 2014; 125
M. Yaghoobi, S. Nam, R. Gribonval, M.E. Davies, Noise aware analysis operator learning for approximately cosparse signals, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 5409–5412.
A.V. Sreedhanya, K.P. Soman, Secrecy of cryptography with compressed sensing, in: International Conference on Advances in Computing and Communications, Cochin, Kerala, 2012, pp. 207–210.
Rawat, Kim, Muniraj, Situ, Lee (bib12) 2015; 54
Yang, Wong, Liao, Zhang, Wei (bib1) 2010; 15
X. Zhang, Y. Ren, G. Feng, Z. Qian, Compressing encrypted image using compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 222–225.
Cai, Osher, Shen (bib27) 2009; 8
Liu, Cao, Lu, Lu, Li (bib11) 2013; 124
Wang, Bovik (bib30) 2002; 9
Mahmood, Shehab, Publication (bib14) 2014; 5
Zhang, Zhang, Zhou, Liu (bib22) 2016; 4
Chen, Zhang, Wu, Yuen (bib17) 2016; 84
Deng, Zhao, Wang, Wang, Wang, Sha (bib16) 2016
Hua, Zhou, Pun, Chen (bib28) 2014; 297
V. Athira, S.N. George, P.P. Deepthi, A novel encryption method based on compressive sensing, in: International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing, Kottayam, Kerala, 2013, pp. 271–275.
Rubinstein, Peleg, Elad (bib25) 2013; 61
E.Y. Xie, C. Li, S. Yu, J. Lü, On the cryptanalysis of Fridrich's chaotic image encryption scheme, Signal Process. 132 (2016) 150–154.
Wang, Wong, Liao, Chen (bib2) 2011; 11
R. Huang, K. Sakurai, A robust and compression-combined digital image encryption method based on compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 105–108.
Zhou, Li, Wang, Pan, Zhou (bib19) 2015; 343
R.S. Endra, Compressive sensing-based image encryption with optimized sensing matrix, in: IEEE International Conference on Computational Intelligence and Cybernetics, Yogyakarta, Indonesia, 2013, pp. 122–125.
Wang, Zhao, Liu (bib3) 2012; 285
Liu, Du (bib15) 2014; 61
Donoho (bib7) 2006; 52
Fang, Wang, Xu, Zhang (bib24) 2016; 52
Zhang, Hu, Liu, Wong, Gan (bib4) 2014; 19
Lu, Xu, Lu, Liu (bib29) 2013; 124
Zhang, Xiao (bib5) 2013; 51
George, Pattathil (bib20) 2014; 15
Y. Zhang, H. Wang, T. Yu, W. Wang, Subset pursuit for analysis dictionary learning, in: Signal Processing Conference, Marrakech, Morocco, 2013, pp. 1–5.
Liu (10.1016/j.optcom.2017.01.061_bib11) 2013; 124
Zhou (10.1016/j.optcom.2017.01.061_bib18) 2014; 125
Fang (10.1016/j.optcom.2017.01.061_bib24) 2016; 52
10.1016/j.optcom.2017.01.061_bib6
Cai (10.1016/j.optcom.2017.01.061_bib27) 2009; 8
Wang (10.1016/j.optcom.2017.01.061_bib30) 2002; 9
10.1016/j.optcom.2017.01.061_bib8
10.1016/j.optcom.2017.01.061_bib9
10.1016/j.optcom.2017.01.061_bib23
Hua (10.1016/j.optcom.2017.01.061_bib28) 2014; 297
10.1016/j.optcom.2017.01.061_bib21
Lu (10.1016/j.optcom.2017.01.061_bib29) 2013; 124
Zhang (10.1016/j.optcom.2017.01.061_bib4) 2014; 19
Zhang (10.1016/j.optcom.2017.01.061_bib5) 2013; 51
Wang (10.1016/j.optcom.2017.01.061_bib3) 2012; 285
Zhang (10.1016/j.optcom.2017.01.061_bib22) 2016; 4
Rubinstein (10.1016/j.optcom.2017.01.061_bib25) 2013; 61
10.1016/j.optcom.2017.01.061_bib26
Rawat (10.1016/j.optcom.2017.01.061_bib12) 2015; 54
Wang (10.1016/j.optcom.2017.01.061_bib2) 2011; 11
Donoho (10.1016/j.optcom.2017.01.061_bib7) 2006; 52
Chen (10.1016/j.optcom.2017.01.061_bib17) 2016; 84
Deng (10.1016/j.optcom.2017.01.061_bib16) 2016
10.1016/j.optcom.2017.01.061_bib13
Zhou (10.1016/j.optcom.2017.01.061_bib19) 2015; 343
10.1016/j.optcom.2017.01.061_bib10
Mahmood (10.1016/j.optcom.2017.01.061_bib14) 2014; 5
George (10.1016/j.optcom.2017.01.061_bib20) 2014; 15
Yang (10.1016/j.optcom.2017.01.061_bib1) 2010; 15
Liu (10.1016/j.optcom.2017.01.061_bib15) 2014; 61
References_xml – volume: 15
  start-page: 3507
  year: 2010
  end-page: 3517
  ident: bib1
  article-title: A fast image encryption and authentication scheme based on chaotic maps
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 4
  start-page: 2507
  year: 2016
  end-page: 2519
  ident: bib22
  article-title: A review of compressive sensing in information security field
  publication-title: IEEE Access
– volume: 5
  start-page: 68
  year: 2014
  end-page: 84
  ident: bib14
  article-title: Image encryption and compression based on compressive sensing and chaos
  publication-title: Int. J. Comput. Eng. Technol.
– volume: 9
  start-page: 81
  year: 2002
  end-page: 84
  ident: bib30
  article-title: A universal image quality index
  publication-title: IEEE Signal Process. Lett.
– volume: 285
  start-page: 562
  year: 2012
  end-page: 566
  ident: bib3
  article-title: A new image encryption algorithm based on chaos
  publication-title: Opt. Commun.
– volume: 124
  start-page: 2514
  year: 2013
  end-page: 2518
  ident: bib29
  article-title: Digital image information encryption based on compressive sensing and double random-phase encoding technique
  publication-title: Optik – Int. J. Light Electron Opt.
– start-page: 1
  year: 2016
  end-page: 21
  ident: bib16
  article-title: Image compression–encryption scheme combining 2D compressive sensing with discrete fractional random transform
  publication-title: Multimed. Tools Appl.
– reference: Y. Zhang, H. Wang, T. Yu, W. Wang, Subset pursuit for analysis dictionary learning, in: Signal Processing Conference, Marrakech, Morocco, 2013, pp. 1–5.
– reference: M. Yaghoobi, S. Nam, R. Gribonval, M.E. Davies, Noise aware analysis operator learning for approximately cosparse signals, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 5409–5412.
– volume: 51
  start-page: 472
  year: 2013
  end-page: 480
  ident: bib5
  article-title: Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform
  publication-title: Opt. Lasers Eng.
– reference: A.V. Sreedhanya, K.P. Soman, Secrecy of cryptography with compressed sensing, in: International Conference on Advances in Computing and Communications, Cochin, Kerala, 2012, pp. 207–210.
– reference: X. Zhang, Y. Ren, G. Feng, Z. Qian, Compressing encrypted image using compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 222–225.
– volume: 52
  start-page: 1112
  year: 2016
  end-page: 1114
  ident: bib24
  article-title: Blind source separation using analysis sparse constraint
  publication-title: Electron. Lett.
– volume: 15
  start-page: 1
  year: 2014
  end-page: 29
  ident: bib20
  article-title: A secure LFSR based random measurement matrix for compressive sensing
  publication-title: Sens. Imaging: Int. J.
– reference: V. Athira, S.N. George, P.P. Deepthi, A novel encryption method based on compressive sensing, in: International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing, Kottayam, Kerala, 2013, pp. 271–275.
– volume: 19
  start-page: 3653
  year: 2014
  end-page: 3659
  ident: bib4
  article-title: A chaotic image encryption scheme owning temp-value feedback
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 343
  start-page: 10
  year: 2015
  end-page: 21
  ident: bib19
  article-title: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform
  publication-title: Opt. Commun.
– volume: 11
  start-page: 514
  year: 2011
  end-page: 522
  ident: bib2
  article-title: A new chaos-based fast image encryption algorithm
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib7
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 124
  start-page: 6590
  year: 2013
  end-page: 6593
  ident: bib11
  article-title: Optical image encryption technique based on compressed sensing and Arnold transformation
  publication-title: Optik – Int. J. Light Electron Opt.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib15
  article-title: Optical image encryption based on compressive sensing and chaos in the fractional fourier domain
  publication-title: J. Mod. Opt.
– volume: 84
  start-page: 118
  year: 2016
  end-page: 133
  ident: bib17
  article-title: Image encryption and compression based on Kronecker compressed sensing and elementary cellular automata scrambling
  publication-title: Opt. Laser Technol.
– volume: 61
  start-page: 661
  year: 2013
  end-page: 677
  ident: bib25
  article-title: Analysis K-SVD
  publication-title: IEEE Trans. Signal Process.
– reference: E.Y. Xie, C. Li, S. Yu, J. Lü, On the cryptanalysis of Fridrich's chaotic image encryption scheme, Signal Process. 132 (2016) 150–154.
– reference: R. Huang, K. Sakurai, A robust and compression-combined digital image encryption method based on compressive sensing, in: International Conference on Intelligent Information Hiding & Multimedia Signal Processing, Dalian, China, 2011, pp. 105–108.
– volume: 8
  start-page: 337
  year: 2009
  end-page: 369
  ident: bib27
  article-title: Split Bregman methods and frame based image restoration
  publication-title: SIAM J. Multiscale Model. Simul.
– volume: 297
  start-page: 80
  year: 2014
  end-page: 94
  ident: bib28
  article-title: 2D sine logistic modulation map for image encryption
  publication-title: Inf. Sci.
– volume: 54
  start-page: 1782
  year: 2015
  end-page: 1793
  ident: bib12
  article-title: Compressive sensing based robust multispectral double-image encryption
  publication-title: Appl. Opt.
– reference: R.S. Endra, Compressive sensing-based image encryption with optimized sensing matrix, in: IEEE International Conference on Computational Intelligence and Cybernetics, Yogyakarta, Indonesia, 2013, pp. 122–125.
– volume: 125
  start-page: 5075
  year: 2014
  end-page: 5080
  ident: bib18
  article-title: Novel hybrid image compression–encryption algorithm based on compressive sensing
  publication-title: Optik – Int. J. Light Electron Opt.
– volume: 343
  start-page: 10
  year: 2015
  ident: 10.1016/j.optcom.2017.01.061_bib19
  article-title: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.084
– volume: 4
  start-page: 2507
  year: 2016
  ident: 10.1016/j.optcom.2017.01.061_bib22
  article-title: A review of compressive sensing in information security field
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2569421
– volume: 297
  start-page: 80
  year: 2014
  ident: 10.1016/j.optcom.2017.01.061_bib28
  article-title: 2D sine logistic modulation map for image encryption
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.11.018
– volume: 15
  start-page: 3507
  issue: 11
  year: 2010
  ident: 10.1016/j.optcom.2017.01.061_bib1
  article-title: A fast image encryption and authentication scheme based on chaotic maps
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.01.004
– ident: 10.1016/j.optcom.2017.01.061_bib26
  doi: 10.1109/ICASSP.2012.6289144
– volume: 8
  start-page: 337
  issue: 2
  year: 2009
  ident: 10.1016/j.optcom.2017.01.061_bib27
  article-title: Split Bregman methods and frame based image restoration
  publication-title: SIAM J. Multiscale Model. Simul.
  doi: 10.1137/090753504
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.optcom.2017.01.061_bib20
  article-title: A secure LFSR based random measurement matrix for compressive sensing
  publication-title: Sens. Imaging: Int. J.
  doi: 10.1007/s11220-014-0085-9
– start-page: 1
  year: 2016
  ident: 10.1016/j.optcom.2017.01.061_bib16
  article-title: Image compression–encryption scheme combining 2D compressive sensing with discrete fractional random transform
  publication-title: Multimed. Tools Appl.
– volume: 19
  start-page: 3653
  issue: 10
  year: 2014
  ident: 10.1016/j.optcom.2017.01.061_bib4
  article-title: A chaotic image encryption scheme owning temp-value feedback
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.03.016
– volume: 9
  start-page: 81
  issue: 3
  year: 2002
  ident: 10.1016/j.optcom.2017.01.061_bib30
  article-title: A universal image quality index
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.995823
– ident: 10.1016/j.optcom.2017.01.061_bib6
  doi: 10.1016/j.sigpro.2016.10.002
– ident: 10.1016/j.optcom.2017.01.061_bib8
  doi: 10.1109/CyberneticsCom.2013.6865794
– volume: 61
  start-page: 1
  issue: 19
  year: 2014
  ident: 10.1016/j.optcom.2017.01.061_bib15
  article-title: Optical image encryption based on compressive sensing and chaos in the fractional fourier domain
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2014.946565
– volume: 11
  start-page: 514
  issue: 1
  year: 2011
  ident: 10.1016/j.optcom.2017.01.061_bib2
  article-title: A new chaos-based fast image encryption algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.011
– volume: 124
  start-page: 6590
  issue: 24
  year: 2013
  ident: 10.1016/j.optcom.2017.01.061_bib11
  article-title: Optical image encryption technique based on compressed sensing and Arnold transformation
  publication-title: Optik – Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2013.05.092
– volume: 61
  start-page: 661
  issue: 3
  year: 2013
  ident: 10.1016/j.optcom.2017.01.061_bib25
  article-title: Analysis K-SVD
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2226445
– ident: 10.1016/j.optcom.2017.01.061_bib9
  doi: 10.1109/IIHMSP.2011.53
– volume: 84
  start-page: 118
  year: 2016
  ident: 10.1016/j.optcom.2017.01.061_bib17
  article-title: Image encryption and compression based on Kronecker compressed sensing and elementary cellular automata scrambling
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2016.05.012
– volume: 125
  start-page: 5075
  issue: 18
  year: 2014
  ident: 10.1016/j.optcom.2017.01.061_bib18
  article-title: Novel hybrid image compression–encryption algorithm based on compressive sensing
  publication-title: Optik – Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2014.06.054
– volume: 51
  start-page: 472
  issue: 4
  year: 2013
  ident: 10.1016/j.optcom.2017.01.061_bib5
  article-title: Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2012.11.001
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.optcom.2017.01.061_bib7
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– ident: 10.1016/j.optcom.2017.01.061_bib10
  doi: 10.1109/iMac4s.2013.6526421
– volume: 124
  start-page: 2514
  issue: 16
  year: 2013
  ident: 10.1016/j.optcom.2017.01.061_bib29
  article-title: Digital image information encryption based on compressive sensing and double random-phase encoding technique
  publication-title: Optik – Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2012.08.017
– ident: 10.1016/j.optcom.2017.01.061_bib13
  doi: 10.1109/IIHMSP.2011.12
– volume: 5
  start-page: 68
  issue: 1
  year: 2014
  ident: 10.1016/j.optcom.2017.01.061_bib14
  article-title: Image encryption and compression based on compressive sensing and chaos
  publication-title: Int. J. Comput. Eng. Technol.
– volume: 54
  start-page: 1782
  issue: 7
  year: 2015
  ident: 10.1016/j.optcom.2017.01.061_bib12
  article-title: Compressive sensing based robust multispectral double-image encryption
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.001782
– ident: 10.1016/j.optcom.2017.01.061_bib21
  doi: 10.1109/ICACC.2012.48
– volume: 285
  start-page: 562
  issue: 5
  year: 2012
  ident: 10.1016/j.optcom.2017.01.061_bib3
  article-title: A new image encryption algorithm based on chaos
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2011.10.098
– ident: 10.1016/j.optcom.2017.01.061_bib23
  doi: 10.1109/MLSP.2013.6661910
– volume: 52
  start-page: 1112
  issue: 13
  year: 2016
  ident: 10.1016/j.optcom.2017.01.061_bib24
  article-title: Blind source separation using analysis sparse constraint
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.0334
SSID ssj0001438
Score 2.4656837
Snippet Recent advances on the compressive sensing theory were invoked for image compression–encryption based on the synthesis sparse model. In this paper we...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 223
SubjectTerms Analysis sparse representation
Compressive sensing
Image compression
Image encryption
Title A novel image compression–encryption hybrid algorithm based on the analysis sparse representation
URI https://dx.doi.org/10.1016/j.optcom.2017.01.061
Volume 392
WOSCitedRecordID wos000395604500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001438
  issn: 0030-4018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkhcEE-xy0M-cKuCUjupnWOFFgGHBYlFKqco9YPtqptEaVp2b_wH_iG_hBk7LyjiJXGJqjROLM-X8Wdn5htCniqxjFSodZBoEwfR1IogW-IGvI11mEiGit6u2IQ4OZGLRfJ2NPrU5sLs1iLP5eVlUv5XU8M5MDamzv6Fububwgn4DUaHI5gdjn9k-PkkL3ZmPVldYDgOhoz7UNe8jWvg0NvqyruKsyvM2Jpk649FtarPLiY4q-nmC8IkaxVLwO1UGyywUvbZSvmQ174pndyzGqabdGy925T-0KFosXXAWmVFf1Gxbdx9tc2HmxFT0QdN-R2yvSwZ73V5COvUxs8a72il4AHKkg49Mfdl8Vpf6hORm2mZeb2MPY_vNx_OnxVljeE_2Cmnw-ol3n_Q0n7nvgSjRhnK9EvUHjhgIk7kmBzMXx0vXneTOFaF94qevutt1qULDdx_1s9ZzYCpnN4iN5slBp17aNwmI5PfIdddqK_a3CVqTh1AqAMIHQDk6-cvPTSohwbtoEEdNCj8A9CgLTSohwb9Hhr3yPsXx6fPXwZNqY1AccHqINJAZqwJYTEgLLNLHTNuMjtTOpPWCoMTAbM8UUkERgNap2Y6CpUEwqpjywy_T8Z5kZsHhMZSzyQzRgCzjlAuMswSrmLDmNFLxe0h4e1QparRocdyKOu0DTg8T_0ApzjAaThNYYAPSdC1Kr0Oy2-uF60V0oZLeo6YAnB-2fLon1s-JDf6d-IRGdfV1jwm19SuXm2qJw3CvgEsup3y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+compression%E2%80%93encryption+hybrid+algorithm+based+on+the+analysis+sparse+representation&rft.jtitle=Optics+communications&rft.au=Zhang%2C+Ye&rft.au=Xu%2C+Biao&rft.au=Zhou%2C+Nanrun&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.eissn=1873-0310&rft.volume=392&rft.spage=223&rft.epage=233&rft_id=info:doi/10.1016%2Fj.optcom.2017.01.061&rft.externalDocID=S0030401817300871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon