Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning
Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities...
Uložené v:
| Vydané v: | Journal of medical systems Ročník 44; číslo 2; s. 32 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.02.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0148-5598, 1573-689X, 1573-689X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices’ intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance. |
|---|---|
| AbstractList | Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices’ intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance. Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices' intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance.Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to predict input slices as a tumor (unhealthy)/non-tumor (healthy). This manuscript employs a high pass filter image to prominent the inhomogeneities field effect of the MR slices and fused with the input slices. Moreover, the median filter is applied to the fused slices. The resultant slices quality is improved with smoothen and highlighted edges of the input slices. After that, based on these slices' intensity, a 4-connected seed growing algorithm is applied, where optimal threshold clusters the similar pixels from the input slices. The segmented slices are then supplied to the fine-tuned two layers proposed stacked sparse autoencoder (SSAE) model. The hyperparameters of the model are selected after extensive experiments. At the first layer, 200 hidden units and at the second layer 400 hidden units are utilized. The testing is performed on the softmax layer for the prediction of the images having tumors and no tumors. The suggested model is trained and checked on BRATS datasets i.e., 2012(challenge and synthetic), 2013, and 2013 Leaderboard, 2014, and 2015 datasets. The presented model is evaluated with a number of performance metrics which demonstrates the improved performance. |
| ArticleNumber | 32 |
| Author | Nisar, Muhammad Wasif Raza, Mudassar Anjum, Muhammad Almas Bukhari, Syed Ahmad Chan Sharif, Muhammad Gul, Nadia Amin, Javaria |
| Author_xml | – sequence: 1 givenname: Javaria surname: Amin fullname: Amin, Javaria organization: Department of Computer Science, COMSATS University Islamabad – sequence: 2 givenname: Muhammad surname: Sharif fullname: Sharif, Muhammad email: muhammadsharifmalik@yahoo.com, sharif@ciitwah.edu.pk organization: Department of Computer Science, COMSATS University Islamabad – sequence: 3 givenname: Nadia surname: Gul fullname: Gul, Nadia organization: Department of radiology, Wah Medical College, POF Hospital – sequence: 4 givenname: Mudassar surname: Raza fullname: Raza, Mudassar organization: Department of Computer Science, COMSATS University Islamabad – sequence: 5 givenname: Muhammad Almas surname: Anjum fullname: Anjum, Muhammad Almas organization: College of EME, NUST – sequence: 6 givenname: Muhammad Wasif surname: Nisar fullname: Nisar, Muhammad Wasif organization: Department of Computer Science, COMSATS University Islamabad – sequence: 7 givenname: Syed Ahmad Chan surname: Bukhari fullname: Bukhari, Syed Ahmad Chan organization: Division of Computer Science, Mathematics and Science, Collins College of Professional Studies, St. John’s University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31848728$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1LwzAYx4NM3It-AC9S8OKlmpe2SY9z8w0GHtzAW8jSp6OzS2bSHvbtTdlUGOglgfD7PXn4_4eoZ6wBhC4JviUY8ztPcE6yGJM8JolgMT1BA5JyFmcif--hAQ6vcZrmoo-G3q8xxnmW8TPUZ0QkglMxQNN7pyoTzduNddEUGtBNZU203EULX5lV9NYo_QFFNG4bC0bbApyPgjAF2EYzUM4E6hydlqr2cHG4R2jx-DCfPMez16eXyXgWa8ZpEycJw0pgSBNNUiXSgmINXDGh2ZIVACotqeIisOEQGSGKLlWqygLnmGqi2Qjd7Odunf1swTdyU3kNda0M2NZLyqhgCWeEB_T6CF3b1pmwXUdxgbMso4G6OlDtcgOF3Lpqo9xOfucTALIHtLPeOyh_EIJl14HcdyBDB7LrQHZD-ZGjq0Z1sTYh6_pfk-5NH34xK3C_S_8tfQE-_JgM |
| CitedBy_id | crossref_primary_10_1007_s11042_020_09810_9 crossref_primary_10_3390_jpm12020275 crossref_primary_10_1007_s11042_022_13769_0 crossref_primary_10_1109_ACCESS_2024_3523516 crossref_primary_10_1007_s11042_024_19333_2 crossref_primary_10_1007_s42979_024_02881_7 crossref_primary_10_1016_j_bspc_2022_104395 crossref_primary_10_1016_j_bspc_2023_104875 crossref_primary_10_1007_s00521_025_11013_y crossref_primary_10_1016_j_bspc_2022_104434 crossref_primary_10_1007_s00521_023_08717_4 crossref_primary_10_1109_ACCESS_2024_3359418 crossref_primary_10_1111_exsy_12882 crossref_primary_10_4015_S1016237224500509 crossref_primary_10_1051_bioconf_20249700050 crossref_primary_10_1016_j_bspc_2022_104424 crossref_primary_10_3233_THC_240052 crossref_primary_10_1016_j_neucom_2023_127216 crossref_primary_10_1016_j_compeleceng_2023_108586 crossref_primary_10_3389_fonc_2024_1436009 crossref_primary_10_1007_s00521_023_08281_x crossref_primary_10_3390_biomedicines11010184 crossref_primary_10_1007_s40747_021_00563_y crossref_primary_10_1007_s11227_025_07161_6 crossref_primary_10_1016_j_ipm_2024_103934 crossref_primary_10_1016_j_neuroscience_2025_01_020 crossref_primary_10_4018_IJSI_293269 crossref_primary_10_3390_life15030327 crossref_primary_10_1016_j_ymssp_2024_111173 crossref_primary_10_1016_j_compeleceng_2022_108338 crossref_primary_10_1038_s41598_025_02890_3 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_3390_diagnostics11091589 crossref_primary_10_3390_diagnostics12040823 crossref_primary_10_1111_jcmm_18144 crossref_primary_10_1016_j_neuri_2022_100062 crossref_primary_10_1109_TIM_2024_3476544 crossref_primary_10_1038_s41598_025_13155_4 crossref_primary_10_1016_j_bspc_2022_103866 crossref_primary_10_1016_j_bbe_2020_11_005 crossref_primary_10_1155_2022_3236305 crossref_primary_10_32604_cmc_2021_014199 crossref_primary_10_1016_j_heliyon_2024_e28062 crossref_primary_10_32604_cmes_2024_048932 crossref_primary_10_3390_jpm12091459 crossref_primary_10_1051_itmconf_20235302008 crossref_primary_10_1155_cplx_1644859 crossref_primary_10_3390_jpm12091454 crossref_primary_10_1007_s11042_022_12162_1 crossref_primary_10_1007_s11042_022_13994_7 crossref_primary_10_3390_computers13100269 crossref_primary_10_1007_s11042_022_14088_0 crossref_primary_10_1007_s40745_023_00480_6 crossref_primary_10_1016_j_compbiomed_2025_110242 crossref_primary_10_1109_ACCESS_2021_3062484 crossref_primary_10_1155_2022_7028717 crossref_primary_10_1016_j_eswa_2022_118041 crossref_primary_10_1038_s41598_024_84386_0 crossref_primary_10_1016_j_heliyon_2024_e25468 crossref_primary_10_1016_j_soildyn_2023_107834 crossref_primary_10_1080_21681163_2023_2181020 crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_32604_cmc_2022_018562 crossref_primary_10_1007_s10462_022_10245_x crossref_primary_10_1007_s40747_021_00310_3 crossref_primary_10_1177_20552076241228403 crossref_primary_10_32604_cmc_2023_035860 crossref_primary_10_1109_ACCESS_2023_3289224 crossref_primary_10_3389_fonc_2023_1248452 crossref_primary_10_4018_IJEHMC_315730 crossref_primary_10_1016_j_ijmecsci_2024_109420 crossref_primary_10_1016_j_chemolab_2025_105414 crossref_primary_10_1007_s11760_023_02567_2 crossref_primary_10_1007_s42979_022_01091_3 crossref_primary_10_1016_j_bspc_2022_103571 crossref_primary_10_1109_ACCESS_2023_3347545 crossref_primary_10_3390_life12081126 crossref_primary_10_1002_ima_22543 crossref_primary_10_1016_j_compeleceng_2022_108238 crossref_primary_10_3390_s21248507 crossref_primary_10_3390_app13053108 crossref_primary_10_3390_math11020364 crossref_primary_10_3390_diagnostics13111832 crossref_primary_10_1007_s00521_022_07204_6 crossref_primary_10_3389_fonc_2024_1347363 crossref_primary_10_3389_fnsys_2022_838822 crossref_primary_10_1016_j_compbiomed_2022_105273 crossref_primary_10_1109_ACCESS_2024_3392572 crossref_primary_10_3389_fcell_2021_765654 crossref_primary_10_1007_s00521_022_07894_y |
| Cites_doi | 10.1016/j.neucom.2012.08.047 10.1109/TBME.2014.2325410 10.1016/S0893-6080(05)80056-5 10.1016/j.jmr.2004.12.007 10.1148/radiol.2393042031 10.1002/ima.22258 10.1109/ICIP.2018.8451379 10.1007/978-3-319-10404-1_95 10.1016/0730-725X(93)90206-S 10.2174/1573405613666170306114320 10.1007/978-3-319-19665-7_17 10.1016/j.acra.2008.01.029 10.1007/s00521-019-04369-5 10.1007/s11548-013-0922-7 10.1155/2017/9749108 10.1016/S0730-725X(03)00097-3 10.1016/j.patrec.2017.05.028 10.1109/TMI.2016.2538465 10.1007/978-981-13-1927-3_3 10.1109/TMI.2014.2377694 10.1088/0031-9155/58/13/R97 10.1002/ima.22255 10.1007/s00401-010-0750-6 10.1007/s12021-014-9245-2 10.1016/j.compmedimag.2013.05.007 10.1016/j.patcog.2018.11.009 10.1117/12.713544 10.1016/j.asoc.2016.05.020 10.1109/TBME.2009.2012423 10.1016/j.mri.2012.01.006 10.1148/radiology.191.1.8134596 10.1016/j.media.2016.05.004 10.1016/j.media.2017.10.002 10.1007/978-3-319-30858-6_15 10.1109/42.700731 10.1007/s002340050450 10.1142/S0219519418500380 10.1007/s10278-017-9983-4 10.1007/978-3-319-42016-5_6 10.1148/radiol.2432060493 10.1016/j.compbiomed.2004.11.003 10.1016/j.future.2018.04.065 10.1016/j.jocs.2017.01.002 10.1016/j.media.2016.10.004 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-019-1483-2 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database ProQuest Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| ExternalDocumentID | 31848728 10_1007_s10916_019_1483_2 |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-4430a80e54c15a85d20ce7a38c3b3deea5f2a783727838611a2ba5afd0902c1c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513497600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Fri Sep 05 05:58:59 EDT 2025 Tue Nov 04 23:12:23 EST 2025 Wed Feb 19 02:31:58 EST 2025 Sat Nov 29 05:35:01 EST 2025 Tue Nov 18 22:15:14 EST 2025 Fri Feb 21 02:37:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Softmax Hidden size Glioma Stacked sparse autoencoder Magnetic resonance images |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-4430a80e54c15a85d20ce7a38c3b3deea5f2a783727838611a2ba5afd0902c1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31848728 |
| PQID | 2327806662 |
| PQPubID | 54050 |
| ParticipantIDs | proquest_miscellaneous_2328347317 proquest_journals_2327806662 pubmed_primary_31848728 crossref_primary_10_1007_s10916_019_1483_2 crossref_citationtrail_10_1007_s10916_019_1483_2 springer_journals_10_1007_s10916_019_1483_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20200200 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (CR54) 2015; 34 De Wolde, Pruim, Mastik, Koudstaal, Molenaar (CR3) 1997; 38 Krabbe, Gideon, Wagn, Hansen, Thomsen, Madsen (CR10) 1997; 39 Wu, Chen, Zhao, Corso (CR56) 2014; 9 CR37 Cho, Choi, Lee, Kim (CR17) 2003; 21 Amin, Sharif, Yasmin, Fernandes (CR21) 2018; 87 Verma, Zacharaki, Ou, Cai, Chawla, Lee, Melhem, Wolf, Davatzikos (CR31) 2008; 15 Møller (CR51) 1993; 6 CR6 CR5 Liaqat, Khan, Shah, Sharif, Yasmin, Fernandes (CR28) 2018; 18 CR49 Jiang, Wu, Huang, Yang, Chen, Feng (CR36) 2013; 37 CR48 CR46 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR12) 2017; 35 CR45 CR44 CR43 CR42 CR41 CR40 Bauer, Wiest, Nolte, Reyes (CR4) 2013; 58 Aronen, Gazit, Louis, Buchbinder, Pardo, Weisskoff, Harsh, Cosgrove, Halpern, Hochberg (CR9) 1994; 191 Chen, Ding, Liu (CR55) 2019; 88 Tabatabai, Stupp, Van Den Bent, Hegi, Tonn, Wick, Weller (CR8) 2010; 120 Clark, Hall, Goldgof, Velthuizen, Murtagh, Silbiger (CR34) 1998; 17 Huang, Yang, Wu, Jiang, Chen, Feng (CR58) 2014; 61 Pereira, Pinto, Alves, Silva (CR14) 2016; 35 Aponte, Patel, Patel (CR2) 2017 Zhao, Wu, Song, Li, Zhang, Fan (CR15) 2018; 43 Tustison, Shrinidhi, Wintermark, Durst, Kandel, Gee, Grossman, Avants (CR63) 2015; 13 Rajinikanth, Satapathy, Fernandes, Nachiappan (CR22) 2017; 94 Schad, Blüml, Zuna (CR33) 1993; 11 CR16 CR59 Devos, Simonetti, Van Der Graaf, Lukas, Suykens, Vanhamme, Buydens, Heerschap, Van Huffel (CR19) 2005; 173 Amin, Sharif, Yasmin, Ali, Fernandes (CR25) 2017; 19 Anitha, Raja (CR1) 2018; 28 Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (CR35) 2016; 47 Wang, Cheng, Basu (CR29) 2009; 56 Dvořák, Menze (CR38) 2016 CR52 Li, Yang, Ye, Geng (CR18) 2006; 36 CR50 Naqi, Sharif, Yasmin, Fernandes (CR27) 2018; 14 Bauer, Fejes, Slotboom, Wiest, Nolte, Reyes (CR57) 2012 Reza, Mays, Iftekharuddin (CR53) 2015 Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (CR32) 2012; 30 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR13) 2017; 36 Al-Okaili, Krejza, Woo, Wolf, O'Rourke, Judy, Poptani, Melhem (CR30) 2007; 243 CR26 CR24 Akkus, Galimzianova, Hoogi, Rubin, Erickson (CR47) 2017; 30 CR23 Haeck, Maes, Suetens (CR65) 2015 CR20 CR64 CR62 CR61 Van Meir, Hadjipanayis, Norden, Shu, Wen, Olson (CR7) 2010; 60 CR60 Provenzale, Mukundan, Barboriak (CR11) 2006; 239 Chen, Bentley, Rueckert (CR39) 2017 1483_CR59 1483_CR16 W Wu (1483_CR56) 2014; 9 K Kamnitsas (1483_CR13) 2017; 36 J Amin (1483_CR25) 2017; 19 T Wang (1483_CR29) 2009; 56 EG Van Meir (1483_CR7) 2010; 60 X Zhao (1483_CR15) 2018; 43 Pavel Dvořák (1483_CR38) 2016 NJ Tustison (1483_CR63) 2015; 13 K Krabbe (1483_CR10) 1997; 39 J Jiang (1483_CR36) 2013; 37 JM Provenzale (1483_CR11) 2006; 239 1483_CR52 MF Møller (1483_CR51) 1993; 6 1483_CR50 J Amin (1483_CR21) 2018; 87 1483_CR26 1483_CR6 1483_CR5 1483_CR23 1483_CR24 G Tabatabai (1483_CR8) 2010; 120 MC Clark (1483_CR34) 1998; 17 Z Akkus (1483_CR47) 2017; 30 1483_CR62 Raoul J. Aponte (1483_CR2) 2017 1483_CR20 1483_CR64 H De Wolde (1483_CR3) 1997; 38 A Liaqat (1483_CR28) 2018; 18 1483_CR60 1483_CR61 1483_CR37 J Sachdeva (1483_CR35) 2016; 47 T Haeck (1483_CR65) 2015 Y-D Cho (1483_CR17) 2003; 21 J Sachdeva (1483_CR32) 2012; 30 R Verma (1483_CR31) 2008; 15 S Chen (1483_CR55) 2019; 88 R Anitha (1483_CR1) 2018; 28 V Rajinikanth (1483_CR22) 2017; 94 BH Menze (1483_CR54) 2015; 34 SM Reza (1483_CR53) 2015 M Huang (1483_CR58) 2014; 61 S Naqi (1483_CR27) 2018; 14 A Devos (1483_CR19) 2005; 173 LR Schad (1483_CR33) 1993; 11 S Bauer (1483_CR4) 2013; 58 1483_CR48 1483_CR49 RN Al-Okaili (1483_CR30) 2007; 243 S Pereira (1483_CR14) 2016; 35 1483_CR44 1483_CR45 1483_CR46 G-Z Li (1483_CR18) 2006; 36 M Havaei (1483_CR12) 2017; 35 L Chen (1483_CR39) 2017 1483_CR40 S Bauer (1483_CR57) 2012 1483_CR41 1483_CR42 1483_CR43 HJ Aronen (1483_CR9) 1994; 191 |
| References_xml | – ident: CR45 – ident: CR49 – volume: 58 start-page: R97 year: 2013 ident: CR4 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Physics in Medicine & Biology – volume: 239 start-page: 632 issue: 3 year: 2006 end-page: 649 ident: CR11 article-title: Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response publication-title: Radiology – ident: CR16 – volume: 35 start-page: 1240 issue: 5 year: 2016 end-page: 1251 ident: CR14 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE transactions on medical imaging – volume: 19 start-page: 153 year: 2017 end-page: 164 ident: CR25 article-title: A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions publication-title: Journal of Computational Science – volume: 120 start-page: 585 issue: 5 year: 2010 end-page: 592 ident: CR8 article-title: Molecular diagnostics of gliomas: The clinical perspective publication-title: Acta neuropathologica – volume: 43 start-page: 98 year: 2018 end-page: 111 ident: CR15 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Medical image analysis – volume: 11 start-page: 889 issue: 6 year: 1993 end-page: 896 ident: CR33 article-title: IX. MR tissue characterization of intracranial tumors by means of texture analysis publication-title: Magnetic resonance imaging – ident: CR61 – volume: 17 start-page: 187 issue: 2 year: 1998 end-page: 201 ident: CR34 article-title: Automatic tumor segmentation using knowledge-based techniques publication-title: IEEE transactions on medical imaging – volume: 28 start-page: 48 year: 2018 end-page: 53 ident: CR1 article-title: Development of computer-aided approach for brain tumor detection using random forest classifier publication-title: International Journal of Imaging Systems and Technology – ident: CR42 – ident: CR46 – volume: 13 start-page: 209 issue: 2 year: 2015 end-page: 225 ident: CR63 article-title: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR publication-title: Neuroinformatics – year: 2017 ident: CR39 publication-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks – volume: 36 start-page: 313 issue: 3 year: 2006 end-page: 325 ident: CR18 article-title: Degree prediction of malignancy in brain glioma using support vector machines publication-title: Computers in Biology and Medicine – volume: 87 start-page: 290 year: 2018 end-page: 297 ident: CR21 article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks publication-title: Future Generation Computer Systems – ident: CR50 – start-page: 59 year: 2016 end-page: 71 ident: CR38 article-title: Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation publication-title: Medical Computer Vision: Algorithms for Big Data – year: 2012 ident: CR57 publication-title: “segmentation of brain tumor images based on integrated hierarchical classification and regularization,” in – volume: 6 start-page: 525 year: 1993 end-page: 533 ident: CR51 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural networks – start-page: 251 year: 2017 end-page: 268 ident: CR2 article-title: Brain Tumors publication-title: Neurocritical Care for the Advanced Practice Clinician – volume: 173 start-page: 218 issue: 2 year: 2005 end-page: 228 ident: CR19 article-title: The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification publication-title: Journal of Magnetic Resonance – ident: CR60 – ident: CR5 – ident: CR64 – ident: CR26 – volume: 15 start-page: 966 issue: 8 year: 2008 end-page: 977 ident: CR31 article-title: Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images publication-title: Academic radiology – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: CR12 article-title: Brain tumor segmentation with deep neural networks publication-title: Medical image analysis – volume: 30 start-page: 694 issue: 5 year: 2012 end-page: 715 ident: CR32 article-title: A novel content-based active contour model for brain tumor segmentation publication-title: Magnetic resonance imaging – volume: 30 start-page: 449 issue: 4 year: 2017 end-page: 459 ident: CR47 article-title: Deep learning for brain MRI segmentation: State of the art and future directions publication-title: Journal of digital imaging – volume: 56 start-page: 781 issue: 3 year: 2009 end-page: 789 ident: CR29 article-title: Fluid vector flow and applications in brain tumor segmentation publication-title: IEEE Transactions on Biomedical Engineering – ident: CR43 – volume: 14 start-page: 108 year: 2018 end-page: 117 ident: CR27 article-title: Lung nodule detection using polygon approximation and hybrid features from CT images publication-title: Current Medical Imaging Reviews – volume: 21 start-page: 663 year: 2003 end-page: 672 ident: CR17 article-title: 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors publication-title: Magnetic resonance imaging – ident: CR37 – ident: CR6 – volume: 47 start-page: 151 year: 2016 end-page: 167 ident: CR35 article-title: A package-SFERCB-“segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors” publication-title: Applied Soft Computing – ident: CR40 – volume: 94 start-page: 87 year: 2017 end-page: 95 ident: CR22 article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization publication-title: Pattern Recognition Letters – ident: CR23 – volume: 39 start-page: 483 issue: 7 year: 1997 end-page: 489 ident: CR10 article-title: MR diffusion imaging of human intracranial tumours publication-title: Neuroradiology – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: CR13 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Medical image analysis – volume: 243 start-page: 539 issue: 2 year: 2007 end-page: 550 ident: CR30 article-title: Intraaxial brain masses: MR imaging–based diagnostic strategy—Initial experience publication-title: Radiology – volume: 88 start-page: 90 year: 2019 end-page: 100 ident: CR55 article-title: Dual-force convolutional neural networks for accurate brain tumor segmentation publication-title: Pattern Recognition – ident: CR44 – volume: 61 start-page: 2633 issue: 10 year: 2014 end-page: 2645 ident: CR58 article-title: Brain tumor segmentation based on local independent projection-based classification publication-title: IEEE Transactions on Biomedical Engineering – ident: CR48 – volume: 18 start-page: 1850038 year: 2018 ident: CR28 article-title: Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection publication-title: Journal of Mechanics in Medicine and Biology – ident: CR52 – volume: 37 start-page: 512 year: 2013 end-page: 521 ident: CR36 article-title: 3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets publication-title: Computerized Medical Imaging and Graphics – start-page: 246 year: 2015 end-page: 253 ident: CR65 – ident: CR59 – volume: 38 start-page: 1369 year: 1997 ident: CR3 article-title: Proliferative activity in human brain tumors: Comparison of histopathology and L-(1-11C) tyrosine PET publication-title: The Journal of Nuclear Medicine – volume: 60 start-page: 166 issue: 3 year: 2010 end-page: 193 ident: CR7 article-title: Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma publication-title: CA: a cancer journal for clinicians – ident: CR41 – volume: 34 start-page: 1993 issue: 10 year: 2015 end-page: 2024 ident: CR54 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE transactions on medical imaging – ident: CR62 – year: 2015 ident: CR53 publication-title: “Multi-fractal detrended texture feature for brain tumor classification,” in – volume: 191 start-page: 41 issue: 1 year: 1994 end-page: 51 ident: CR9 article-title: Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic findings publication-title: Radiology – ident: CR24 – volume: 9 start-page: 241 issue: 2 year: 2014 end-page: 253 ident: CR56 article-title: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features publication-title: International journal of computer assisted radiology and surgery – ident: CR20 – ident: 1483_CR37 doi: 10.1016/j.neucom.2012.08.047 – ident: 1483_CR49 – volume: 61 start-page: 2633 issue: 10 year: 2014 ident: 1483_CR58 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2014.2325410 – ident: 1483_CR26 – ident: 1483_CR45 – volume: 6 start-page: 525 year: 1993 ident: 1483_CR51 publication-title: Neural networks doi: 10.1016/S0893-6080(05)80056-5 – volume: 173 start-page: 218 issue: 2 year: 2005 ident: 1483_CR19 publication-title: Journal of Magnetic Resonance doi: 10.1016/j.jmr.2004.12.007 – volume: 239 start-page: 632 issue: 3 year: 2006 ident: 1483_CR11 publication-title: Radiology doi: 10.1148/radiol.2393042031 – ident: 1483_CR6 doi: 10.1002/ima.22258 – ident: 1483_CR46 doi: 10.1109/ICIP.2018.8451379 – ident: 1483_CR59 doi: 10.1007/978-3-319-10404-1_95 – volume: 11 start-page: 889 issue: 6 year: 1993 ident: 1483_CR33 publication-title: Magnetic resonance imaging doi: 10.1016/0730-725X(93)90206-S – volume: 14 start-page: 108 year: 2018 ident: 1483_CR27 publication-title: Current Medical Imaging Reviews doi: 10.2174/1573405613666170306114320 – ident: 1483_CR61 – volume: 60 start-page: 166 issue: 3 year: 2010 ident: 1483_CR7 publication-title: CA: a cancer journal for clinicians – ident: 1483_CR43 doi: 10.1007/978-3-319-19665-7_17 – volume: 15 start-page: 966 issue: 8 year: 2008 ident: 1483_CR31 publication-title: Academic radiology doi: 10.1016/j.acra.2008.01.029 – ident: 1483_CR42 – ident: 1483_CR23 doi: 10.1007/s00521-019-04369-5 – volume: 9 start-page: 241 issue: 2 year: 2014 ident: 1483_CR56 publication-title: International journal of computer assisted radiology and surgery doi: 10.1007/s11548-013-0922-7 – ident: 1483_CR5 doi: 10.1155/2017/9749108 – volume: 21 start-page: 663 year: 2003 ident: 1483_CR17 publication-title: Magnetic resonance imaging doi: 10.1016/S0730-725X(03)00097-3 – volume: 38 start-page: 1369 year: 1997 ident: 1483_CR3 publication-title: The Journal of Nuclear Medicine – volume: 94 start-page: 87 year: 2017 ident: 1483_CR22 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.05.028 – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 1483_CR14 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2016.2538465 – ident: 1483_CR52 – ident: 1483_CR24 doi: 10.1007/978-981-13-1927-3_3 – volume: 34 start-page: 1993 issue: 10 year: 2015 ident: 1483_CR54 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2014.2377694 – volume: 58 start-page: R97 year: 2013 ident: 1483_CR4 publication-title: Physics in Medicine & Biology doi: 10.1088/0031-9155/58/13/R97 – volume: 28 start-page: 48 year: 2018 ident: 1483_CR1 publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22255 – volume: 120 start-page: 585 issue: 5 year: 2010 ident: 1483_CR8 publication-title: Acta neuropathologica doi: 10.1007/s00401-010-0750-6 – volume: 13 start-page: 209 issue: 2 year: 2015 ident: 1483_CR63 publication-title: Neuroinformatics doi: 10.1007/s12021-014-9245-2 – volume: 37 start-page: 512 year: 2013 ident: 1483_CR36 publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2013.05.007 – ident: 1483_CR62 – volume-title: “segmentation of brain tumor images based on integrated hierarchical classification and regularization,” in MICCAI BraTS Workshop year: 2012 ident: 1483_CR57 – start-page: 251 volume-title: Neurocritical Care for the Advanced Practice Clinician year: 2017 ident: 1483_CR2 – ident: 1483_CR41 – volume: 88 start-page: 90 year: 2019 ident: 1483_CR55 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.11.009 – ident: 1483_CR16 doi: 10.1117/12.713544 – volume-title: “Multi-fractal detrended texture feature for brain tumor classification,” in Proceedings of SPIE--the International Society for Optical Engineering year: 2015 ident: 1483_CR53 – volume: 47 start-page: 151 year: 2016 ident: 1483_CR35 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.05.020 – volume-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks year: 2017 ident: 1483_CR39 – volume: 56 start-page: 781 issue: 3 year: 2009 ident: 1483_CR29 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2009.2012423 – volume: 30 start-page: 694 issue: 5 year: 2012 ident: 1483_CR32 publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2012.01.006 – volume: 191 start-page: 41 issue: 1 year: 1994 ident: 1483_CR9 publication-title: Radiology doi: 10.1148/radiology.191.1.8134596 – volume: 35 start-page: 18 year: 2017 ident: 1483_CR12 publication-title: Medical image analysis doi: 10.1016/j.media.2016.05.004 – volume: 43 start-page: 98 year: 2018 ident: 1483_CR15 publication-title: Medical image analysis doi: 10.1016/j.media.2017.10.002 – ident: 1483_CR20 doi: 10.1007/978-3-319-30858-6_15 – volume: 17 start-page: 187 issue: 2 year: 1998 ident: 1483_CR34 publication-title: IEEE transactions on medical imaging doi: 10.1109/42.700731 – volume: 39 start-page: 483 issue: 7 year: 1997 ident: 1483_CR10 publication-title: Neuroradiology doi: 10.1007/s002340050450 – ident: 1483_CR40 – volume: 18 start-page: 1850038 year: 2018 ident: 1483_CR28 publication-title: Journal of Mechanics in Medicine and Biology doi: 10.1142/S0219519418500380 – volume: 30 start-page: 449 issue: 4 year: 2017 ident: 1483_CR47 publication-title: Journal of digital imaging doi: 10.1007/s10278-017-9983-4 – start-page: 59 volume-title: Medical Computer Vision: Algorithms for Big Data year: 2016 ident: 1483_CR38 doi: 10.1007/978-3-319-42016-5_6 – ident: 1483_CR48 – volume: 243 start-page: 539 issue: 2 year: 2007 ident: 1483_CR30 publication-title: Radiology doi: 10.1148/radiol.2432060493 – ident: 1483_CR44 – ident: 1483_CR50 – start-page: 246 volume-title: “ISLES challenge 2015: Automated model-based segmentation of ischemic stroke in MR images,” in International Workshop on Brainlesion: Glioma year: 2015 ident: 1483_CR65 – volume: 36 start-page: 313 issue: 3 year: 2006 ident: 1483_CR18 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2004.11.003 – ident: 1483_CR60 – volume: 87 start-page: 290 year: 2018 ident: 1483_CR21 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.04.065 – volume: 19 start-page: 153 year: 2017 ident: 1483_CR25 publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.01.002 – volume: 36 start-page: 61 year: 2017 ident: 1483_CR13 publication-title: Medical image analysis doi: 10.1016/j.media.2016.10.004 – ident: 1483_CR64 |
| SSID | ssj0009667 |
| Score | 2.5299947 |
| Snippet | Brain tumor detection depicts a tough job because of its shape, size and appearance variations. In this manuscript, a deep learning model is deployed to... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 32 |
| SubjectTerms | Brain cancer Brain tumors Deep learning Glioma Health Informatics Health Informatics and Computer Vision Health Sciences Image & Signal Processing Medicine Medicine & Public Health Recent Advances in Deep Learning for Biomedical Signal Processing Statistics for Life Sciences Tumors |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VLUKVUMubtBQZiRPIIvEj8Z4q2u0KCVhxAMQtcvxAlUqy3c0i8e-xE2dXCMGlZz9i5RuPZzzjbwAOrTRUc8udbxJTzArRx0UhGGbCmlRK1icN8fztRTYaibu7_lW4cJuGtMpOJzaKWlfK35GfuJM_E97YJj_G_7CvGuWjq6GExhJ8TAhJvJyfZ3hBupum7XNpJrAnIu-imu3TOWcYOUe6j10rxeTlufTK2HwVKG3On-GX_135GnwOlic6bUVlHT6YcgNWLkNsfQNW2xs81D5M2oTBT189Al3PHqoJGpi6ydkqUfGEmjQD5MxUpwE0Op3VlWfD9BnRyA0YGDNGgbb1fgtuhr-vf53hUHMBK5qRGjNGYyliw5lKuBRck1iZTFKhaEG1MZJbIjPn1foKHSJNEkkKyaXVPr9TJYpuQ6-sSrMLSFiubaxtqrVkJjXS4cFiaW1KCmUljyDu_niuAiG5r4vxN19QKXuQcgdS7kHKSQRH8yHjlo3jvc57HR552JjTfAFGBAfzZrelfJxElqaaNX0EZZmzrCLYaeGff82pQOfiERHBcScPi8nfXMrX95fyDT4R78Y3yeB70KsnM_MdltVj_Wc62W9k-hlX5_lM priority: 102 providerName: ProQuest |
| Title | Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning |
| URI | https://link.springer.com/article/10.1007/s10916-019-1483-2 https://www.ncbi.nlm.nih.gov/pubmed/31848728 https://www.proquest.com/docview/2327806662 https://www.proquest.com/docview/2328347317 |
| Volume | 44 |
| WOSCitedRecordID | wos000513497600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rixMxEB_0TkQQH-d5Vs8SwU9KYJvHJv14Z-8Q9EqptRS_LNk8RNDt0W4P_O-dZHdb5VTQLwNLHhtmdpKZnclvAF4G47mTQaJvknEqSj2kZakFFTr43BgxZAl4fv5ejcd6sRhO2nvc6y7bvQtJpp36p8tuaMqg6zukaMJzivvuPp52Omrj9MN8h7Sb580daaFpRB_vQpm_m-LXw-iahXktOpoOnfP7_7XcB3CvtTHJSfNRPIQbvjqA2xdtFP0A7jb_6khzBekRjE5jnQgy23xbrsjI1yk7qyLld5ISCggapKjrjpxs6mXEvYy5zwQHjLy_JC1A6-dD-Hh-NnvzlrbVFajlitVUCJ4ZnXkp7EAaLR3LrFeGa8tL7rw3MjCj0H-NtTh0PhgYVhppgouZnHZg-WPYq5aVfwJEB-lC5kLunBE-9waFIDITQs5KG4zsQdaxubAt9HisgPG12IEmR24VyK0icqtgPXi1HXLZ4G78rfNxJ7uiVcF1gaai0tE7w-YX22ZUnhgRMZVfblIfzYVCG6oHR43Mt2_DzQ6dOaZ78LoT8G7yPy7l6T_1fgZ3WPTfUxb4MezVq41_DrfsVf1lverDTTWdR7pQieo-7J-ejSdTfHqnKNKLbBYpm0SqIp3IT_2kDz8ACKz4FA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggAJ8SivQAEjwQVkkbWdxHtAqLBUrbq74rCg3oLjB0KCZNnNgvqn-I3M5LErVNFbD5xjO05mPJ7xfP4G4FkwXrokJBibxJKrQg95UWjFlQ4-NUYNRUM8_2mcTaf6-Hj4YQt-93dhCFbZ28TGULvK0hn5K9z5M03Otngz_8GpahRlV_sSGq1aHPmTXxiyLV8fjlC-z4XYfz97d8C7qgLcykzUXCkZGx37RNlBYnTiRGx9ZqS2spDOe5MEYTKM26gGhU4HAyMKk5jgCMFoB1biuBfgIvHqEYRwEs82JL9p2l7PVpoT8XmfRW2v6qEjhoH7kONTycXf--Ap5_ZUYrbZ7_Zv_G9_6iZc7zxrttcuhVuw5csduDzpsAM7cK09oWTtxavbMHpL1THYbPW9WrCRrxtMWsmKE9bAKBi64WjhHNtb1RWxfRLim2GHkfdz1tHSfrkDH8_lm-7CdlmV_j4wHRIXYhdS54zyqTcofxWbEFJR2GCSCOJewrntCNep7se3fEMVTUqRo1LkpBS5iODFusu8ZRs5q_FuL_-8MzzLfCP8CJ6uH6PJoDyQKX21atpoqTL0HCO416rb-m1o4jGEFTqCl73-bQb_51QenD2VJ3DlYDYZ5-PD6dFDuCroyKIBvu_Cdr1Y-Udwyf6svy4Xj5v1xODzeavlH_akVeY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6Vgiqkikd5BQoYCS4gq1k_Eu8BoUJYUW1Z9VBQb8HxA1UqybKbbdW_1l_HOI9doYreeuAc23Hiz-MZzzczAK-9dtxKL9E2iTkVhRrSolCCCuVdorUYsibx_Pf9dDJRR0fDgzW46GNhAq2yl4mNoLaVCXfkO3jypyoo22zHd7SIg2z0YfqbhgpSwdPal9NoITJ252dovs3f72W41m8YG30-_PSFdhUGqOEpq6kQPNYqdlKYgdRKWhYbl2quDC-4dU5Lz3SKNlyoR6GSwUCzQkvtbWAzmoHhOO4NuImnsAx7bJzSVcLfJGlDtYWiIQl671Ftw_ZQKUMjfkjxKafs7zPxkqJ7yUnbnH2ju__zX7sHdzqNm-y2W-Q-rLlyCza-dpyCLdhsby5JG5D1ALKPoWoGOVz8qmYkc3XDVStJcU4aegVB9RwlnyW7i7oKWUADE5xgh8y5KenS1f58CN-u5ZsewXpZle4JEOWl9bH1ibVauMRpxIKItfcJK4zXMoK4X-3cdInYQz2Qk3yVQjoAJEeA5AEgOYvg7bLLtM1CclXj7R4LeSeQ5vkKCBG8Wj5GURL8Q7p01aJpo7hIUaOM4HELveXbUPSjactUBO96LK4G_-dUnl49lZewgWjM9_cm42dwm4WbjIYPvw3r9WzhnsMtc1ofz2cvmq1F4Md1o_IPbddeZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Detection+by+Using+Stacked+Autoencoders+in+Deep+Learning&rft.jtitle=Journal+of+medical+systems&rft.au=Amin%2C+Javaria&rft.au=Sharif%2C+Muhammad&rft.au=Gul%2C+Nadia&rft.au=Raza%2C+Mudassar&rft.date=2020-02-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=44&rft.issue=2&rft_id=info:doi/10.1007%2Fs10916-019-1483-2&rft.externalDocID=10_1007_s10916_019_1483_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |