Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review

•The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The research directions of phosphate ions in PS-AOPs are proposed. Currently, various strategies have been applied to activate persulfate (PS) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) Jg. 222; S. 118896
Hauptverfasser: Li, Ning, Wang, Yanshan, Cheng, Xiaoshuang, Dai, Haoxi, Yan, Beibei, Chen, Guanyi, Hou, Li'an, Wang, Shaobin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.08.2022
Schlagworte:
ISSN:0043-1354, 1879-2448, 1879-2448
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The research directions of phosphate ions in PS-AOPs are proposed. Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42−, H2PO4−, and PO43−) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42− promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4− inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42− and H2PO4− could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice. [Display omitted]
AbstractList Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42-, H2PO4-, and PO43-) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42- promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4- inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42- and H2PO4- could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42-, H2PO4-, and PO43-) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42- promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4- inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42- and H2PO4- could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.
Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO₄²⁻, H₂PO₄⁻, and PO₄³⁻) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO₄²⁻ promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H₂PO₄⁻ inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO₄²⁻ and H₂PO₄⁻ could present beneficial effects in thermal, Co²⁺ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co²⁺, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.
•The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The research directions of phosphate ions in PS-AOPs are proposed. Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42−, H2PO4−, and PO43−) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42− promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4− inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42− and H2PO4− could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice. [Display omitted]
ArticleNumber 118896
Author Li, Ning
Yan, Beibei
Wang, Yanshan
Chen, Guanyi
Wang, Shaobin
Cheng, Xiaoshuang
Dai, Haoxi
Hou, Li'an
Author_xml – sequence: 1
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 2
  givenname: Yanshan
  surname: Wang
  fullname: Wang, Yanshan
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 3
  givenname: Xiaoshuang
  surname: Cheng
  fullname: Cheng, Xiaoshuang
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 4
  givenname: Haoxi
  surname: Dai
  fullname: Dai, Haoxi
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 5
  givenname: Beibei
  surname: Yan
  fullname: Yan, Beibei
  email: yanbeibei@tju.edu.cn
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 6
  givenname: Guanyi
  surname: Chen
  fullname: Chen, Guanyi
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 7
  givenname: Li'an
  surname: Hou
  fullname: Hou, Li'an
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China
– sequence: 8
  givenname: Shaobin
  surname: Wang
  fullname: Wang, Shaobin
  email: shaobin.wang@adelaide.edu.au
  organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
BookMark eNqNkU9P3DAQxa2KSl1ov0EPPvaS7fjPJg4HJIRoQULqpT1bxhmzXiV2sL0gxJevl3DiUHoa6c37jWbmHZOjEAMS8pXBmgFrv-_Wj6YkzGsOnK8ZU6pvP5AVU13fcCnVEVkBSNEwsZGfyHHOO4DqFP2KPF8HN-4xWMzUhIFOaLcm-DxlGh2dtzHPW1OQ-hiqEkqkM6a8H91BNLb4B1Nq74WN6a6ilg54l8yw6D7QuhsmWvczZcJQTuk5Tfjg8fEz-ejMmPHLaz0hf35c_r64am5-_by-OL9prOh4aaTonANlVQ-3G-ckb1EYzpzAjTRCMI5ywyQA405CD9XN5QBM3aI0DFopTsi3Ze6c4v0ec9GTzxbH0QSM-6x5xxTvevE_1rbvRNv1oKr1dLHaFHNO6LT15eXokowfNQN9CEfv9BKOPoSjl3AqLN_Ac_KTSU_vYWcLhvVd9YVJZ-sP4Q0-oS16iP7fA_4C0R6uZg
CitedBy_id crossref_primary_10_1039_D5RA02938D
crossref_primary_10_1016_j_ces_2024_120132
crossref_primary_10_1016_j_envres_2025_121888
crossref_primary_10_1093_nsr_nwaf183
crossref_primary_10_1016_j_cej_2024_150692
crossref_primary_10_1016_j_cej_2022_139660
crossref_primary_10_1016_j_indcrop_2025_121596
crossref_primary_10_1016_j_jwpe_2024_106333
crossref_primary_10_1111_jace_19616
crossref_primary_10_1016_j_seppur_2024_129916
crossref_primary_10_1016_j_colsurfa_2025_136808
crossref_primary_10_1016_j_mcat_2025_115417
crossref_primary_10_1016_j_cej_2025_166419
crossref_primary_10_1016_j_pmatsci_2024_101373
crossref_primary_10_1016_j_jhazmat_2024_135068
crossref_primary_10_1016_j_ecoenv_2025_118925
crossref_primary_10_1016_j_cej_2025_163827
crossref_primary_10_1016_j_seppur_2024_131300
crossref_primary_10_1016_j_seppur_2023_124195
crossref_primary_10_1016_j_cej_2022_138588
crossref_primary_10_1016_j_jhazmat_2023_132417
crossref_primary_10_1016_j_seppur_2024_129107
crossref_primary_10_1016_j_apcatb_2024_124951
crossref_primary_10_3390_su17072831
crossref_primary_10_1016_j_cej_2023_145922
crossref_primary_10_1016_j_seppur_2025_133441
crossref_primary_10_1016_j_scp_2024_101801
crossref_primary_10_1016_j_chemosphere_2023_140594
crossref_primary_10_1016_j_molstruc_2025_143172
crossref_primary_10_1016_j_apcatb_2024_124988
crossref_primary_10_1016_j_seppur_2023_124083
crossref_primary_10_1007_s11356_024_34144_6
crossref_primary_10_1016_j_colsurfa_2024_134684
crossref_primary_10_1016_j_jece_2025_119265
crossref_primary_10_1016_j_scitotenv_2024_173839
crossref_primary_10_1016_j_cej_2023_146692
crossref_primary_10_1016_j_seppur_2025_135072
crossref_primary_10_1016_j_cej_2023_147781
crossref_primary_10_1016_j_efmat_2024_07_003
crossref_primary_10_1016_j_seppur_2023_124525
crossref_primary_10_1016_j_cej_2025_163483
crossref_primary_10_1016_j_seppur_2025_135172
crossref_primary_10_1002_wer_10984
crossref_primary_10_1016_j_jwpe_2025_108121
crossref_primary_10_1016_j_cej_2024_155441
crossref_primary_10_1016_j_jece_2025_118869
crossref_primary_10_1016_j_cej_2024_156532
crossref_primary_10_1016_j_micromeso_2023_112702
crossref_primary_10_1016_j_seppur_2023_123204
crossref_primary_10_1016_j_cej_2023_146795
crossref_primary_10_1016_j_cej_2024_149426
crossref_primary_10_1016_j_chemosphere_2024_143369
crossref_primary_10_1016_j_jphotochem_2024_115548
crossref_primary_10_1016_j_envres_2025_122931
crossref_primary_10_1016_j_jece_2024_113869
crossref_primary_10_1016_j_molliq_2023_123273
crossref_primary_10_1016_j_apcatb_2024_123954
crossref_primary_10_1016_j_jcis_2025_01_188
crossref_primary_10_1016_j_cej_2025_162008
crossref_primary_10_1016_j_seppur_2024_126968
crossref_primary_10_1016_j_cej_2023_145698
crossref_primary_10_1016_j_cej_2023_143956
crossref_primary_10_1016_j_jwpe_2023_104347
crossref_primary_10_1016_j_jwpe_2024_105611
crossref_primary_10_1016_j_memsci_2025_123820
crossref_primary_10_1016_j_seppur_2025_131910
crossref_primary_10_1016_j_seppur_2023_126175
crossref_primary_10_1016_j_jhazmat_2025_137987
crossref_primary_10_1016_j_seppur_2023_123341
crossref_primary_10_1016_j_apcatb_2025_125621
crossref_primary_10_1080_09593330_2024_2369276
crossref_primary_10_1016_j_surfin_2024_104552
crossref_primary_10_1016_j_jwpe_2025_108739
crossref_primary_10_1016_j_cej_2024_158124
crossref_primary_10_1021_acsestwater_4c01207
crossref_primary_10_1016_j_seppur_2024_130763
crossref_primary_10_1016_j_watres_2025_123652
crossref_primary_10_1016_j_apcatb_2025_125512
crossref_primary_10_1016_j_seppur_2024_130085
crossref_primary_10_1016_j_jallcom_2025_180627
crossref_primary_10_1016_j_jclepro_2023_139221
crossref_primary_10_1080_09593330_2022_2161951
crossref_primary_10_1007_s11356_024_32677_4
crossref_primary_10_1016_j_jwpe_2024_106000
crossref_primary_10_1016_j_scitotenv_2022_160539
crossref_primary_10_1016_j_cej_2025_159865
crossref_primary_10_1016_j_jece_2025_119111
crossref_primary_10_1016_j_seppur_2024_126379
crossref_primary_10_1016_j_cej_2023_146761
crossref_primary_10_1016_j_jphotochem_2023_114840
crossref_primary_10_1016_j_jece_2025_118381
crossref_primary_10_1016_j_seppur_2022_122687
crossref_primary_10_1016_j_seppur_2023_123812
crossref_primary_10_1016_j_jtice_2023_104720
crossref_primary_10_1016_j_cej_2023_145547
crossref_primary_10_1016_j_diamond_2025_112363
crossref_primary_10_1016_j_surfin_2024_105148
crossref_primary_10_1039_D4NR02567A
crossref_primary_10_1016_j_seppur_2025_134959
crossref_primary_10_1016_j_jclepro_2022_135002
crossref_primary_10_3390_w15071267
crossref_primary_10_1016_j_seppur_2024_129194
crossref_primary_10_1007_s11814_023_1405_3
crossref_primary_10_1002_wer_10927
crossref_primary_10_1016_j_jwpe_2025_107533
crossref_primary_10_1016_j_seppur_2024_128773
crossref_primary_10_1016_j_cej_2024_156278
crossref_primary_10_1016_j_mtcomm_2023_107997
crossref_primary_10_1016_j_apcatb_2025_125709
crossref_primary_10_1016_j_cej_2023_147274
crossref_primary_10_1016_j_jhazmat_2023_131842
crossref_primary_10_1016_j_seppur_2022_122438
crossref_primary_10_1016_j_jenvman_2024_123031
crossref_primary_10_1016_j_jallcom_2025_179675
crossref_primary_10_1016_j_cej_2025_167555
crossref_primary_10_3390_catal12091024
crossref_primary_10_1016_j_jwpe_2025_108098
crossref_primary_10_1016_j_cej_2023_142813
crossref_primary_10_1016_j_cej_2024_155973
crossref_primary_10_1016_j_seppur_2023_123391
crossref_primary_10_1016_j_apcatb_2023_123616
crossref_primary_10_1038_s41545_025_00444_8
crossref_primary_10_1016_j_apcatb_2025_125278
crossref_primary_10_1016_j_jcis_2025_137651
crossref_primary_10_1016_j_chemosphere_2024_141333
crossref_primary_10_1039_D3RA07390D
crossref_primary_10_1016_j_cej_2023_142367
crossref_primary_10_1016_j_cej_2024_148646
crossref_primary_10_1016_j_jwpe_2025_108528
crossref_primary_10_1039_D5CY00472A
crossref_primary_10_1016_j_jenvman_2025_127279
crossref_primary_10_1016_j_jhazmat_2025_137606
crossref_primary_10_1016_j_jenvman_2025_126860
crossref_primary_10_1016_j_jhazmat_2024_134834
crossref_primary_10_1016_j_jwpe_2025_108085
crossref_primary_10_1016_j_seppur_2024_131365
crossref_primary_10_1016_j_jhazmat_2023_132916
crossref_primary_10_1016_j_jece_2025_118516
crossref_primary_10_1016_j_watres_2024_122666
crossref_primary_10_1016_j_scitotenv_2024_174597
crossref_primary_10_1016_j_ccr_2024_215749
crossref_primary_10_1016_j_dwt_2024_100160
crossref_primary_10_1002_slct_202502591
crossref_primary_10_1016_j_jwpe_2025_108556
crossref_primary_10_1016_j_seppur_2025_133946
crossref_primary_10_1016_j_seppur_2024_130267
crossref_primary_10_1016_j_cej_2024_152447
crossref_primary_10_1016_j_cej_2025_161675
crossref_primary_10_1016_j_cej_2023_144094
crossref_primary_10_1039_D5MH01099C
crossref_primary_10_1016_j_ces_2024_119901
crossref_primary_10_1016_j_seppur_2025_132280
crossref_primary_10_1016_j_watres_2025_123488
crossref_primary_10_1016_j_seppur_2024_127092
crossref_primary_10_1016_j_jhazmat_2025_138313
crossref_primary_10_1002_adsu_202400677
crossref_primary_10_1002_adsu_202400434
crossref_primary_10_1007_s10562_024_04817_5
crossref_primary_10_1016_j_jhazmat_2023_133303
crossref_primary_10_1016_j_jenvman_2025_126403
crossref_primary_10_1016_j_chemosphere_2023_139418
crossref_primary_10_1016_j_cej_2023_147472
crossref_primary_10_1016_j_colsurfa_2025_136958
crossref_primary_10_1063_5_0250244
crossref_primary_10_1016_j_jhazmat_2023_132459
crossref_primary_10_1016_j_seppur_2024_129943
crossref_primary_10_1016_j_chemosphere_2025_144159
crossref_primary_10_1016_j_scitotenv_2024_174456
crossref_primary_10_1016_j_seppur_2025_132396
crossref_primary_10_1016_j_chemosphere_2023_140793
crossref_primary_10_1016_j_ecoenv_2023_115924
crossref_primary_10_1016_j_seppur_2024_128842
crossref_primary_10_1007_s11356_024_32328_8
crossref_primary_10_1016_j_cej_2024_155810
crossref_primary_10_1016_j_cej_2023_145282
crossref_primary_10_1016_j_seppur_2023_124049
crossref_primary_10_1016_j_seppur_2023_126105
crossref_primary_10_1016_j_seppur_2023_125811
crossref_primary_10_1016_j_chemosphere_2023_139441
crossref_primary_10_1016_j_seppur_2023_125139
crossref_primary_10_1016_j_watres_2024_121100
crossref_primary_10_1016_j_ijbiomac_2024_137390
crossref_primary_10_1080_09593330_2024_2354058
crossref_primary_10_1016_j_jenvman_2025_125568
crossref_primary_10_1016_j_scitotenv_2024_173495
crossref_primary_10_1016_j_seppur_2025_131973
crossref_primary_10_1007_s10800_024_02242_5
crossref_primary_10_1016_j_cej_2025_163605
crossref_primary_10_1016_j_envres_2025_121233
crossref_primary_10_1016_j_envres_2025_121596
crossref_primary_10_1016_j_seppur_2023_126231
crossref_primary_10_1016_j_jwpe_2024_105309
crossref_primary_10_1016_j_cej_2025_162874
crossref_primary_10_1016_j_chemosphere_2023_139672
crossref_primary_10_1016_j_seppur_2024_128954
Cites_doi 10.1016/j.apcatb.2016.05.052
10.1021/acs.accounts.7b00535
10.1016/j.chemosphere.2017.07.090
10.15244/pjoes/94213
10.1016/j.cej.2018.08.038
10.1039/C5RA16094D
10.1016/j.chemosphere.2017.12.088
10.1016/j.chemosphere.2017.09.148
10.1016/j.jhazmat.2020.122879
10.1016/j.seppur.2016.11.016
10.1016/j.apcatb.2004.05.025
10.1021/acs.est.7b03007
10.1016/j.jhazmat.2010.03.039
10.1016/j.chemosphere.2015.07.070
10.1016/j.chemosphere.2021.131640
10.1039/C9EN00220K
10.1021/cm0340781
10.1016/j.apsusc.2020.148008
10.1016/j.envres.2020.109692
10.1016/j.cej.2017.11.174
10.1016/j.seppur.2010.01.012
10.1016/j.cclet.2019.11.003
10.1016/j.cej.2021.132828
10.1016/j.cej.2018.11.120
10.1016/j.apcatb.2014.02.005
10.1016/j.cej.2020.124012
10.1016/j.cej.2011.12.048
10.1016/j.scitotenv.2016.07.032
10.1021/acs.est.9b05856
10.1016/j.seppur.2021.119163
10.1016/j.cej.2018.01.136
10.1016/j.apcatb.2019.01.079
10.1016/j.cej.2018.11.187
10.1016/j.cej.2021.129297
10.1016/j.jhazmat.2009.05.091
10.1016/j.cej.2018.11.207
10.1016/j.chemosphere.2020.126053
10.1016/j.chemosphere.2019.124611
10.1016/j.scitotenv.2020.142794
10.1016/j.jhazmat.2020.123157
10.1039/C6EN00633G
10.1016/j.chemosphere.2014.09.046
10.1016/j.watres.2017.03.035
10.1021/es035121o
10.1016/j.jece.2021.106733
10.1016/j.jece.2021.105524
10.1016/j.mineng.2021.107031
10.1016/j.cej.2018.01.016
10.1016/j.cclet.2020.01.032
10.1021/j100495a019
10.1016/j.scitotenv.2019.02.039
10.1016/j.chemosphere.2020.129016
10.1016/j.watres.2020.115752
10.1016/j.cej.2019.123604
10.1016/j.jhazmat.2021.127641
10.1016/j.cej.2018.03.050
10.1016/j.cej.2018.07.103
10.1016/j.jhazmat.2020.124893
10.1016/j.apcatb.2020.118717
10.1016/j.jhazmat.2014.01.010
10.1007/s11356-015-5312-y
10.1021/jp712049c
10.1016/j.jhazmat.2020.124684
10.1016/j.jhazmat.2020.124920
10.1016/j.cej.2019.123264
10.1016/j.colsurfa.2004.12.015
10.1016/j.seppur.2020.117510
10.1016/j.cej.2021.131166
10.1016/j.watres.2018.03.045
10.1016/j.cej.2021.130261
10.1016/j.chemosphere.2016.11.143
10.1021/acs.est.8b00735
10.1016/j.cej.2013.08.022
10.1016/j.cej.2015.05.055
10.1016/j.jhazmat.2016.04.007
10.1016/j.cej.2021.132189
10.1016/j.jhazmat.2020.122764
10.1016/j.cej.2012.11.067
10.1016/j.ecoenv.2021.111975
10.1016/j.cej.2014.05.113
10.1016/j.cej.2016.06.092
10.1016/j.cej.2019.122378
10.1080/10934520903005095
10.1016/j.cej.2018.05.032
10.1016/j.cej.2017.07.132
10.1016/j.watres.2018.09.037
10.1016/j.watres.2019.03.096
10.1016/j.chemosphere.2021.132094
10.1016/j.cej.2020.127818
10.1016/j.jhazmat.2018.07.083
10.1016/j.chemosphere.2016.02.055
10.1016/j.chemosphere.2019.01.049
10.1016/j.apcatb.2021.120532
10.1016/j.cej.2014.05.049
10.1016/j.cej.2019.04.187
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2022.118896
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2022_118896
S0043135422008430
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-437ff08c890b5ff426e3a21f3e54a3312e45140012f409037f24d018be4a10643
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878990900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sat Sep 27 19:43:13 EDT 2025
Thu Oct 02 12:53:10 EDT 2025
Tue Nov 18 21:46:41 EST 2025
Sat Nov 29 07:28:10 EST 2025
Sun Apr 06 06:54:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Water treatment
Heterocatalysis
Phosphate
Homogeneous catalysis
Persulfate
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-437ff08c890b5ff426e3a21f3e54a3312e45140012f409037f24d018be4a10643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2697367908
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718279364
proquest_miscellaneous_2697367908
crossref_citationtrail_10_1016_j_watres_2022_118896
crossref_primary_10_1016_j_watres_2022_118896
elsevier_sciencedirect_doi_10_1016_j_watres_2022_118896
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Duan, Liu, Liu, Akram, Li, Pan, Yue, Gao, Xu (bib0013) 2021; 298
Chen, Zuo, Yang, Cai, Ding (bib0005) 2019; 359
Liu, Xu, Zhang, Liu, Zhang (bib0046) 2020; 238
Sun, Wang, Wang, Lv, Yao (bib0065) 2022; 286
Lou, Wu, Guo, Chen, Wang, Xiao, Fang, Liu, Zhao, Lu (bib0048) 2014; 117
Chubar, Kanibolotskyy, Strelko, Gallios, Samanidou, Shaposhnikova, Milgrandt, Zhuravlev (bib0008) 2005; 255
Kang, Tang, Wang, Jin, Liu, Li, Li, Zhu (bib0036) 2021; 9
Duan, Sun, Wang (bib0016) 2018; 51
Li, Jia, Zhou, Su, Sun (bib0043) 2020; 397
Duan, Qi, Feng, Peng, Wang, Yue, Shang, Li, Gao, Xu (bib0015) 2020; 267
Song, Yan, Jiang, Ma, Pang, Zhai, Zhang, Li (bib0062) 2018; 344
Jia, Liu, Wang, Li, Ni, Li, Tian, Wang (bib0033) 2020; 253
Cai, Zhang, Zhang (bib0004) 2016; 313
Duan, Ma, Yue, Li, Zhang, Shang, Gao, Zhang, Yue, Xu (bib0014) 2019; 6
Zhou, Lai, Wan, He, Yao, Lai (bib0092) 2020; 384
Mamba, Mishra (bib0051) 2016; 198
Zhao, Yuan, Li, Jiang, Wang (bib0091) 2021; 409
Li, Wang, Chen, Fu, Cui, Lu, Liu, Li (bib0039) 2019; 664
Li, Wan, Ma, Wang, Guan (bib0040) 2015; 5
Wu, He, Li, Yang, Zeng, Wu, He, Lu (bib0075) 2018; 341
Huang, Bao, Yao, Lu, Chen (bib0030) 2014; 154-155
Huang, Zhu, Wei, Ding, Ke, Wu, Liu (bib0028) 2020; 400
Waclawek, Antos, Hrabak, Cernik, Elliott (bib0069) 2016; 23
Xu, Li (bib0079) 2010; 72
Peng, Dong, Fu, Wang, Li, Liu, Fan, Wang (bib0058) 2021; 421
Zhou, Jiang, Gao, Pang, Ma, Duan, Guo, Li, Yang (bib0094) 2018; 138
Yang, Banerjee, Brudvig, Kim, Pignatello (bib0084) 2018; 52
Zhu, Li, Shan, Wang, Lv, Pan (bib0096) 2021; 409
Fu, Ma, Zhao, Xu, Zhan (bib0017) 2019; 360
Ghauch, Tuqan (bib0022) 2012; 183
Yu, Li, Tang, Wei, Yu, Sun, Lu, Yin (bib0087) 2021; 423
Zhou, Xiang, He, Yang, Zhang, Luo, Peng, Dai, Zhu, Tang (bib0095) 2018; 359
Cheng, Guo, Zhang, Korshin, Yang (bib0007) 2019; 157
Liu, Zhou, Chen, Zhang, Chang (bib0047) 2013; 215-216
Song, Tian, Shi, Cui, Yuan (bib0064) 2020; 188
Kang, Chi Vu, Chang, Chang (bib0037) 2020; 387
Wu, Zhang, Hong, Dong, Wang (bib0074) 2019; 221
Perrin, Dempsey (bib0055) 1974
Xie, Wang, Lu, Wu, Zhang, Kong (bib0076) 2014; 254
Isari, Moradi, Rezaei, Ghanbari, Dehghanifard, Kakavandi (bib0031) 2021; 275
Wang, Jiang, Pang, Zhou, Li, Sun, Gao, Jiang (bib0071) 2018; 352
Anipsitakis, Dionysiou (bib0002) 2004; 54
Peng, Lu, Jiang, Zhang, Chen, Lai, Yao (bib0057) 2018; 354
Yin, Guo, Wang, Du, Zhou, Wu, Zheng, Chang, Ren (bib0086) 2018; 334
Fu, Feng, Liu, Zhang, Li (bib0018) 2022; 287
Li, Xu, Yao, Lai (bib0041) 2018; 348
Matzek, Carter (bib0053) 2016; 151
Jimmy, Zhang, Zheng, Zhao (bib0034) 2003; 15
Chen, Deng, Xie, Shang, Wang, Wang (bib0006) 2017; 168
Huang, Xiong, Zhou, Zhang, Pan, Yao, Lai (bib0025) 2022; 424
Song, Yan, Ma, Jiang, Cai, Zhang, Zhang, Zhang, Yang (bib0063) 2017; 116
Teel, Cutler, Watts (bib0067) 2009; 44
Wang, He, Zhang, Ma, Jiang, Huang, Cheng, Pang, Zhou, Zhai (bib0072) 2020; 177
Huang, Xiao, Zhong, Yan, Yang (bib0027) 2021; 418
Yuan, Qin, Feng, Zhang, Ru, Zhang (bib0088) 2021; 212
Devi, Das, Dalai (bib0011) 2016; 571
Maruthamuthu, Neta (bib0052) 1978; 82
Zhou, Gao, Jiang, Shen, Pang, Wang, Duan, Guo, Guan, Ma (bib0093) 2020; 379
Yang, Wang, Yang, Shan, Zhang, Shao, Niu (bib0083) 2010; 179
Satizabal-Gómez, Collazos-Botero, Serna-Galvis, Torres-Palma, Bravo-Suárez, Machuca-Martínez, Castilla-Acevedo (bib0061) 2021; 170
Anipsitakis, Dionysiou (bib0001) 2004; 38
Hu, Zhang, Liu, Wang, Wang (bib0024) 2018; 338
Li, Huang, Dong, Sun, Duan, Ren, Zheng, Dionysiou (bib0038) 2019; 247
Yang, Li, Hong, Wu, Xie, Zhang, Lianxiang, He, Kong, Liu (bib0085) 2021; 538
Hong, Zhou, Xiong, Liu, Yao, Lai (bib0023) 2020; 391
Ma, Yang, Jiang, Xie, Li, Chen, Chen (bib0050) 2018; 190
Xu, Chen, Qu, Wang (bib0078) 2017; 185
Fulazzaky, Salim, Abdullah, Mohd Yusoff, Paul (bib0019) 2014; 253
Nie, Yan, Li, Wang, Bi, Dong (bib0054) 2015; 279
Yan, Yue, Guo, Wang, Qian, Zhao (bib0081) 2020; 31
Rao, Qu, Yang, Chu (bib0059) 2014; 268
Li, Luo, Wang, Zhang, Zhang, Klu, Yan, Qi, Sun, Wang, Li (bib0042) 2019; 372
Gao, Yang, Jian, Zhen, Zhang, Tang, Fu, Xu, Wang, Sun (bib0021) 2021; 9
Zhang, Kang, Yu, Chen, Quan (bib0089) 2020; 398
Dai, Li, Ao, Wang, An (bib0009) 2021; 405
Dan, Wang, Rao, Dong, Zhang, Zhang, He, Gao, Deng (bib0010) 2022; 429
Kanakaraju, Motti, Glass, Oelgemoller (bib0035) 2015; 139
Tan, Gao, Fu, Deng, Deng (bib0066) 2017; 175
Ding, Wang, Fu, Peng, Pan, Mao, Wang, Yan (bib0012) 2021; 765
Huang, Wang, Yang, Guo, Yu (bib0026) 2017; 51
Ji, Lu, Wang, Jiang, Yang, Yang, Zhou, Ferronato, Chovelon (bib0032) 2018; 147
Gao, Chen, Zhu, Li, Hu (bib0020) 2020; 54
Huang, Huang, Huang, Chen (bib0029) 2009; 170
Li, Xiang, Zhou, Huang, Wang, Wu, Mao, Wang (bib0044) 2020; 31
Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (bib0070) 2017; 330
Xu, Qi, Han, Lu, Han, Qiao, Mei, Pan, Song, Ling, Gan (bib0077) 2022; 430
Wang, Shao, Gao, Chu, Shen, Lu, Chen, Zhu (bib0073) 2016; 304
Peng, You, Zhou, Zhou, Qi, Hu (bib0056) 2021; 266
Yang, Guo, Wang, Dzakpasu, Dai, Ding, Wu, huang, Zhang, Jin, Wang (bib0082) 2019; 359
Sánchez, Llanos, Sáez, Cañizares, Rodrigo (bib0060) 2013; 233
Bu, Zhu, Zhou (bib0003) 2018; 195
Lu, Ding, Zhang, Fu, Xia, Fang (bib0049) 2019; 28
Xue, Cao, Liu, Tang, Chen, Jiang (bib0080) 2020; 248
Zhao, Chen, Wang, Ji, Ma, Zang, Zhao (bib0090) 2008; 112
Liang, Zhang, Duan, Sun, Liu, Tade, Wang (bib0045) 2017; 4
Tian, Zhou, Zhang, Zhou, You, Yao, Pan, Liu, Lai (bib0068) 2022; 428
Jia (10.1016/j.watres.2022.118896_bib0033) 2020; 253
Xie (10.1016/j.watres.2022.118896_bib0076) 2014; 254
Xu (10.1016/j.watres.2022.118896_bib0077) 2022; 430
Liu (10.1016/j.watres.2022.118896_bib0046) 2020; 238
Zhou (10.1016/j.watres.2022.118896_bib0094) 2018; 138
Tian (10.1016/j.watres.2022.118896_bib0068) 2022; 428
Duan (10.1016/j.watres.2022.118896_bib0016) 2018; 51
Li (10.1016/j.watres.2022.118896_bib0043) 2020; 397
Hu (10.1016/j.watres.2022.118896_bib0024) 2018; 338
Zhao (10.1016/j.watres.2022.118896_bib0090) 2008; 112
Gao (10.1016/j.watres.2022.118896_bib0020) 2020; 54
Li (10.1016/j.watres.2022.118896_bib0041) 2018; 348
Lu (10.1016/j.watres.2022.118896_bib0049) 2019; 28
Huang (10.1016/j.watres.2022.118896_bib0029) 2009; 170
Lou (10.1016/j.watres.2022.118896_bib0048) 2014; 117
Yuan (10.1016/j.watres.2022.118896_bib0088) 2021; 212
Zhou (10.1016/j.watres.2022.118896_bib0095) 2018; 359
Yang (10.1016/j.watres.2022.118896_bib0084) 2018; 52
Yang (10.1016/j.watres.2022.118896_bib0083) 2010; 179
Nie (10.1016/j.watres.2022.118896_bib0054) 2015; 279
Yan (10.1016/j.watres.2022.118896_bib0081) 2020; 31
Song (10.1016/j.watres.2022.118896_bib0062) 2018; 344
Tan (10.1016/j.watres.2022.118896_bib0066) 2017; 175
Wang (10.1016/j.watres.2022.118896_bib0071) 2018; 352
Ding (10.1016/j.watres.2022.118896_bib0012) 2021; 765
Chubar (10.1016/j.watres.2022.118896_bib0008) 2005; 255
Isari (10.1016/j.watres.2022.118896_bib0031) 2021; 275
Peng (10.1016/j.watres.2022.118896_bib0056) 2021; 266
Maruthamuthu (10.1016/j.watres.2022.118896_bib0052) 1978; 82
Teel (10.1016/j.watres.2022.118896_bib0067) 2009; 44
Ghauch (10.1016/j.watres.2022.118896_bib0022) 2012; 183
Zhao (10.1016/j.watres.2022.118896_bib0091) 2021; 409
Peng (10.1016/j.watres.2022.118896_bib0057) 2018; 354
Xu (10.1016/j.watres.2022.118896_bib0079) 2010; 72
Li (10.1016/j.watres.2022.118896_bib0044) 2020; 31
Li (10.1016/j.watres.2022.118896_bib0042) 2019; 372
Satizabal-Gómez (10.1016/j.watres.2022.118896_bib0061) 2021; 170
Li (10.1016/j.watres.2022.118896_bib0040) 2015; 5
Huang (10.1016/j.watres.2022.118896_bib0025) 2022; 424
Mamba (10.1016/j.watres.2022.118896_bib0051) 2016; 198
Liang (10.1016/j.watres.2022.118896_bib0045) 2017; 4
Chen (10.1016/j.watres.2022.118896_bib0005) 2019; 359
Duan (10.1016/j.watres.2022.118896_bib0013) 2021; 298
Wu (10.1016/j.watres.2022.118896_bib0074) 2019; 221
Zhang (10.1016/j.watres.2022.118896_bib0089) 2020; 398
Fulazzaky (10.1016/j.watres.2022.118896_bib0019) 2014; 253
Kanakaraju (10.1016/j.watres.2022.118896_bib0035) 2015; 139
Duan (10.1016/j.watres.2022.118896_bib0015) 2020; 267
Sánchez (10.1016/j.watres.2022.118896_bib0060) 2013; 233
Matzek (10.1016/j.watres.2022.118896_bib0053) 2016; 151
Waclawek (10.1016/j.watres.2022.118896_bib0069) 2016; 23
Xu (10.1016/j.watres.2022.118896_bib0078) 2017; 185
Yang (10.1016/j.watres.2022.118896_bib0082) 2019; 359
Chen (10.1016/j.watres.2022.118896_bib0006) 2017; 168
Duan (10.1016/j.watres.2022.118896_bib0014) 2019; 6
Hong (10.1016/j.watres.2022.118896_bib0023) 2020; 391
Dai (10.1016/j.watres.2022.118896_bib0009) 2021; 405
Sun (10.1016/j.watres.2022.118896_bib0065) 2022; 286
Jimmy (10.1016/j.watres.2022.118896_bib0034) 2003; 15
Huang (10.1016/j.watres.2022.118896_bib0026) 2017; 51
Song (10.1016/j.watres.2022.118896_bib0064) 2020; 188
Yin (10.1016/j.watres.2022.118896_bib0086) 2018; 334
Yu (10.1016/j.watres.2022.118896_bib0087) 2021; 423
Bu (10.1016/j.watres.2022.118896_bib0003) 2018; 195
Zhou (10.1016/j.watres.2022.118896_bib0092) 2020; 384
Perrin (10.1016/j.watres.2022.118896_bib0055) 1974
Huang (10.1016/j.watres.2022.118896_bib0028) 2020; 400
Li (10.1016/j.watres.2022.118896_bib0039) 2019; 664
Cheng (10.1016/j.watres.2022.118896_bib0007) 2019; 157
Zhu (10.1016/j.watres.2022.118896_bib0096) 2021; 409
Gao (10.1016/j.watres.2022.118896_bib0021) 2021; 9
Anipsitakis (10.1016/j.watres.2022.118896_bib0001) 2004; 38
Li (10.1016/j.watres.2022.118896_bib0038) 2019; 247
Liu (10.1016/j.watres.2022.118896_bib0047) 2013; 215-216
Ma (10.1016/j.watres.2022.118896_bib0050) 2018; 190
Peng (10.1016/j.watres.2022.118896_bib0058) 2021; 421
Wacławek (10.1016/j.watres.2022.118896_bib0070) 2017; 330
Dan (10.1016/j.watres.2022.118896_bib0010) 2022; 429
Cai (10.1016/j.watres.2022.118896_bib0004) 2016; 313
Fu (10.1016/j.watres.2022.118896_bib0017) 2019; 360
Zhou (10.1016/j.watres.2022.118896_bib0093) 2020; 379
Kang (10.1016/j.watres.2022.118896_bib0037) 2020; 387
Wang (10.1016/j.watres.2022.118896_bib0072) 2020; 177
Wu (10.1016/j.watres.2022.118896_bib0075) 2018; 341
Fu (10.1016/j.watres.2022.118896_bib0018) 2022; 287
Huang (10.1016/j.watres.2022.118896_bib0030) 2014; 154-155
Kang (10.1016/j.watres.2022.118896_bib0036) 2021; 9
Song (10.1016/j.watres.2022.118896_bib0063) 2017; 116
Rao (10.1016/j.watres.2022.118896_bib0059) 2014; 268
Anipsitakis (10.1016/j.watres.2022.118896_bib0002) 2004; 54
Xue (10.1016/j.watres.2022.118896_bib0080) 2020; 248
Ji (10.1016/j.watres.2022.118896_bib0032) 2018; 147
Devi (10.1016/j.watres.2022.118896_bib0011) 2016; 571
Huang (10.1016/j.watres.2022.118896_bib0027) 2021; 418
Wang (10.1016/j.watres.2022.118896_bib0073) 2016; 304
Yang (10.1016/j.watres.2022.118896_bib0085) 2021; 538
References_xml – volume: 400
  year: 2020
  ident: bib0028
  article-title: Mechanism insight into efficient peroxydisulfate activation by novel nano zero-valent iron anchored yCo
  publication-title: J. Hazard. Mater.
– volume: 112
  start-page: 5993
  year: 2008
  end-page: 6001
  ident: bib0090
  article-title: Surface Modification of TiO
  publication-title: J. Phys. Chem. C
– volume: 9
  year: 2021
  ident: bib0021
  article-title: Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range
  publication-title: J. Environ. Chem. Eng.
– volume: 248
  year: 2020
  ident: bib0080
  article-title: Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A
  publication-title: Chemosphere
– volume: 421
  year: 2021
  ident: bib0058
  article-title: Non-radical reactions in persulfate-based homogeneous degradation processes: a review
  publication-title: Chem. Eng. J.
– volume: 154-155
  start-page: 36
  year: 2014
  end-page: 43
  ident: bib0030
  article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst
  publication-title: Appl. Catal. B Environ
– volume: 177
  year: 2020
  ident: bib0072
  article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions
  publication-title: Water Res.
– volume: 185
  start-page: 833
  year: 2017
  end-page: 843
  ident: bib0078
  article-title: Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways
  publication-title: Chemosphere
– volume: 5
  start-page: 99935
  year: 2015
  end-page: 99943
  ident: bib0040
  article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
  publication-title: RSC Adv.
– volume: 341
  start-page: 126
  year: 2018
  end-page: 136
  ident: bib0075
  article-title: Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms
  publication-title: Chem. Eng. J.
– volume: 247
  start-page: 10
  year: 2019
  end-page: 23
  ident: bib0038
  article-title: Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine
  publication-title: Appl. Catal. B Environ.
– volume: 287
  year: 2022
  ident: bib0018
  article-title: Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation
  publication-title: Chemosphere
– volume: 275
  year: 2021
  ident: bib0031
  article-title: Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism
  publication-title: Sep. Purif. Technol.
– volume: 51
  start-page: 678
  year: 2018
  end-page: 687
  ident: bib0016
  article-title: Metal-free carbocatalysis in advanced oxidation reactions
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 56
  year: 2018
  end-page: 66
  ident: bib0094
  article-title: Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling
  publication-title: Water Res.
– volume: 157
  start-page: 406
  year: 2019
  end-page: 414
  ident: bib0007
  article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship
  publication-title: Water Res.
– volume: 765
  year: 2021
  ident: bib0012
  article-title: Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): recent advances and perspective
  publication-title: Sci. Total Environ.
– volume: 359
  start-page: 373
  year: 2019
  end-page: 384
  ident: bib0005
  article-title: Rational design and synthesis of hollow Co
  publication-title: Chem. Eng. J.
– volume: 348
  start-page: 1012
  year: 2018
  end-page: 1024
  ident: bib0041
  article-title: Enhancement of the degradation of atrazine through CoFe
  publication-title: Chem. Eng. J.
– volume: 147
  start-page: 82
  year: 2018
  end-page: 90
  ident: bib0032
  article-title: Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment
  publication-title: Water Res.
– volume: 279
  start-page: 507
  year: 2015
  end-page: 515
  ident: bib0054
  article-title: Degradation of chloramphenicol by persulfate activated by Fe
  publication-title: Chem. Eng. J.
– volume: 352
  start-page: 1004
  year: 2018
  end-page: 1013
  ident: bib0071
  article-title: Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide
  publication-title: Chem. Eng. J.
– volume: 398
  year: 2020
  ident: bib0089
  article-title: Electrochemical activation of peroxymonosulfate in cathodic micro-channels for effective degradation of organic pollutants in wastewater
  publication-title: J. Hazard. Mater.
– volume: 359
  start-page: 396
  year: 2018
  end-page: 407
  ident: bib0095
  article-title: Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds
  publication-title: J. Hazard. Mater.
– volume: 195
  start-page: 236
  year: 2018
  end-page: 244
  ident: bib0003
  article-title: Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors
  publication-title: Chemosphere
– volume: 168
  start-page: 1628
  year: 2017
  end-page: 1636
  ident: bib0006
  article-title: Heat-activated persulfate oxidation of methyl- and ethyl-parabens: effect, kinetics, and mechanism
  publication-title: Chemosphere
– volume: 338
  start-page: 300
  year: 2018
  end-page: 310
  ident: bib0024
  article-title: Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co
  publication-title: Chem. Eng. J.
– volume: 387
  year: 2020
  ident: bib0037
  article-title: Fe(III) adsorption on graphene oxide: a low-cost and simple modification method for persulfate activation
  publication-title: Chem. Eng. J.
– volume: 188
  year: 2020
  ident: bib0064
  article-title: Significant acceleration of Fe
  publication-title: Environ. Res.
– volume: 170
  year: 2021
  ident: bib0061
  article-title: Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
  publication-title: Miner. Eng.
– volume: 372
  start-page: 774
  year: 2019
  end-page: 784
  ident: bib0042
  article-title: Iron-tannic modified cotton derived Fe
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 12611
  year: 2017
  end-page: 12618
  ident: bib0026
  article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 2280
  year: 2003
  end-page: 2286
  ident: bib0034
  article-title: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity
  publication-title: Chem. Mater.
– volume: 31
  start-page: 2757
  year: 2020
  end-page: 2761
  ident: bib0044
  article-title: Visible light induced efficient activation of persulfate by a carbon quantum dots (CQDs) modified γ-Fe
  publication-title: Chin. Chem. Lett.
– volume: 9
  year: 2021
  ident: bib0036
  article-title: The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C
  publication-title: J. Environ. Chem. Eng.
– volume: 405
  year: 2021
  ident: bib0009
  article-title: Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation
  publication-title: J. Hazard. Mater.
– volume: 38
  start-page: 3705
  year: 2004
  end-page: 3712
  ident: bib0001
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
– volume: 313
  start-page: 209
  year: 2016
  end-page: 218
  ident: bib0004
  article-title: Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II
  publication-title: J. Hazard. Mater.
– volume: 384
  year: 2020
  ident: bib0092
  article-title: Molybdenum disulfide (MoS
  publication-title: Chem. Eng. J.
– volume: 238
  year: 2020
  ident: bib0046
  article-title: Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth
  publication-title: Chemosphere
– volume: 255
  start-page: 55
  year: 2005
  end-page: 63
  ident: bib0008
  article-title: Adsorption of phosphate ions on novel inorganic ion exchangers
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 360
  start-page: 157
  year: 2019
  end-page: 170
  ident: bib0017
  article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 1535
  year: 2020
  end-page: 1539
  ident: bib0081
  article-title: Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate
  publication-title: Chin. Chem. Lett.
– volume: 212
  year: 2021
  ident: bib0088
  article-title: Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 538
  year: 2021
  ident: bib0085
  article-title: Surface-active MnFeO@C cubes as enhanced peroxymonosulfate activators for efficient degradation of bisphenol A
  publication-title: Appl. Surf. Sci.
– volume: 175
  start-page: 47
  year: 2017
  end-page: 57
  ident: bib0066
  article-title: Efficient degradation of paracetamol with nanoscaled magnetic CoFe
  publication-title: Sep. Purif. Tech.
– volume: 304
  start-page: 201
  year: 2016
  end-page: 208
  ident: bib0073
  article-title: Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 1098
  year: 2009
  end-page: 1103
  ident: bib0067
  article-title: Effect of sorption on contaminant oxidation in activated persulfate systems
  publication-title: J. Environ. Sci. Health. A Toxic Hazard. Subst. Environ. Eng.
– volume: 151
  start-page: 178
  year: 2016
  end-page: 188
  ident: bib0053
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
– volume: 330
  start-page: 44
  year: 2017
  end-page: 62
  ident: bib0070
  article-title: Chemistry of persulfates in water and wastewater treatment: a review
  publication-title: Chem. Eng. J.
– volume: 409
  year: 2021
  ident: bib0091
  article-title: Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process
  publication-title: J. Hazard. Mater.
– volume: 183
  start-page: 162
  year: 2012
  end-page: 171
  ident: bib0022
  article-title: Oxidation of bisoprolol in heated persulfate/H
  publication-title: Chem. Eng. J.
– volume: 268
  start-page: 23
  year: 2014
  end-page: 32
  ident: bib0059
  article-title: Degradation of carbamazepine by Fe(II)-activated persulfate process
  publication-title: J. Hazard. Mater.
– volume: 52
  start-page: 5911
  year: 2018
  end-page: 5919
  ident: bib0084
  article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 315
  year: 2017
  end-page: 324
  ident: bib0045
  article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate
  publication-title: Environ. Sci. Nano
– volume: 359
  start-page: 552
  year: 2019
  end-page: 563
  ident: bib0082
  article-title: Significance of B-site cobalt on bisphenol A degradation by MOFs-templated Co
  publication-title: Chem. Eng. J.
– volume: 267
  year: 2020
  ident: bib0015
  article-title: Enhanced degradation of clothianidin in peroxymonosulfate/catalyst system via core-shell FeMn@N-C and phosphate surrounding
  publication-title: Appl. Catal. B Environ.
– volume: 117
  start-page: 582
  year: 2014
  end-page: 585
  ident: bib0048
  article-title: Peroxymonosulfate activation by phosphate anion for organics degradation in water
  publication-title: Chemosphere
– volume: 82
  start-page: 710
  year: 1978
  end-page: 713
  ident: bib0052
  article-title: Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds
  publication-title: J. Phys Chem.
– volume: 54
  start-page: 155
  year: 2004
  end-page: 163
  ident: bib0002
  article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination
  publication-title: Appl. Catal. B-Environ.
– volume: 286
  year: 2022
  ident: bib0065
  article-title: Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions
  publication-title: Chemosphere
– volume: 54
  start-page: 1232
  year: 2020
  end-page: 1241
  ident: bib0020
  article-title: New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms
  publication-title: Environ. Sci. Technol.
– volume: 424
  year: 2022
  ident: bib0025
  article-title: Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: indispensable role of intermediate complex
  publication-title: J. Hazard. Mater.
– volume: 391
  year: 2020
  ident: bib0023
  article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: efficiency, mechanism and degradation pathways
  publication-title: Chem. Eng. J.
– volume: 664
  start-page: 133
  year: 2019
  end-page: 139
  ident: bib0039
  article-title: Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways
  publication-title: Sci. Total. Environ.
– volume: 221
  start-page: 412
  year: 2019
  end-page: 422
  ident: bib0074
  article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe
  publication-title: Chemosphere
– volume: 429
  year: 2022
  ident: bib0010
  article-title: Bimetallic oxides with package structure for enhanced degradation of bisphenol a through peroxymonosulfate activation
  publication-title: Chem. Eng. J.
– volume: 379
  year: 2020
  ident: bib0093
  article-title: Transformation of tetracycline antibiotics during water treatment with unactivated peroxymonosulfate
  publication-title: Chem. Eng. J.
– volume: 298
  year: 2021
  ident: bib0013
  article-title: Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism
  publication-title: Appl. Catal. B Environ.
– volume: 397
  year: 2020
  ident: bib0043
  article-title: High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation
  publication-title: J. Hazard. Mater.
– volume: 179
  start-page: 552
  year: 2010
  end-page: 558
  ident: bib0083
  article-title: Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide
  publication-title: J. Hazard. Mater.
– volume: 139
  start-page: 579
  year: 2015
  end-page: 588
  ident: bib0035
  article-title: TiO
  publication-title: Chemosphere
– volume: 198
  start-page: 347
  year: 2016
  end-page: 377
  ident: bib0051
  article-title: Graphitic carbon nitride (g-C
  publication-title: Appl. Catal. B Environ.
– volume: 266
  year: 2021
  ident: bib0056
  article-title: Activation of peroxymonosulfate by phosphite: kinetics and mechanism for the removal of organic pollutants
  publication-title: Chemosphere
– volume: 428
  year: 2022
  ident: bib0068
  article-title: Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies
  publication-title: Chem. Eng. J.
– volume: 190
  start-page: 296
  year: 2018
  end-page: 306
  ident: bib0050
  article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water
  publication-title: Chemosphere
– volume: 170
  start-page: 1110
  year: 2009
  end-page: 1118
  ident: bib0029
  article-title: Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co
  publication-title: J. Hazard. Mater.
– volume: 430
  year: 2022
  ident: bib0077
  article-title: Improvement of Fe
  publication-title: Chem. Eng. J.
– volume: 409
  year: 2021
  ident: bib0096
  article-title: Trace Co
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 1799
  year: 2019
  end-page: 1811
  ident: bib0014
  article-title: Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation
  publication-title: Environ. Sci. Nano
– volume: 253
  year: 2020
  ident: bib0033
  article-title: Visible-light-induced activation of peroxymonosulfate by TiO
  publication-title: Sep. Purif. Technol.
– volume: 233
  start-page: 8
  year: 2013
  end-page: 13
  ident: bib0060
  article-title: On the applications of peroxodiphosphate produced by BDD-electrolyses
  publication-title: Chem. Eng. J.
– volume: 254
  start-page: 163
  year: 2014
  end-page: 170
  ident: bib0076
  article-title: Removal and recovery of phosphate from water by lanthanum hydroxide materials
  publication-title: Chem. Eng. J.
– volume: 334
  start-page: 2539
  year: 2018
  end-page: 2546
  ident: bib0086
  article-title: Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms
  publication-title: Chem. Eng. J.
– volume: 571
  start-page: 643
  year: 2016
  end-page: 657
  ident: bib0011
  article-title: chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems
  publication-title: Sci. Total Environ.
– volume: 418
  year: 2021
  ident: bib0027
  article-title: Activation of persulfates by carbonaceous materials: a review
  publication-title: Chem. Eng. J.
– volume: 23
  start-page: 765
  year: 2016
  end-page: 773
  ident: bib0069
  article-title: Remediation of hexachlorocyclohexanes by electrochemically activated persulfates
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 28
  start-page: 2735
  year: 2019
  end-page: 2744
  ident: bib0049
  article-title: Degradation of atrazine by UV/PMS in phosphate buffer
  publication-title: Pol. J. Environ. Stud.
– start-page: 156
  year: 1974
  end-page: 162
  ident: bib0055
  article-title: Buffers For pH and Metal Ion Control
– volume: 253
  start-page: 291
  year: 2014
  end-page: 297
  ident: bib0019
  article-title: Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process
  publication-title: Chem. Eng. J.
– volume: 354
  start-page: 740
  year: 2018
  end-page: 752
  ident: bib0057
  article-title: Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism
  publication-title: Chem. Eng. J.
– volume: 72
  start-page: 105
  year: 2010
  end-page: 111
  ident: bib0079
  article-title: Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion
  publication-title: Sep. Purif. Technol.
– volume: 344
  start-page: 12
  year: 2018
  end-page: 20
  ident: bib0062
  article-title: Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes
  publication-title: Chem. Eng. J.
– volume: 116
  start-page: 182
  year: 2017
  end-page: 193
  ident: bib0063
  article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors
  publication-title: Water Res.
– volume: 423
  year: 2021
  ident: bib0087
  article-title: Photocatalysis of tris-(2-chloroethyl) phosphate by ultraviolet driven peroxymonosulfate oxidation process: removal performance, energy evaluation and toxicity on bacterial metabolism network
  publication-title: Chem. Eng. J.
– volume: 215-216
  start-page: 859
  year: 2013
  end-page: 867
  ident: bib0047
  article-title: Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber
  publication-title: Chem. Eng. J.
– volume: 198
  start-page: 347
  year: 2016
  ident: 10.1016/j.watres.2022.118896_bib0051
  article-title: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.05.052
– volume: 51
  start-page: 678
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0016
  article-title: Metal-free carbocatalysis in advanced oxidation reactions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00535
– volume: 185
  start-page: 833
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0078
  article-title: Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.090
– volume: 28
  start-page: 2735
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0049
  article-title: Degradation of atrazine by UV/PMS in phosphate buffer
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/94213
– volume: 354
  start-page: 740
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0057
  article-title: Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.038
– volume: 5
  start-page: 99935
  year: 2015
  ident: 10.1016/j.watres.2022.118896_bib0040
  article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16094D
– volume: 195
  start-page: 236
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0003
  article-title: Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.088
– volume: 190
  start-page: 296
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0050
  article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.09.148
– volume: 398
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0089
  article-title: Electrochemical activation of peroxymonosulfate in cathodic micro-channels for effective degradation of organic pollutants in wastewater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122879
– volume: 175
  start-page: 47
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0066
  article-title: Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate
  publication-title: Sep. Purif. Tech.
  doi: 10.1016/j.seppur.2016.11.016
– volume: 54
  start-page: 155
  year: 2004
  ident: 10.1016/j.watres.2022.118896_bib0002
  article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2004.05.025
– volume: 51
  start-page: 12611
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0026
  article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03007
– volume: 179
  start-page: 552
  year: 2010
  ident: 10.1016/j.watres.2022.118896_bib0083
  article-title: Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.03.039
– volume: 139
  start-page: 579
  year: 2015
  ident: 10.1016/j.watres.2022.118896_bib0035
  article-title: TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.07.070
– volume: 286
  year: 2022
  ident: 10.1016/j.watres.2022.118896_bib0065
  article-title: Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131640
– volume: 6
  start-page: 1799
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0014
  article-title: Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C9EN00220K
– volume: 15
  start-page: 2280
  year: 2003
  ident: 10.1016/j.watres.2022.118896_bib0034
  article-title: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity
  publication-title: Chem. Mater.
  doi: 10.1021/cm0340781
– volume: 538
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0085
  article-title: Surface-active MnFeO@C cubes as enhanced peroxymonosulfate activators for efficient degradation of bisphenol A
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148008
– volume: 188
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0064
  article-title: Significant acceleration of Fe2+/peroxydisulfate oxidation towards sulfisoxazole by addition of MoS2
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109692
– volume: 334
  start-page: 2539
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0086
  article-title: Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.174
– volume: 72
  start-page: 105
  year: 2010
  ident: 10.1016/j.watres.2022.118896_bib0079
  article-title: Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2010.01.012
– volume: 31
  start-page: 1535
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0081
  article-title: Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.11.003
– volume: 430
  year: 2022
  ident: 10.1016/j.watres.2022.118896_bib0077
  article-title: Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132828
– volume: 359
  start-page: 373
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0005
  article-title: Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.120
– volume: 154-155
  start-page: 36
  year: 2014
  ident: 10.1016/j.watres.2022.118896_bib0030
  article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst
  publication-title: Appl. Catal. B Environ
  doi: 10.1016/j.apcatb.2014.02.005
– volume: 387
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0037
  article-title: Fe(III) adsorption on graphene oxide: a low-cost and simple modification method for persulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124012
– volume: 183
  start-page: 162
  year: 2012
  ident: 10.1016/j.watres.2022.118896_bib0022
  article-title: Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.12.048
– volume: 571
  start-page: 643
  year: 2016
  ident: 10.1016/j.watres.2022.118896_bib0011
  article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.032
– volume: 54
  start-page: 1232
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0020
  article-title: New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05856
– volume: 275
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0031
  article-title: Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119163
– volume: 341
  start-page: 126
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0075
  article-title: Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.136
– volume: 247
  start-page: 10
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0038
  article-title: Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.01.079
– volume: 359
  start-page: 552
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0082
  article-title: Significance of B-site cobalt on bisphenol A degradation by MOFs-templated CoxFe3−xO4 catalysts and its severe attenuation by excessive cobalt-rich phase
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.187
– volume: 418
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0027
  article-title: Activation of persulfates by carbonaceous materials: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129297
– volume: 170
  start-page: 1110
  year: 2009
  ident: 10.1016/j.watres.2022.118896_bib0029
  article-title: Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.05.091
– volume: 360
  start-page: 157
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0017
  article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: structure dependence and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.207
– volume: 248
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0080
  article-title: Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126053
– volume: 238
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0046
  article-title: Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124611
– volume: 765
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0012
  article-title: Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): recent advances and perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142794
– volume: 400
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0028
  article-title: Mechanism insight into efficient peroxydisulfate activation by novel nano zero-valent iron anchored yCo3O4(nZVI/yCo3O4) composites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123157
– volume: 4
  start-page: 315
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0045
  article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C6EN00633G
– volume: 117
  start-page: 582
  year: 2014
  ident: 10.1016/j.watres.2022.118896_bib0048
  article-title: Peroxymonosulfate activation by phosphate anion for organics degradation in water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.046
– volume: 116
  start-page: 182
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0063
  article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.035
– volume: 38
  start-page: 3705
  year: 2004
  ident: 10.1016/j.watres.2022.118896_bib0001
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035121o
– volume: 9
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0021
  article-title: Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106733
– volume: 9
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0036
  article-title: The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105524
– volume: 170
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0061
  article-title: Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.107031
– volume: 338
  start-page: 300
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0024
  article-title: Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.016
– start-page: 156
  year: 1974
  ident: 10.1016/j.watres.2022.118896_bib0055
– volume: 31
  start-page: 2757
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0044
  article-title: Visible light induced efficient activation of persulfate by a carbon quantum dots (CQDs) modified γ-Fe2O3 catalyst
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.01.032
– volume: 82
  start-page: 710
  year: 1978
  ident: 10.1016/j.watres.2022.118896_bib0052
  article-title: Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds
  publication-title: J. Phys Chem.
  doi: 10.1021/j100495a019
– volume: 664
  start-page: 133
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0039
  article-title: Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.02.039
– volume: 266
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0056
  article-title: Activation of peroxymonosulfate by phosphite: kinetics and mechanism for the removal of organic pollutants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129016
– volume: 177
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0072
  article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115752
– volume: 391
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0023
  article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: efficiency, mechanism and degradation pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123604
– volume: 424
  year: 2022
  ident: 10.1016/j.watres.2022.118896_bib0025
  article-title: Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: indispensable role of intermediate complex
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127641
– volume: 344
  start-page: 12
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0062
  article-title: Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.050
– volume: 352
  start-page: 1004
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0071
  article-title: Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.103
– volume: 409
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0091
  article-title: Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124893
– volume: 267
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0015
  article-title: Enhanced degradation of clothianidin in peroxymonosulfate/catalyst system via core-shell FeMn@N-C and phosphate surrounding
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118717
– volume: 268
  start-page: 23
  year: 2014
  ident: 10.1016/j.watres.2022.118896_bib0059
  article-title: Degradation of carbamazepine by Fe(II)-activated persulfate process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.01.010
– volume: 23
  start-page: 765
  year: 2016
  ident: 10.1016/j.watres.2022.118896_bib0069
  article-title: Remediation of hexachlorocyclohexanes by electrochemically activated persulfates
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-015-5312-y
– volume: 112
  start-page: 5993
  year: 2008
  ident: 10.1016/j.watres.2022.118896_bib0090
  article-title: Surface Modification of TiO2 by Phosphate: effect on photocatalytic activity and mechanism implication
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp712049c
– volume: 405
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0009
  article-title: Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124684
– volume: 409
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0096
  article-title: Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124920
– volume: 384
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0092
  article-title: Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123264
– volume: 255
  start-page: 55
  year: 2005
  ident: 10.1016/j.watres.2022.118896_bib0008
  article-title: Adsorption of phosphate ions on novel inorganic ion exchangers
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2004.12.015
– volume: 253
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0033
  article-title: Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol A
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117510
– volume: 428
  year: 2022
  ident: 10.1016/j.watres.2022.118896_bib0068
  article-title: Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131166
– volume: 138
  start-page: 56
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0094
  article-title: Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.045
– volume: 423
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0087
  article-title: Photocatalysis of tris-(2-chloroethyl) phosphate by ultraviolet driven peroxymonosulfate oxidation process: removal performance, energy evaluation and toxicity on bacterial metabolism network
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130261
– volume: 168
  start-page: 1628
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0006
  article-title: Heat-activated persulfate oxidation of methyl- and ethyl-parabens: effect, kinetics, and mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.11.143
– volume: 52
  start-page: 5911
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0084
  article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00735
– volume: 233
  start-page: 8
  year: 2013
  ident: 10.1016/j.watres.2022.118896_bib0060
  article-title: On the applications of peroxodiphosphate produced by BDD-electrolyses
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.08.022
– volume: 279
  start-page: 507
  year: 2015
  ident: 10.1016/j.watres.2022.118896_bib0054
  article-title: Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.055
– volume: 313
  start-page: 209
  year: 2016
  ident: 10.1016/j.watres.2022.118896_bib0004
  article-title: Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.04.007
– volume: 429
  year: 2022
  ident: 10.1016/j.watres.2022.118896_bib0010
  article-title: Bimetallic oxides with package structure for enhanced degradation of bisphenol a through peroxymonosulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132189
– volume: 397
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0043
  article-title: High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122764
– volume: 215-216
  start-page: 859
  year: 2013
  ident: 10.1016/j.watres.2022.118896_bib0047
  article-title: Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.11.067
– volume: 212
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0088
  article-title: Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe3+/Fe2+ couple for degradation of organic pollutants
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.111975
– volume: 254
  start-page: 163
  year: 2014
  ident: 10.1016/j.watres.2022.118896_bib0076
  article-title: Removal and recovery of phosphate from water by lanthanum hydroxide materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.05.113
– volume: 304
  start-page: 201
  year: 2016
  ident: 10.1016/j.watres.2022.118896_bib0073
  article-title: Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.092
– volume: 379
  year: 2020
  ident: 10.1016/j.watres.2022.118896_bib0093
  article-title: Transformation of tetracycline antibiotics during water treatment with unactivated peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122378
– volume: 44
  start-page: 1098
  year: 2009
  ident: 10.1016/j.watres.2022.118896_bib0067
  article-title: Effect of sorption on contaminant oxidation in activated persulfate systems
  publication-title: J. Environ. Sci. Health. A Toxic Hazard. Subst. Environ. Eng.
  doi: 10.1080/10934520903005095
– volume: 348
  start-page: 1012
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0041
  article-title: Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.032
– volume: 330
  start-page: 44
  year: 2017
  ident: 10.1016/j.watres.2022.118896_bib0070
  article-title: Chemistry of persulfates in water and wastewater treatment: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.132
– volume: 147
  start-page: 82
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0032
  article-title: Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.09.037
– volume: 157
  start-page: 406
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0007
  article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.096
– volume: 287
  year: 2022
  ident: 10.1016/j.watres.2022.118896_bib0018
  article-title: Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132094
– volume: 421
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0058
  article-title: Non-radical reactions in persulfate-based homogeneous degradation processes: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127818
– volume: 359
  start-page: 396
  year: 2018
  ident: 10.1016/j.watres.2022.118896_bib0095
  article-title: Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.07.083
– volume: 151
  start-page: 178
  year: 2016
  ident: 10.1016/j.watres.2022.118896_bib0053
  article-title: Activated persulfate for organic chemical degradation: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.055
– volume: 221
  start-page: 412
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0074
  article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-X
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.049
– volume: 298
  year: 2021
  ident: 10.1016/j.watres.2022.118896_bib0013
  article-title: Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120532
– volume: 253
  start-page: 291
  year: 2014
  ident: 10.1016/j.watres.2022.118896_bib0019
  article-title: Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.05.049
– volume: 372
  start-page: 774
  year: 2019
  ident: 10.1016/j.watres.2022.118896_bib0042
  article-title: Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.187
SSID ssj0002239
Score 2.7080019
SecondaryResourceType review_article
Snippet •The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The...
Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118896
SubjectTerms adsorption
dissociation
energy
Heterocatalysis
Homogeneous catalysis
oxidation
Persulfate
Phosphate
phosphates
water
Water treatment
Title Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review
URI https://dx.doi.org/10.1016/j.watres.2022.118896
https://www.proquest.com/docview/2697367908
https://www.proquest.com/docview/2718279364
Volume 222
WOSCitedRecordID wos000878990900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabpIf2UPok6SOo0Fvw4pXltdzbkqYkpYQeUtiejGxL2MvGNvtIF_pX-mM74_Fjm9CkOfRiFiFp7Z1vpU_jmW8Yew_nYiFjETuopeJIlaQoeRs7sLWEOpHKj4Wti00E5-dqOg2_Dga_2lyYq3lQFGqzCav_ampoA2Nj6uw9zN1NCg3wGYwOVzA7XP_J8Gdt2RFSX740mNubLy_rmI0qK5dVBvzyiALgCqCeFTDA9dxiI2Y5kI-2Hksln5KjFBUlqPgS-kd-aFRW7ELUKbl90b9kmLWVZbBboyaU1bqmGwql75wPX3JCY7N91o59Wny-wxaa9cg9zgy1T3NdLrO17kd8pILap7rc5Ns-DDj-oqasv70uo1CqR3LS7bosKGG5WVnhIKSo9u2NRZ_8D7MhPD080xC_YNh3_1Nj-9re10UktsFus4hmiXCWiGbZYXsi8ENYM_cmZyfTz91OD9QqbCMY8O7b1Mw6fvDm3fyN-lwjATWzuXjCHjdHEj4hKD1lA1M8Y4-2hCqfs589qDgAg_eg4qXlHag4goojqHgPKt6Dqh7bgIpvgYrnBa9BxTtQfeATTpB6wb59Ork4PnWash1O4gVi5UgvsNZViQrd2LcWKKDxtBhZz_hSe95IGAksHXm2leglDKyQqTtSsZF6hAz5JdstysLsM66sghPzyDXCNzJNrYbTtdKJ9ZSbKuPKA-a1v2iUNJr2WFplHt1mzwPmdKMq0nS5o3_QGitqeCnxzQgQeMfId61tI1i28V2cLky5hk7jMPDGQeiqW_oAbxSwf47lq3ve8Wv2sP-bvWG7q8XavGUPkqtVvlwcsp1gqg4bMP8GfcjMPg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+and+mechanisms+of+phosphate+ions+onto+persulfate+activation+and+organic+degradation+in+water+treatment%3A+A+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Ning&rft.au=Wang%2C+Yanshan&rft.au=Cheng%2C+Xiaoshuang&rft.au=Dai%2C+Haoxi&rft.date=2022-08-15&rft.issn=0043-1354&rft.volume=222&rft.spage=118896&rft_id=info:doi/10.1016%2Fj.watres.2022.118896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2022_118896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon