Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning

Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of medical systems Ročník 44; číslo 2; s. 32
Hlavní autori: Amin, Javaria, Sharif, Muhammad, Gul, Nadia, Raza, Mudassar, Anjum, Muhammad Almas, Nisar, Muhammad Wasif, Bukhari, Syed Ahmad Chan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2020
Springer Nature B.V
Predmet:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices’ intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.
AbstractList Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices’ intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.
Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices' intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices' intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.
ArticleNumber 32
Author Nisar, Muhammad Wasif
Raza, Mudassar
Anjum, Muhammad Almas
Bukhari, Syed Ahmad Chan
Sharif, Muhammad
Gul, Nadia
Amin, Javaria
Author_xml – sequence: 1
  givenname: Javaria
  surname: Amin
  fullname: Amin, Javaria
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 2
  givenname: Muhammad
  surname: Sharif
  fullname: Sharif, Muhammad
  email: muhammadsharifmalik@yahoo.com, sharif@ciitwah.edu.pk
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 3
  givenname: Nadia
  surname: Gul
  fullname: Gul, Nadia
  organization: Department of radiology, Wah Medical College, POF Hospital
– sequence: 4
  givenname: Mudassar
  surname: Raza
  fullname: Raza, Mudassar
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 5
  givenname: Muhammad Almas
  surname: Anjum
  fullname: Anjum, Muhammad Almas
  organization: College of EME, NUST
– sequence: 6
  givenname: Muhammad Wasif
  surname: Nisar
  fullname: Nisar, Muhammad Wasif
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 7
  givenname: Syed Ahmad Chan
  surname: Bukhari
  fullname: Bukhari, Syed Ahmad Chan
  organization: Division of Computer Science, Mathematics and Science, Collins College of Professional Studies, St. John’s University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31848728$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LwzAYx4NM3It-AC9S8OKlmpe2SY9z8w0GHtzAW8jSp6OzS2bSHvbtTdlUGOglgfD7PXn4_4eoZ6wBhC4JviUY8ztPcE6yGJM8JolgMT1BA5JyFmcif--hAQ6vcZrmoo-G3q8xxnmW8TPUZ0QkglMxQNN7pyoTzduNddEUGtBNZU203EULX5lV9NYo_QFFNG4bC0bbApyPgjAF2EYzUM4E6hydlqr2cHG4R2jx-DCfPMez16eXyXgWa8ZpEycJw0pgSBNNUiXSgmINXDGh2ZIVACotqeIisOEQGSGKLlWqygLnmGqi2Qjd7Odunf1swTdyU3kNda0M2NZLyqhgCWeEB_T6CF3b1pmwXUdxgbMso4G6OlDtcgOF3Lpqo9xOfucTALIHtLPeOyh_EIJl14HcdyBDB7LrQHZD-ZGjq0Z1sTYh6_pfk-5NH34xK3C_S_8tfQE-_JgM
CitedBy_id crossref_primary_10_1007_s11042_020_09810_9
crossref_primary_10_3390_jpm12020275
crossref_primary_10_1007_s11042_022_13769_0
crossref_primary_10_1109_ACCESS_2024_3523516
crossref_primary_10_1007_s11042_024_19333_2
crossref_primary_10_1007_s42979_024_02881_7
crossref_primary_10_1016_j_bspc_2022_104395
crossref_primary_10_1016_j_bspc_2023_104875
crossref_primary_10_1007_s00521_025_11013_y
crossref_primary_10_1016_j_bspc_2022_104434
crossref_primary_10_1007_s00521_023_08717_4
crossref_primary_10_1109_ACCESS_2024_3359418
crossref_primary_10_1111_exsy_12882
crossref_primary_10_4015_S1016237224500509
crossref_primary_10_1051_bioconf_20249700050
crossref_primary_10_1016_j_bspc_2022_104424
crossref_primary_10_3233_THC_240052
crossref_primary_10_1016_j_neucom_2023_127216
crossref_primary_10_1016_j_compeleceng_2023_108586
crossref_primary_10_3389_fonc_2024_1436009
crossref_primary_10_1007_s00521_023_08281_x
crossref_primary_10_3390_biomedicines11010184
crossref_primary_10_1007_s40747_021_00563_y
crossref_primary_10_1007_s11227_025_07161_6
crossref_primary_10_1016_j_ipm_2024_103934
crossref_primary_10_1016_j_neuroscience_2025_01_020
crossref_primary_10_4018_IJSI_293269
crossref_primary_10_3390_life15030327
crossref_primary_10_1016_j_ymssp_2024_111173
crossref_primary_10_1016_j_compeleceng_2022_108338
crossref_primary_10_1038_s41598_025_02890_3
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_3390_diagnostics11091589
crossref_primary_10_3390_diagnostics12040823
crossref_primary_10_1111_jcmm_18144
crossref_primary_10_1016_j_neuri_2022_100062
crossref_primary_10_1109_TIM_2024_3476544
crossref_primary_10_1038_s41598_025_13155_4
crossref_primary_10_1016_j_bspc_2022_103866
crossref_primary_10_1016_j_bbe_2020_11_005
crossref_primary_10_1155_2022_3236305
crossref_primary_10_32604_cmc_2021_014199
crossref_primary_10_1016_j_heliyon_2024_e28062
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_3390_jpm12091459
crossref_primary_10_1051_itmconf_20235302008
crossref_primary_10_1155_cplx_1644859
crossref_primary_10_3390_jpm12091454
crossref_primary_10_1007_s11042_022_12162_1
crossref_primary_10_1007_s11042_022_13994_7
crossref_primary_10_3390_computers13100269
crossref_primary_10_1007_s11042_022_14088_0
crossref_primary_10_1007_s40745_023_00480_6
crossref_primary_10_1016_j_compbiomed_2025_110242
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_1155_2022_7028717
crossref_primary_10_1016_j_eswa_2022_118041
crossref_primary_10_1038_s41598_024_84386_0
crossref_primary_10_1016_j_heliyon_2024_e25468
crossref_primary_10_1016_j_soildyn_2023_107834
crossref_primary_10_1080_21681163_2023_2181020
crossref_primary_10_1007_s11831_024_10209_0
crossref_primary_10_32604_cmc_2022_018562
crossref_primary_10_1007_s10462_022_10245_x
crossref_primary_10_1007_s40747_021_00310_3
crossref_primary_10_1177_20552076241228403
crossref_primary_10_32604_cmc_2023_035860
crossref_primary_10_1109_ACCESS_2023_3289224
crossref_primary_10_3389_fonc_2023_1248452
crossref_primary_10_4018_IJEHMC_315730
crossref_primary_10_1016_j_ijmecsci_2024_109420
crossref_primary_10_1016_j_chemolab_2025_105414
crossref_primary_10_1007_s11760_023_02567_2
crossref_primary_10_1007_s42979_022_01091_3
crossref_primary_10_1016_j_bspc_2022_103571
crossref_primary_10_1109_ACCESS_2023_3347545
crossref_primary_10_3390_life12081126
crossref_primary_10_1002_ima_22543
crossref_primary_10_1016_j_compeleceng_2022_108238
crossref_primary_10_3390_s21248507
crossref_primary_10_3390_app13053108
crossref_primary_10_3390_math11020364
crossref_primary_10_3390_diagnostics13111832
crossref_primary_10_1007_s00521_022_07204_6
crossref_primary_10_3389_fonc_2024_1347363
crossref_primary_10_3389_fnsys_2022_838822
crossref_primary_10_1016_j_compbiomed_2022_105273
crossref_primary_10_1109_ACCESS_2024_3392572
crossref_primary_10_3389_fcell_2021_765654
crossref_primary_10_1007_s00521_022_07894_y
Cites_doi 10.1016/j.neucom.2012.08.047
10.1109/TBME.2014.2325410
10.1016/S0893-6080(05)80056-5
10.1016/j.jmr.2004.12.007
10.1148/radiol.2393042031
10.1002/ima.22258
10.1109/ICIP.2018.8451379
10.1007/978-3-319-10404-1_95
10.1016/0730-725X(93)90206-S
10.2174/1573405613666170306114320
10.1007/978-3-319-19665-7_17
10.1016/j.acra.2008.01.029
10.1007/s00521-019-04369-5
10.1007/s11548-013-0922-7
10.1155/2017/9749108
10.1016/S0730-725X(03)00097-3
10.1016/j.patrec.2017.05.028
10.1109/TMI.2016.2538465
10.1007/978-981-13-1927-3_3
10.1109/TMI.2014.2377694
10.1088/0031-9155/58/13/R97
10.1002/ima.22255
10.1007/s00401-010-0750-6
10.1007/s12021-014-9245-2
10.1016/j.compmedimag.2013.05.007
10.1016/j.patcog.2018.11.009
10.1117/12.713544
10.1016/j.asoc.2016.05.020
10.1109/TBME.2009.2012423
10.1016/j.mri.2012.01.006
10.1148/radiology.191.1.8134596
10.1016/j.media.2016.05.004
10.1016/j.media.2017.10.002
10.1007/978-3-319-30858-6_15
10.1109/42.700731
10.1007/s002340050450
10.1142/S0219519418500380
10.1007/s10278-017-9983-4
10.1007/978-3-319-42016-5_6
10.1148/radiol.2432060493
10.1016/j.compbiomed.2004.11.003
10.1016/j.future.2018.04.065
10.1016/j.jocs.2017.01.002
10.1016/j.media.2016.10.004
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1483-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database ProQuest
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
ExternalDocumentID 31848728
10_1007_s10916_019_1483_2
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-4430a80e54c15a85d20ce7a38c3b3deea5f2a783727838611a2ba5afd0902c1c3
IEDL.DBID RSV
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513497600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Fri Sep 05 05:58:59 EDT 2025
Tue Nov 04 23:12:23 EST 2025
Wed Feb 19 02:31:58 EST 2025
Sat Nov 29 05:35:01 EST 2025
Tue Nov 18 22:15:14 EST 2025
Fri Feb 21 02:37:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Softmax
Hidden size
Glioma
Stacked sparse autoencoder
Magnetic resonance images
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4430a80e54c15a85d20ce7a38c3b3deea5f2a783727838611a2ba5afd0902c1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31848728
PQID 2327806662
PQPubID 54050
ParticipantIDs proquest_miscellaneous_2328347317
proquest_journals_2327806662
pubmed_primary_31848728
crossref_primary_10_1007_s10916_019_1483_2
crossref_citationtrail_10_1007_s10916_019_1483_2
springer_journals_10_1007_s10916_019_1483_2
PublicationCentury 2000
PublicationDate 20200200
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (CR54) 2015; 34
De Wolde, Pruim, Mastik, Koudstaal, Molenaar (CR3) 1997; 38
Krabbe, Gideon, Wagn, Hansen, Thomsen, Madsen (CR10) 1997; 39
Wu, Chen, Zhao, Corso (CR56) 2014; 9
CR37
Cho, Choi, Lee, Kim (CR17) 2003; 21
Amin, Sharif, Yasmin, Fernandes (CR21) 2018; 87
Verma, Zacharaki, Ou, Cai, Chawla, Lee, Melhem, Wolf, Davatzikos (CR31) 2008; 15
Møller (CR51) 1993; 6
CR6
CR5
Liaqat, Khan, Shah, Sharif, Yasmin, Fernandes (CR28) 2018; 18
CR49
Jiang, Wu, Huang, Yang, Chen, Feng (CR36) 2013; 37
CR48
CR46
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR12) 2017; 35
CR45
CR44
CR43
CR42
CR41
CR40
Bauer, Wiest, Nolte, Reyes (CR4) 2013; 58
Aronen, Gazit, Louis, Buchbinder, Pardo, Weisskoff, Harsh, Cosgrove, Halpern, Hochberg (CR9) 1994; 191
Chen, Ding, Liu (CR55) 2019; 88
Tabatabai, Stupp, Van Den Bent, Hegi, Tonn, Wick, Weller (CR8) 2010; 120
Clark, Hall, Goldgof, Velthuizen, Murtagh, Silbiger (CR34) 1998; 17
Huang, Yang, Wu, Jiang, Chen, Feng (CR58) 2014; 61
Pereira, Pinto, Alves, Silva (CR14) 2016; 35
Aponte, Patel, Patel (CR2) 2017
Zhao, Wu, Song, Li, Zhang, Fan (CR15) 2018; 43
Tustison, Shrinidhi, Wintermark, Durst, Kandel, Gee, Grossman, Avants (CR63) 2015; 13
Rajinikanth, Satapathy, Fernandes, Nachiappan (CR22) 2017; 94
Schad, Blüml, Zuna (CR33) 1993; 11
CR16
CR59
Devos, Simonetti, Van Der Graaf, Lukas, Suykens, Vanhamme, Buydens, Heerschap, Van Huffel (CR19) 2005; 173
Amin, Sharif, Yasmin, Ali, Fernandes (CR25) 2017; 19
Anitha, Raja (CR1) 2018; 28
Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (CR35) 2016; 47
Wang, Cheng, Basu (CR29) 2009; 56
Dvořák, Menze (CR38) 2016
CR52
Li, Yang, Ye, Geng (CR18) 2006; 36
CR50
Naqi, Sharif, Yasmin, Fernandes (CR27) 2018; 14
Bauer, Fejes, Slotboom, Wiest, Nolte, Reyes (CR57) 2012
Reza, Mays, Iftekharuddin (CR53) 2015
Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (CR32) 2012; 30
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR13) 2017; 36
Al-Okaili, Krejza, Woo, Wolf, O'Rourke, Judy, Poptani, Melhem (CR30) 2007; 243
CR26
CR24
Akkus, Galimzianova, Hoogi, Rubin, Erickson (CR47) 2017; 30
CR23
Haeck, Maes, Suetens (CR65) 2015
CR20
CR64
CR62
CR61
Van Meir, Hadjipanayis, Norden, Shu, Wen, Olson (CR7) 2010; 60
CR60
Provenzale, Mukundan, Barboriak (CR11) 2006; 239
Chen, Bentley, Rueckert (CR39) 2017
1483_CR59
1483_CR16
W Wu (1483_CR56) 2014; 9
K Kamnitsas (1483_CR13) 2017; 36
J Amin (1483_CR25) 2017; 19
T Wang (1483_CR29) 2009; 56
EG Van Meir (1483_CR7) 2010; 60
X Zhao (1483_CR15) 2018; 43
Pavel Dvořák (1483_CR38) 2016
NJ Tustison (1483_CR63) 2015; 13
K Krabbe (1483_CR10) 1997; 39
J Jiang (1483_CR36) 2013; 37
JM Provenzale (1483_CR11) 2006; 239
1483_CR52
MF Møller (1483_CR51) 1993; 6
1483_CR50
J Amin (1483_CR21) 2018; 87
1483_CR26
1483_CR6
1483_CR5
1483_CR23
1483_CR24
G Tabatabai (1483_CR8) 2010; 120
MC Clark (1483_CR34) 1998; 17
Z Akkus (1483_CR47) 2017; 30
1483_CR62
Raoul J. Aponte (1483_CR2) 2017
1483_CR20
1483_CR64
H De Wolde (1483_CR3) 1997; 38
A Liaqat (1483_CR28) 2018; 18
1483_CR60
1483_CR61
1483_CR37
J Sachdeva (1483_CR35) 2016; 47
T Haeck (1483_CR65) 2015
Y-D Cho (1483_CR17) 2003; 21
J Sachdeva (1483_CR32) 2012; 30
R Verma (1483_CR31) 2008; 15
S Chen (1483_CR55) 2019; 88
R Anitha (1483_CR1) 2018; 28
V Rajinikanth (1483_CR22) 2017; 94
BH Menze (1483_CR54) 2015; 34
SM Reza (1483_CR53) 2015
M Huang (1483_CR58) 2014; 61
S Naqi (1483_CR27) 2018; 14
A Devos (1483_CR19) 2005; 173
LR Schad (1483_CR33) 1993; 11
S Bauer (1483_CR4) 2013; 58
1483_CR48
1483_CR49
RN Al-Okaili (1483_CR30) 2007; 243
S Pereira (1483_CR14) 2016; 35
1483_CR44
1483_CR45
1483_CR46
G-Z Li (1483_CR18) 2006; 36
M Havaei (1483_CR12) 2017; 35
L Chen (1483_CR39) 2017
1483_CR40
S Bauer (1483_CR57) 2012
1483_CR41
1483_CR42
1483_CR43
HJ Aronen (1483_CR9) 1994; 191
References_xml – ident: CR45
– ident: CR49
– volume: 58
  start-page: R97
  year: 2013
  ident: CR4
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Physics in Medicine & Biology
– volume: 239
  start-page: 632
  issue: 3
  year: 2006
  end-page: 649
  ident: CR11
  article-title: Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response
  publication-title: Radiology
– ident: CR16
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  end-page: 1251
  ident: CR14
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE transactions on medical imaging
– volume: 19
  start-page: 153
  year: 2017
  end-page: 164
  ident: CR25
  article-title: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions
  publication-title: Journal of Computational Science
– volume: 120
  start-page: 585
  issue: 5
  year: 2010
  end-page: 592
  ident: CR8
  article-title: Molecular diagnostics of gliomas: The clinical perspective
  publication-title: Acta neuropathologica
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  ident: CR15
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Medical image analysis
– volume: 11
  start-page: 889
  issue: 6
  year: 1993
  end-page: 896
  ident: CR33
  article-title: IX. MR tissue characterization of intracranial tumors by means of texture analysis
  publication-title: Magnetic resonance imaging
– ident: CR61
– volume: 17
  start-page: 187
  issue: 2
  year: 1998
  end-page: 201
  ident: CR34
  article-title: Automatic tumor segmentation using knowledge-based techniques
  publication-title: IEEE transactions on medical imaging
– volume: 28
  start-page: 48
  year: 2018
  end-page: 53
  ident: CR1
  article-title: Development of computer-aided approach for brain tumor detection using random forest classifier
  publication-title: International Journal of Imaging Systems and Technology
– ident: CR42
– ident: CR46
– volume: 13
  start-page: 209
  issue: 2
  year: 2015
  end-page: 225
  ident: CR63
  article-title: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR
  publication-title: Neuroinformatics
– year: 2017
  ident: CR39
  publication-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
– volume: 36
  start-page: 313
  issue: 3
  year: 2006
  end-page: 325
  ident: CR18
  article-title: Degree prediction of malignancy in brain glioma using support vector machines
  publication-title: Computers in Biology and Medicine
– volume: 87
  start-page: 290
  year: 2018
  end-page: 297
  ident: CR21
  article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks
  publication-title: Future Generation Computer Systems
– ident: CR50
– start-page: 59
  year: 2016
  end-page: 71
  ident: CR38
  article-title: Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation
  publication-title: Medical Computer Vision: Algorithms for Big Data
– year: 2012
  ident: CR57
  publication-title: “segmentation of brain tumor images based on integrated hierarchical classification and regularization,” in
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: CR51
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural networks
– start-page: 251
  year: 2017
  end-page: 268
  ident: CR2
  article-title: Brain Tumors
  publication-title: Neurocritical Care for the Advanced Practice Clinician
– volume: 173
  start-page: 218
  issue: 2
  year: 2005
  end-page: 228
  ident: CR19
  article-title: The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification
  publication-title: Journal of Magnetic Resonance
– ident: CR60
– ident: CR5
– ident: CR64
– ident: CR26
– volume: 15
  start-page: 966
  issue: 8
  year: 2008
  end-page: 977
  ident: CR31
  article-title: Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images
  publication-title: Academic radiology
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR12
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Medical image analysis
– volume: 30
  start-page: 694
  issue: 5
  year: 2012
  end-page: 715
  ident: CR32
  article-title: A novel content-based active contour model for brain tumor segmentation
  publication-title: Magnetic resonance imaging
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  end-page: 459
  ident: CR47
  article-title: Deep learning for brain MRI segmentation: State of the art and future directions
  publication-title: Journal of digital imaging
– volume: 56
  start-page: 781
  issue: 3
  year: 2009
  end-page: 789
  ident: CR29
  article-title: Fluid vector flow and applications in brain tumor segmentation
  publication-title: IEEE Transactions on Biomedical Engineering
– ident: CR43
– volume: 14
  start-page: 108
  year: 2018
  end-page: 117
  ident: CR27
  article-title: Lung nodule detection using polygon approximation and hybrid features from CT images
  publication-title: Current Medical Imaging Reviews
– volume: 21
  start-page: 663
  year: 2003
  end-page: 672
  ident: CR17
  article-title: 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors
  publication-title: Magnetic resonance imaging
– ident: CR37
– ident: CR6
– volume: 47
  start-page: 151
  year: 2016
  end-page: 167
  ident: CR35
  article-title: A package-SFERCB-“segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”
  publication-title: Applied Soft Computing
– ident: CR40
– volume: 94
  start-page: 87
  year: 2017
  end-page: 95
  ident: CR22
  article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization
  publication-title: Pattern Recognition Letters
– ident: CR23
– volume: 39
  start-page: 483
  issue: 7
  year: 1997
  end-page: 489
  ident: CR10
  article-title: MR diffusion imaging of human intracranial tumours
  publication-title: Neuroradiology
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: CR13
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Medical image analysis
– volume: 243
  start-page: 539
  issue: 2
  year: 2007
  end-page: 550
  ident: CR30
  article-title: Intraaxial brain masses: MR imaging–based diagnostic strategy—Initial experience
  publication-title: Radiology
– volume: 88
  start-page: 90
  year: 2019
  end-page: 100
  ident: CR55
  article-title: Dual-force convolutional neural networks for accurate brain tumor segmentation
  publication-title: Pattern Recognition
– ident: CR44
– volume: 61
  start-page: 2633
  issue: 10
  year: 2014
  end-page: 2645
  ident: CR58
  article-title: Brain tumor segmentation based on local independent projection-based classification
  publication-title: IEEE Transactions on Biomedical Engineering
– ident: CR48
– volume: 18
  start-page: 1850038
  year: 2018
  ident: CR28
  article-title: Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection
  publication-title: Journal of Mechanics in Medicine and Biology
– ident: CR52
– volume: 37
  start-page: 512
  year: 2013
  end-page: 521
  ident: CR36
  article-title: 3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets
  publication-title: Computerized Medical Imaging and Graphics
– start-page: 246
  year: 2015
  end-page: 253
  ident: CR65
– ident: CR59
– volume: 38
  start-page: 1369
  year: 1997
  ident: CR3
  article-title: Proliferative activity in human brain tumors: Comparison of histopathology and L-(1-11C) tyrosine PET
  publication-title: The Journal of Nuclear Medicine
– volume: 60
  start-page: 166
  issue: 3
  year: 2010
  end-page: 193
  ident: CR7
  article-title: Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma
  publication-title: CA: a cancer journal for clinicians
– ident: CR41
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  end-page: 2024
  ident: CR54
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE transactions on medical imaging
– ident: CR62
– year: 2015
  ident: CR53
  publication-title: “Multi-fractal detrended texture feature for brain tumor classification,” in
– volume: 191
  start-page: 41
  issue: 1
  year: 1994
  end-page: 51
  ident: CR9
  article-title: Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic findings
  publication-title: Radiology
– ident: CR24
– volume: 9
  start-page: 241
  issue: 2
  year: 2014
  end-page: 253
  ident: CR56
  article-title: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features
  publication-title: International journal of computer assisted radiology and surgery
– ident: CR20
– ident: 1483_CR37
  doi: 10.1016/j.neucom.2012.08.047
– ident: 1483_CR49
– volume: 61
  start-page: 2633
  issue: 10
  year: 2014
  ident: 1483_CR58
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2014.2325410
– ident: 1483_CR26
– ident: 1483_CR45
– volume: 6
  start-page: 525
  year: 1993
  ident: 1483_CR51
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 173
  start-page: 218
  issue: 2
  year: 2005
  ident: 1483_CR19
  publication-title: Journal of Magnetic Resonance
  doi: 10.1016/j.jmr.2004.12.007
– volume: 239
  start-page: 632
  issue: 3
  year: 2006
  ident: 1483_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2393042031
– ident: 1483_CR6
  doi: 10.1002/ima.22258
– ident: 1483_CR46
  doi: 10.1109/ICIP.2018.8451379
– ident: 1483_CR59
  doi: 10.1007/978-3-319-10404-1_95
– volume: 11
  start-page: 889
  issue: 6
  year: 1993
  ident: 1483_CR33
  publication-title: Magnetic resonance imaging
  doi: 10.1016/0730-725X(93)90206-S
– volume: 14
  start-page: 108
  year: 2018
  ident: 1483_CR27
  publication-title: Current Medical Imaging Reviews
  doi: 10.2174/1573405613666170306114320
– ident: 1483_CR61
– volume: 60
  start-page: 166
  issue: 3
  year: 2010
  ident: 1483_CR7
  publication-title: CA: a cancer journal for clinicians
– ident: 1483_CR43
  doi: 10.1007/978-3-319-19665-7_17
– volume: 15
  start-page: 966
  issue: 8
  year: 2008
  ident: 1483_CR31
  publication-title: Academic radiology
  doi: 10.1016/j.acra.2008.01.029
– ident: 1483_CR42
– ident: 1483_CR23
  doi: 10.1007/s00521-019-04369-5
– volume: 9
  start-page: 241
  issue: 2
  year: 2014
  ident: 1483_CR56
  publication-title: International journal of computer assisted radiology and surgery
  doi: 10.1007/s11548-013-0922-7
– ident: 1483_CR5
  doi: 10.1155/2017/9749108
– volume: 21
  start-page: 663
  year: 2003
  ident: 1483_CR17
  publication-title: Magnetic resonance imaging
  doi: 10.1016/S0730-725X(03)00097-3
– volume: 38
  start-page: 1369
  year: 1997
  ident: 1483_CR3
  publication-title: The Journal of Nuclear Medicine
– volume: 94
  start-page: 87
  year: 2017
  ident: 1483_CR22
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.05.028
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 1483_CR14
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2016.2538465
– ident: 1483_CR52
– ident: 1483_CR24
  doi: 10.1007/978-981-13-1927-3_3
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 1483_CR54
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 58
  start-page: R97
  year: 2013
  ident: 1483_CR4
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/0031-9155/58/13/R97
– volume: 28
  start-page: 48
  year: 2018
  ident: 1483_CR1
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22255
– volume: 120
  start-page: 585
  issue: 5
  year: 2010
  ident: 1483_CR8
  publication-title: Acta neuropathologica
  doi: 10.1007/s00401-010-0750-6
– volume: 13
  start-page: 209
  issue: 2
  year: 2015
  ident: 1483_CR63
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9245-2
– volume: 37
  start-page: 512
  year: 2013
  ident: 1483_CR36
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2013.05.007
– ident: 1483_CR62
– volume-title: “segmentation of brain tumor images based on integrated hierarchical classification and regularization,” in MICCAI BraTS Workshop
  year: 2012
  ident: 1483_CR57
– start-page: 251
  volume-title: Neurocritical Care for the Advanced Practice Clinician
  year: 2017
  ident: 1483_CR2
– ident: 1483_CR41
– volume: 88
  start-page: 90
  year: 2019
  ident: 1483_CR55
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.11.009
– ident: 1483_CR16
  doi: 10.1117/12.713544
– volume-title: “Multi-fractal detrended texture feature for brain tumor classification,” in Proceedings of SPIE--the International Society for Optical Engineering
  year: 2015
  ident: 1483_CR53
– volume: 47
  start-page: 151
  year: 2016
  ident: 1483_CR35
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.05.020
– volume-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
  year: 2017
  ident: 1483_CR39
– volume: 56
  start-page: 781
  issue: 3
  year: 2009
  ident: 1483_CR29
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2012423
– volume: 30
  start-page: 694
  issue: 5
  year: 2012
  ident: 1483_CR32
  publication-title: Magnetic resonance imaging
  doi: 10.1016/j.mri.2012.01.006
– volume: 191
  start-page: 41
  issue: 1
  year: 1994
  ident: 1483_CR9
  publication-title: Radiology
  doi: 10.1148/radiology.191.1.8134596
– volume: 35
  start-page: 18
  year: 2017
  ident: 1483_CR12
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2016.05.004
– volume: 43
  start-page: 98
  year: 2018
  ident: 1483_CR15
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2017.10.002
– ident: 1483_CR20
  doi: 10.1007/978-3-319-30858-6_15
– volume: 17
  start-page: 187
  issue: 2
  year: 1998
  ident: 1483_CR34
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/42.700731
– volume: 39
  start-page: 483
  issue: 7
  year: 1997
  ident: 1483_CR10
  publication-title: Neuroradiology
  doi: 10.1007/s002340050450
– ident: 1483_CR40
– volume: 18
  start-page: 1850038
  year: 2018
  ident: 1483_CR28
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519418500380
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  ident: 1483_CR47
  publication-title: Journal of digital imaging
  doi: 10.1007/s10278-017-9983-4
– start-page: 59
  volume-title: Medical Computer Vision: Algorithms for Big Data
  year: 2016
  ident: 1483_CR38
  doi: 10.1007/978-3-319-42016-5_6
– ident: 1483_CR48
– volume: 243
  start-page: 539
  issue: 2
  year: 2007
  ident: 1483_CR30
  publication-title: Radiology
  doi: 10.1148/radiol.2432060493
– ident: 1483_CR44
– ident: 1483_CR50
– start-page: 246
  volume-title: “ISLES challenge 2015: Automated model-based segmentation of ischemic stroke in MR images,” in International Workshop on Brainlesion: Glioma
  year: 2015
  ident: 1483_CR65
– volume: 36
  start-page: 313
  issue: 3
  year: 2006
  ident: 1483_CR18
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2004.11.003
– ident: 1483_CR60
– volume: 87
  start-page: 290
  year: 2018
  ident: 1483_CR21
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.04.065
– volume: 19
  start-page: 153
  year: 2017
  ident: 1483_CR25
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.01.002
– volume: 36
  start-page: 61
  year: 2017
  ident: 1483_CR13
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2016.10.004
– ident: 1483_CR64
SSID ssj0009667
Score 2.5299947
Snippet Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms Brain cancer
Brain tumors
Deep learning
Glioma
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Image & Signal Processing
Medicine
Medicine & Public Health
Recent Advances in Deep Learning for Biomedical Signal Processing
Statistics for Life Sciences
Tumors
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VLUKVUMubtBQZiRPIIvEj8Z4q2u0KCVhxAMQtcvxAlUqy3c0i8e-xE2dXCMGlZz9i5RuPZzzjbwAOrTRUc8udbxJTzArRx0UhGGbCmlRK1icN8fztRTYaibu7_lW4cJuGtMpOJzaKWlfK35GfuJM_E97YJj_G_7CvGuWjq6GExhJ8TAhJvJyfZ3hBupum7XNpJrAnIu-imu3TOWcYOUe6j10rxeTlufTK2HwVKG3On-GX_135GnwOlic6bUVlHT6YcgNWLkNsfQNW2xs81D5M2oTBT189Al3PHqoJGpi6ydkqUfGEmjQD5MxUpwE0Op3VlWfD9BnRyA0YGDNGgbb1fgtuhr-vf53hUHMBK5qRGjNGYyliw5lKuBRck1iZTFKhaEG1MZJbIjPn1foKHSJNEkkKyaXVPr9TJYpuQ6-sSrMLSFiubaxtqrVkJjXS4cFiaW1KCmUljyDu_niuAiG5r4vxN19QKXuQcgdS7kHKSQRH8yHjlo3jvc57HR552JjTfAFGBAfzZrelfJxElqaaNX0EZZmzrCLYaeGff82pQOfiERHBcScPi8nfXMrX95fyDT4R78Y3yeB70KsnM_MdltVj_Wc62W9k-hlX5_lM
  priority: 102
  providerName: ProQuest
Title Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning
URI https://link.springer.com/article/10.1007/s10916-019-1483-2
https://www.ncbi.nlm.nih.gov/pubmed/31848728
https://www.proquest.com/docview/2327806662
https://www.proquest.com/docview/2328347317
Volume 44
WOSCitedRecordID wos000513497600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rixMxEB_0TkQQH-d5Vs8SwU9KYJvHJv14Z-8Q9EqptRS_LNk8RNDt0W4P_O-dZHdb5VTQLwNLHhtmdpKZnclvAF4G47mTQaJvknEqSj2kZakFFTr43BgxZAl4fv5ejcd6sRhO2nvc6y7bvQtJpp36p8tuaMqg6zukaMJzivvuPp52Omrj9MN8h7Sb580daaFpRB_vQpm_m-LXw-iahXktOpoOnfP7_7XcB3CvtTHJSfNRPIQbvjqA2xdtFP0A7jb_6khzBekRjE5jnQgy23xbrsjI1yk7qyLld5ISCggapKjrjpxs6mXEvYy5zwQHjLy_JC1A6-dD-Hh-NnvzlrbVFajlitVUCJ4ZnXkp7EAaLR3LrFeGa8tL7rw3MjCj0H-NtTh0PhgYVhppgouZnHZg-WPYq5aVfwJEB-lC5kLunBE-9waFIDITQs5KG4zsQdaxubAt9HisgPG12IEmR24VyK0icqtgPXi1HXLZ4G78rfNxJ7uiVcF1gaai0tE7w-YX22ZUnhgRMZVfblIfzYVCG6oHR43Mt2_DzQ6dOaZ78LoT8G7yPy7l6T_1fgZ3WPTfUxb4MezVq41_DrfsVf1lverDTTWdR7pQieo-7J-ejSdTfHqnKNKLbBYpm0SqIp3IT_2kDz8ACKz4FA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggAJ8SivQAEjwQVkkbWdxHtAqLBUrbq74rCg3oLjB0KCZNnNgvqn-I3M5LErVNFbD5xjO05mPJ7xfP4G4FkwXrokJBibxJKrQg95UWjFlQ4-NUYNRUM8_2mcTaf6-Hj4YQt-93dhCFbZ28TGULvK0hn5K9z5M03Otngz_8GpahRlV_sSGq1aHPmTXxiyLV8fjlC-z4XYfz97d8C7qgLcykzUXCkZGx37RNlBYnTiRGx9ZqS2spDOe5MEYTKM26gGhU4HAyMKk5jgCMFoB1biuBfgIvHqEYRwEs82JL9p2l7PVpoT8XmfRW2v6qEjhoH7kONTycXf--Ap5_ZUYrbZ7_Zv_G9_6iZc7zxrttcuhVuw5csduDzpsAM7cK09oWTtxavbMHpL1THYbPW9WrCRrxtMWsmKE9bAKBi64WjhHNtb1RWxfRLim2GHkfdz1tHSfrkDH8_lm-7CdlmV_j4wHRIXYhdS54zyqTcofxWbEFJR2GCSCOJewrntCNep7se3fEMVTUqRo1LkpBS5iODFusu8ZRs5q_FuL_-8MzzLfCP8CJ6uH6PJoDyQKX21atpoqTL0HCO416rb-m1o4jGEFTqCl73-bQb_51QenD2VJ3DlYDYZ5-PD6dFDuCroyKIBvu_Cdr1Y-Udwyf6svy4Xj5v1xODzeavlH_akVeY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6Vgiqkikd5BQoYCS4gq1k_Eu8BoUJYUW1Z9VBQb8HxA1UqybKbbdW_1l_HOI9doYreeuAc23Hiz-MZzzczAK-9dtxKL9E2iTkVhRrSolCCCuVdorUYsibx_Pf9dDJRR0fDgzW46GNhAq2yl4mNoLaVCXfkO3jypyoo22zHd7SIg2z0YfqbhgpSwdPal9NoITJ252dovs3f72W41m8YG30-_PSFdhUGqOEpq6kQPNYqdlKYgdRKWhYbl2quDC-4dU5Lz3SKNlyoR6GSwUCzQkvtbWAzmoHhOO4NuImnsAx7bJzSVcLfJGlDtYWiIQl671Ftw_ZQKUMjfkjxKafs7zPxkqJ7yUnbnH2ju__zX7sHdzqNm-y2W-Q-rLlyCza-dpyCLdhsby5JG5D1ALKPoWoGOVz8qmYkc3XDVStJcU4aegVB9RwlnyW7i7oKWUADE5xgh8y5KenS1f58CN-u5ZsewXpZle4JEOWl9bH1ibVauMRpxIKItfcJK4zXMoK4X-3cdInYQz2Qk3yVQjoAJEeA5AEgOYvg7bLLtM1CclXj7R4LeSeQ5vkKCBG8Wj5GURL8Q7p01aJpo7hIUaOM4HELveXbUPSjactUBO96LK4G_-dUnl49lZewgWjM9_cm42dwm4WbjIYPvw3r9WzhnsMtc1ofz2cvmq1F4Md1o_IPbddeZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Detection+by+Using+Stacked+Autoencoders+in+Deep+Learning&rft.jtitle=Journal+of+medical+systems&rft.au=Amin%2C+Javaria&rft.au=Sharif%2C+Muhammad&rft.au=Gul%2C+Nadia&rft.au=Raza%2C+Mudassar&rft.date=2020-02-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=44&rft.issue=2&rft_id=info:doi/10.1007%2Fs10916-019-1483-2&rft.externalDocID=10_1007_s10916_019_1483_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon