Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review
•The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The research directions of phosphate ions in PS-AOPs are proposed. Currently, various strategies have been applied to activate persulfate (PS) for...
Gespeichert in:
| Veröffentlicht in: | Water research (Oxford) Jg. 222; S. 118896 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.08.2022
|
| Schlagworte: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The research directions of phosphate ions in PS-AOPs are proposed.
Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42−, H2PO4−, and PO43−) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42− promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4− inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42− and H2PO4− could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.
[Display omitted] |
|---|---|
| AbstractList | Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42-, H2PO4-, and PO43-) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42- promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4- inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42- and H2PO4- could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice.Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42-, H2PO4-, and PO43-) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42- promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4- inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42- and H2PO4- could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice. Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO₄²⁻, H₂PO₄⁻, and PO₄³⁻) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO₄²⁻ promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H₂PO₄⁻ inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO₄²⁻ and H₂PO₄⁻ could present beneficial effects in thermal, Co²⁺ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co²⁺, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice. •The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The research directions of phosphate ions in PS-AOPs are proposed. Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water affect PS activation and organic degradation, and the mechanism of their influence on the processes is still controversial. In this review, the possible effects of different phosphate forms (HPO42−, H2PO4−, and PO43−) on PS activation and contaminant degradation were systematically evaluated and summarized. Specifically, HPO42− promotes contaminant degradation in direct peroxymonosulfate (PMS) oxidation and thermal/PMS systems, while it exhibits inhibition to thermal/peroxodisulfate (PDS) and ultraviolet (UV)/PDS systems. Meanwhile, H2PO4− inhibits most oxidation processes based on PMS and PDS, except for non-metal dominated and metal assisted PMS systems. Coexisting HPO42− and H2PO4− could present beneficial effects in thermal, Co2+ and non-metal activated and metal assisted PMS systems. Nevertheless, their inhibitory effects were found in direct PMS oxidation, UV/PMS (or PDS) and metal dominated PMS systems. Generally, phosphate ions inhibit PMS/PDS activation through competing adsorption with PMS or PDS on the solid surface, forming a complex with metal ions, as well as occupying active sites on solid catalysts. In addition, phosphate ions can quench radicals for reduced degradation of contaminants. However, phosphate ions could weaken the bond dissociation energy via combining with PMS and contaminants or form a complex with Co2+, thus displaying a facilitative effect. This review further discusses major challenges and opportunities of PS activation with co-existing phosphates and will provide guidance for better PS utilization in real water treatment practice. [Display omitted] |
| ArticleNumber | 118896 |
| Author | Li, Ning Yan, Beibei Wang, Yanshan Chen, Guanyi Wang, Shaobin Cheng, Xiaoshuang Dai, Haoxi Hou, Li'an |
| Author_xml | – sequence: 1 givenname: Ning surname: Li fullname: Li, Ning organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 2 givenname: Yanshan surname: Wang fullname: Wang, Yanshan organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 3 givenname: Xiaoshuang surname: Cheng fullname: Cheng, Xiaoshuang organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 4 givenname: Haoxi surname: Dai fullname: Dai, Haoxi organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 5 givenname: Beibei surname: Yan fullname: Yan, Beibei email: yanbeibei@tju.edu.cn organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 6 givenname: Guanyi surname: Chen fullname: Chen, Guanyi organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 7 givenname: Li'an surname: Hou fullname: Hou, Li'an organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, PR China – sequence: 8 givenname: Shaobin surname: Wang fullname: Wang, Shaobin email: shaobin.wang@adelaide.edu.au organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia |
| BookMark | eNqNkU9P3DAQxa2KSl1ov0EPPvaS7fjPJg4HJIRoQULqpT1bxhmzXiV2sL0gxJevl3DiUHoa6c37jWbmHZOjEAMS8pXBmgFrv-_Wj6YkzGsOnK8ZU6pvP5AVU13fcCnVEVkBSNEwsZGfyHHOO4DqFP2KPF8HN-4xWMzUhIFOaLcm-DxlGh2dtzHPW1OQ-hiqEkqkM6a8H91BNLb4B1Nq74WN6a6ilg54l8yw6D7QuhsmWvczZcJQTuk5Tfjg8fEz-ejMmPHLaz0hf35c_r64am5-_by-OL9prOh4aaTonANlVQ-3G-ckb1EYzpzAjTRCMI5ywyQA405CD9XN5QBM3aI0DFopTsi3Ze6c4v0ec9GTzxbH0QSM-6x5xxTvevE_1rbvRNv1oKr1dLHaFHNO6LT15eXokowfNQN9CEfv9BKOPoSjl3AqLN_Ac_KTSU_vYWcLhvVd9YVJZ-sP4Q0-oS16iP7fA_4C0R6uZg |
| CitedBy_id | crossref_primary_10_1039_D5RA02938D crossref_primary_10_1016_j_ces_2024_120132 crossref_primary_10_1016_j_envres_2025_121888 crossref_primary_10_1093_nsr_nwaf183 crossref_primary_10_1016_j_cej_2024_150692 crossref_primary_10_1016_j_cej_2022_139660 crossref_primary_10_1016_j_indcrop_2025_121596 crossref_primary_10_1016_j_jwpe_2024_106333 crossref_primary_10_1111_jace_19616 crossref_primary_10_1016_j_seppur_2024_129916 crossref_primary_10_1016_j_colsurfa_2025_136808 crossref_primary_10_1016_j_mcat_2025_115417 crossref_primary_10_1016_j_cej_2025_166419 crossref_primary_10_1016_j_pmatsci_2024_101373 crossref_primary_10_1016_j_jhazmat_2024_135068 crossref_primary_10_1016_j_ecoenv_2025_118925 crossref_primary_10_1016_j_cej_2025_163827 crossref_primary_10_1016_j_seppur_2024_131300 crossref_primary_10_1016_j_seppur_2023_124195 crossref_primary_10_1016_j_cej_2022_138588 crossref_primary_10_1016_j_jhazmat_2023_132417 crossref_primary_10_1016_j_seppur_2024_129107 crossref_primary_10_1016_j_apcatb_2024_124951 crossref_primary_10_3390_su17072831 crossref_primary_10_1016_j_cej_2023_145922 crossref_primary_10_1016_j_seppur_2025_133441 crossref_primary_10_1016_j_scp_2024_101801 crossref_primary_10_1016_j_chemosphere_2023_140594 crossref_primary_10_1016_j_molstruc_2025_143172 crossref_primary_10_1016_j_apcatb_2024_124988 crossref_primary_10_1016_j_seppur_2023_124083 crossref_primary_10_1007_s11356_024_34144_6 crossref_primary_10_1016_j_colsurfa_2024_134684 crossref_primary_10_1016_j_jece_2025_119265 crossref_primary_10_1016_j_scitotenv_2024_173839 crossref_primary_10_1016_j_cej_2023_146692 crossref_primary_10_1016_j_seppur_2025_135072 crossref_primary_10_1016_j_cej_2023_147781 crossref_primary_10_1016_j_efmat_2024_07_003 crossref_primary_10_1016_j_seppur_2023_124525 crossref_primary_10_1016_j_cej_2025_163483 crossref_primary_10_1016_j_seppur_2025_135172 crossref_primary_10_1002_wer_10984 crossref_primary_10_1016_j_jwpe_2025_108121 crossref_primary_10_1016_j_cej_2024_155441 crossref_primary_10_1016_j_jece_2025_118869 crossref_primary_10_1016_j_cej_2024_156532 crossref_primary_10_1016_j_micromeso_2023_112702 crossref_primary_10_1016_j_seppur_2023_123204 crossref_primary_10_1016_j_cej_2023_146795 crossref_primary_10_1016_j_cej_2024_149426 crossref_primary_10_1016_j_chemosphere_2024_143369 crossref_primary_10_1016_j_jphotochem_2024_115548 crossref_primary_10_1016_j_envres_2025_122931 crossref_primary_10_1016_j_jece_2024_113869 crossref_primary_10_1016_j_molliq_2023_123273 crossref_primary_10_1016_j_apcatb_2024_123954 crossref_primary_10_1016_j_jcis_2025_01_188 crossref_primary_10_1016_j_cej_2025_162008 crossref_primary_10_1016_j_seppur_2024_126968 crossref_primary_10_1016_j_cej_2023_145698 crossref_primary_10_1016_j_cej_2023_143956 crossref_primary_10_1016_j_jwpe_2023_104347 crossref_primary_10_1016_j_jwpe_2024_105611 crossref_primary_10_1016_j_memsci_2025_123820 crossref_primary_10_1016_j_seppur_2025_131910 crossref_primary_10_1016_j_seppur_2023_126175 crossref_primary_10_1016_j_jhazmat_2025_137987 crossref_primary_10_1016_j_seppur_2023_123341 crossref_primary_10_1016_j_apcatb_2025_125621 crossref_primary_10_1080_09593330_2024_2369276 crossref_primary_10_1016_j_surfin_2024_104552 crossref_primary_10_1016_j_jwpe_2025_108739 crossref_primary_10_1016_j_cej_2024_158124 crossref_primary_10_1021_acsestwater_4c01207 crossref_primary_10_1016_j_seppur_2024_130763 crossref_primary_10_1016_j_watres_2025_123652 crossref_primary_10_1016_j_apcatb_2025_125512 crossref_primary_10_1016_j_seppur_2024_130085 crossref_primary_10_1016_j_jallcom_2025_180627 crossref_primary_10_1016_j_jclepro_2023_139221 crossref_primary_10_1080_09593330_2022_2161951 crossref_primary_10_1007_s11356_024_32677_4 crossref_primary_10_1016_j_jwpe_2024_106000 crossref_primary_10_1016_j_scitotenv_2022_160539 crossref_primary_10_1016_j_cej_2025_159865 crossref_primary_10_1016_j_jece_2025_119111 crossref_primary_10_1016_j_seppur_2024_126379 crossref_primary_10_1016_j_cej_2023_146761 crossref_primary_10_1016_j_jphotochem_2023_114840 crossref_primary_10_1016_j_jece_2025_118381 crossref_primary_10_1016_j_seppur_2022_122687 crossref_primary_10_1016_j_seppur_2023_123812 crossref_primary_10_1016_j_jtice_2023_104720 crossref_primary_10_1016_j_cej_2023_145547 crossref_primary_10_1016_j_diamond_2025_112363 crossref_primary_10_1016_j_surfin_2024_105148 crossref_primary_10_1039_D4NR02567A crossref_primary_10_1016_j_seppur_2025_134959 crossref_primary_10_1016_j_jclepro_2022_135002 crossref_primary_10_3390_w15071267 crossref_primary_10_1016_j_seppur_2024_129194 crossref_primary_10_1007_s11814_023_1405_3 crossref_primary_10_1002_wer_10927 crossref_primary_10_1016_j_jwpe_2025_107533 crossref_primary_10_1016_j_seppur_2024_128773 crossref_primary_10_1016_j_cej_2024_156278 crossref_primary_10_1016_j_mtcomm_2023_107997 crossref_primary_10_1016_j_apcatb_2025_125709 crossref_primary_10_1016_j_cej_2023_147274 crossref_primary_10_1016_j_jhazmat_2023_131842 crossref_primary_10_1016_j_seppur_2022_122438 crossref_primary_10_1016_j_jenvman_2024_123031 crossref_primary_10_1016_j_jallcom_2025_179675 crossref_primary_10_1016_j_cej_2025_167555 crossref_primary_10_3390_catal12091024 crossref_primary_10_1016_j_jwpe_2025_108098 crossref_primary_10_1016_j_cej_2023_142813 crossref_primary_10_1016_j_cej_2024_155973 crossref_primary_10_1016_j_seppur_2023_123391 crossref_primary_10_1016_j_apcatb_2023_123616 crossref_primary_10_1038_s41545_025_00444_8 crossref_primary_10_1016_j_apcatb_2025_125278 crossref_primary_10_1016_j_jcis_2025_137651 crossref_primary_10_1016_j_chemosphere_2024_141333 crossref_primary_10_1039_D3RA07390D crossref_primary_10_1016_j_cej_2023_142367 crossref_primary_10_1016_j_cej_2024_148646 crossref_primary_10_1016_j_jwpe_2025_108528 crossref_primary_10_1039_D5CY00472A crossref_primary_10_1016_j_jenvman_2025_127279 crossref_primary_10_1016_j_jhazmat_2025_137606 crossref_primary_10_1016_j_jenvman_2025_126860 crossref_primary_10_1016_j_jhazmat_2024_134834 crossref_primary_10_1016_j_jwpe_2025_108085 crossref_primary_10_1016_j_seppur_2024_131365 crossref_primary_10_1016_j_jhazmat_2023_132916 crossref_primary_10_1016_j_jece_2025_118516 crossref_primary_10_1016_j_watres_2024_122666 crossref_primary_10_1016_j_scitotenv_2024_174597 crossref_primary_10_1016_j_ccr_2024_215749 crossref_primary_10_1016_j_dwt_2024_100160 crossref_primary_10_1002_slct_202502591 crossref_primary_10_1016_j_jwpe_2025_108556 crossref_primary_10_1016_j_seppur_2025_133946 crossref_primary_10_1016_j_seppur_2024_130267 crossref_primary_10_1016_j_cej_2024_152447 crossref_primary_10_1016_j_cej_2025_161675 crossref_primary_10_1016_j_cej_2023_144094 crossref_primary_10_1039_D5MH01099C crossref_primary_10_1016_j_ces_2024_119901 crossref_primary_10_1016_j_seppur_2025_132280 crossref_primary_10_1016_j_watres_2025_123488 crossref_primary_10_1016_j_seppur_2024_127092 crossref_primary_10_1016_j_jhazmat_2025_138313 crossref_primary_10_1002_adsu_202400677 crossref_primary_10_1002_adsu_202400434 crossref_primary_10_1007_s10562_024_04817_5 crossref_primary_10_1016_j_jhazmat_2023_133303 crossref_primary_10_1016_j_jenvman_2025_126403 crossref_primary_10_1016_j_chemosphere_2023_139418 crossref_primary_10_1016_j_cej_2023_147472 crossref_primary_10_1016_j_colsurfa_2025_136958 crossref_primary_10_1063_5_0250244 crossref_primary_10_1016_j_jhazmat_2023_132459 crossref_primary_10_1016_j_seppur_2024_129943 crossref_primary_10_1016_j_chemosphere_2025_144159 crossref_primary_10_1016_j_scitotenv_2024_174456 crossref_primary_10_1016_j_seppur_2025_132396 crossref_primary_10_1016_j_chemosphere_2023_140793 crossref_primary_10_1016_j_ecoenv_2023_115924 crossref_primary_10_1016_j_seppur_2024_128842 crossref_primary_10_1007_s11356_024_32328_8 crossref_primary_10_1016_j_cej_2024_155810 crossref_primary_10_1016_j_cej_2023_145282 crossref_primary_10_1016_j_seppur_2023_124049 crossref_primary_10_1016_j_seppur_2023_126105 crossref_primary_10_1016_j_seppur_2023_125811 crossref_primary_10_1016_j_chemosphere_2023_139441 crossref_primary_10_1016_j_seppur_2023_125139 crossref_primary_10_1016_j_watres_2024_121100 crossref_primary_10_1016_j_ijbiomac_2024_137390 crossref_primary_10_1080_09593330_2024_2354058 crossref_primary_10_1016_j_jenvman_2025_125568 crossref_primary_10_1016_j_scitotenv_2024_173495 crossref_primary_10_1016_j_seppur_2025_131973 crossref_primary_10_1007_s10800_024_02242_5 crossref_primary_10_1016_j_cej_2025_163605 crossref_primary_10_1016_j_envres_2025_121233 crossref_primary_10_1016_j_envres_2025_121596 crossref_primary_10_1016_j_seppur_2023_126231 crossref_primary_10_1016_j_jwpe_2024_105309 crossref_primary_10_1016_j_cej_2025_162874 crossref_primary_10_1016_j_chemosphere_2023_139672 crossref_primary_10_1016_j_seppur_2024_128954 |
| Cites_doi | 10.1016/j.apcatb.2016.05.052 10.1021/acs.accounts.7b00535 10.1016/j.chemosphere.2017.07.090 10.15244/pjoes/94213 10.1016/j.cej.2018.08.038 10.1039/C5RA16094D 10.1016/j.chemosphere.2017.12.088 10.1016/j.chemosphere.2017.09.148 10.1016/j.jhazmat.2020.122879 10.1016/j.seppur.2016.11.016 10.1016/j.apcatb.2004.05.025 10.1021/acs.est.7b03007 10.1016/j.jhazmat.2010.03.039 10.1016/j.chemosphere.2015.07.070 10.1016/j.chemosphere.2021.131640 10.1039/C9EN00220K 10.1021/cm0340781 10.1016/j.apsusc.2020.148008 10.1016/j.envres.2020.109692 10.1016/j.cej.2017.11.174 10.1016/j.seppur.2010.01.012 10.1016/j.cclet.2019.11.003 10.1016/j.cej.2021.132828 10.1016/j.cej.2018.11.120 10.1016/j.apcatb.2014.02.005 10.1016/j.cej.2020.124012 10.1016/j.cej.2011.12.048 10.1016/j.scitotenv.2016.07.032 10.1021/acs.est.9b05856 10.1016/j.seppur.2021.119163 10.1016/j.cej.2018.01.136 10.1016/j.apcatb.2019.01.079 10.1016/j.cej.2018.11.187 10.1016/j.cej.2021.129297 10.1016/j.jhazmat.2009.05.091 10.1016/j.cej.2018.11.207 10.1016/j.chemosphere.2020.126053 10.1016/j.chemosphere.2019.124611 10.1016/j.scitotenv.2020.142794 10.1016/j.jhazmat.2020.123157 10.1039/C6EN00633G 10.1016/j.chemosphere.2014.09.046 10.1016/j.watres.2017.03.035 10.1021/es035121o 10.1016/j.jece.2021.106733 10.1016/j.jece.2021.105524 10.1016/j.mineng.2021.107031 10.1016/j.cej.2018.01.016 10.1016/j.cclet.2020.01.032 10.1021/j100495a019 10.1016/j.scitotenv.2019.02.039 10.1016/j.chemosphere.2020.129016 10.1016/j.watres.2020.115752 10.1016/j.cej.2019.123604 10.1016/j.jhazmat.2021.127641 10.1016/j.cej.2018.03.050 10.1016/j.cej.2018.07.103 10.1016/j.jhazmat.2020.124893 10.1016/j.apcatb.2020.118717 10.1016/j.jhazmat.2014.01.010 10.1007/s11356-015-5312-y 10.1021/jp712049c 10.1016/j.jhazmat.2020.124684 10.1016/j.jhazmat.2020.124920 10.1016/j.cej.2019.123264 10.1016/j.colsurfa.2004.12.015 10.1016/j.seppur.2020.117510 10.1016/j.cej.2021.131166 10.1016/j.watres.2018.03.045 10.1016/j.cej.2021.130261 10.1016/j.chemosphere.2016.11.143 10.1021/acs.est.8b00735 10.1016/j.cej.2013.08.022 10.1016/j.cej.2015.05.055 10.1016/j.jhazmat.2016.04.007 10.1016/j.cej.2021.132189 10.1016/j.jhazmat.2020.122764 10.1016/j.cej.2012.11.067 10.1016/j.ecoenv.2021.111975 10.1016/j.cej.2014.05.113 10.1016/j.cej.2016.06.092 10.1016/j.cej.2019.122378 10.1080/10934520903005095 10.1016/j.cej.2018.05.032 10.1016/j.cej.2017.07.132 10.1016/j.watres.2018.09.037 10.1016/j.watres.2019.03.096 10.1016/j.chemosphere.2021.132094 10.1016/j.cej.2020.127818 10.1016/j.jhazmat.2018.07.083 10.1016/j.chemosphere.2016.02.055 10.1016/j.chemosphere.2019.01.049 10.1016/j.apcatb.2021.120532 10.1016/j.cej.2014.05.049 10.1016/j.cej.2019.04.187 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2022.118896 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 10_1016_j_watres_2022_118896 S0043135422008430 |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSH SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-437ff08c890b5ff426e3a21f3e54a3312e45140012f409037f24d018be4a10643 |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878990900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sat Sep 27 19:43:13 EDT 2025 Thu Oct 02 12:53:10 EDT 2025 Tue Nov 18 21:46:41 EST 2025 Sat Nov 29 07:28:10 EST 2025 Sun Apr 06 06:54:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water treatment Heterocatalysis Phosphate Homogeneous catalysis Persulfate |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-437ff08c890b5ff426e3a21f3e54a3312e45140012f409037f24d018be4a10643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PQID | 2697367908 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2718279364 proquest_miscellaneous_2697367908 crossref_citationtrail_10_1016_j_watres_2022_118896 crossref_primary_10_1016_j_watres_2022_118896 elsevier_sciencedirect_doi_10_1016_j_watres_2022_118896 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-15 |
| PublicationDateYYYYMMDD | 2022-08-15 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Water research (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Duan, Liu, Liu, Akram, Li, Pan, Yue, Gao, Xu (bib0013) 2021; 298 Chen, Zuo, Yang, Cai, Ding (bib0005) 2019; 359 Liu, Xu, Zhang, Liu, Zhang (bib0046) 2020; 238 Sun, Wang, Wang, Lv, Yao (bib0065) 2022; 286 Lou, Wu, Guo, Chen, Wang, Xiao, Fang, Liu, Zhao, Lu (bib0048) 2014; 117 Chubar, Kanibolotskyy, Strelko, Gallios, Samanidou, Shaposhnikova, Milgrandt, Zhuravlev (bib0008) 2005; 255 Kang, Tang, Wang, Jin, Liu, Li, Li, Zhu (bib0036) 2021; 9 Duan, Sun, Wang (bib0016) 2018; 51 Li, Jia, Zhou, Su, Sun (bib0043) 2020; 397 Duan, Qi, Feng, Peng, Wang, Yue, Shang, Li, Gao, Xu (bib0015) 2020; 267 Song, Yan, Jiang, Ma, Pang, Zhai, Zhang, Li (bib0062) 2018; 344 Jia, Liu, Wang, Li, Ni, Li, Tian, Wang (bib0033) 2020; 253 Cai, Zhang, Zhang (bib0004) 2016; 313 Duan, Ma, Yue, Li, Zhang, Shang, Gao, Zhang, Yue, Xu (bib0014) 2019; 6 Zhou, Lai, Wan, He, Yao, Lai (bib0092) 2020; 384 Mamba, Mishra (bib0051) 2016; 198 Zhao, Yuan, Li, Jiang, Wang (bib0091) 2021; 409 Li, Wang, Chen, Fu, Cui, Lu, Liu, Li (bib0039) 2019; 664 Li, Wan, Ma, Wang, Guan (bib0040) 2015; 5 Wu, He, Li, Yang, Zeng, Wu, He, Lu (bib0075) 2018; 341 Huang, Bao, Yao, Lu, Chen (bib0030) 2014; 154-155 Huang, Zhu, Wei, Ding, Ke, Wu, Liu (bib0028) 2020; 400 Waclawek, Antos, Hrabak, Cernik, Elliott (bib0069) 2016; 23 Xu, Li (bib0079) 2010; 72 Peng, Dong, Fu, Wang, Li, Liu, Fan, Wang (bib0058) 2021; 421 Zhou, Jiang, Gao, Pang, Ma, Duan, Guo, Li, Yang (bib0094) 2018; 138 Yang, Banerjee, Brudvig, Kim, Pignatello (bib0084) 2018; 52 Zhu, Li, Shan, Wang, Lv, Pan (bib0096) 2021; 409 Fu, Ma, Zhao, Xu, Zhan (bib0017) 2019; 360 Ghauch, Tuqan (bib0022) 2012; 183 Yu, Li, Tang, Wei, Yu, Sun, Lu, Yin (bib0087) 2021; 423 Zhou, Xiang, He, Yang, Zhang, Luo, Peng, Dai, Zhu, Tang (bib0095) 2018; 359 Cheng, Guo, Zhang, Korshin, Yang (bib0007) 2019; 157 Liu, Zhou, Chen, Zhang, Chang (bib0047) 2013; 215-216 Song, Tian, Shi, Cui, Yuan (bib0064) 2020; 188 Kang, Chi Vu, Chang, Chang (bib0037) 2020; 387 Wu, Zhang, Hong, Dong, Wang (bib0074) 2019; 221 Perrin, Dempsey (bib0055) 1974 Xie, Wang, Lu, Wu, Zhang, Kong (bib0076) 2014; 254 Isari, Moradi, Rezaei, Ghanbari, Dehghanifard, Kakavandi (bib0031) 2021; 275 Wang, Jiang, Pang, Zhou, Li, Sun, Gao, Jiang (bib0071) 2018; 352 Anipsitakis, Dionysiou (bib0002) 2004; 54 Peng, Lu, Jiang, Zhang, Chen, Lai, Yao (bib0057) 2018; 354 Yin, Guo, Wang, Du, Zhou, Wu, Zheng, Chang, Ren (bib0086) 2018; 334 Fu, Feng, Liu, Zhang, Li (bib0018) 2022; 287 Li, Xu, Yao, Lai (bib0041) 2018; 348 Matzek, Carter (bib0053) 2016; 151 Jimmy, Zhang, Zheng, Zhao (bib0034) 2003; 15 Chen, Deng, Xie, Shang, Wang, Wang (bib0006) 2017; 168 Huang, Xiong, Zhou, Zhang, Pan, Yao, Lai (bib0025) 2022; 424 Song, Yan, Ma, Jiang, Cai, Zhang, Zhang, Zhang, Yang (bib0063) 2017; 116 Teel, Cutler, Watts (bib0067) 2009; 44 Wang, He, Zhang, Ma, Jiang, Huang, Cheng, Pang, Zhou, Zhai (bib0072) 2020; 177 Huang, Xiao, Zhong, Yan, Yang (bib0027) 2021; 418 Yuan, Qin, Feng, Zhang, Ru, Zhang (bib0088) 2021; 212 Devi, Das, Dalai (bib0011) 2016; 571 Maruthamuthu, Neta (bib0052) 1978; 82 Zhou, Gao, Jiang, Shen, Pang, Wang, Duan, Guo, Guan, Ma (bib0093) 2020; 379 Yang, Wang, Yang, Shan, Zhang, Shao, Niu (bib0083) 2010; 179 Satizabal-Gómez, Collazos-Botero, Serna-Galvis, Torres-Palma, Bravo-Suárez, Machuca-Martínez, Castilla-Acevedo (bib0061) 2021; 170 Anipsitakis, Dionysiou (bib0001) 2004; 38 Hu, Zhang, Liu, Wang, Wang (bib0024) 2018; 338 Li, Huang, Dong, Sun, Duan, Ren, Zheng, Dionysiou (bib0038) 2019; 247 Yang, Li, Hong, Wu, Xie, Zhang, Lianxiang, He, Kong, Liu (bib0085) 2021; 538 Hong, Zhou, Xiong, Liu, Yao, Lai (bib0023) 2020; 391 Ma, Yang, Jiang, Xie, Li, Chen, Chen (bib0050) 2018; 190 Xu, Chen, Qu, Wang (bib0078) 2017; 185 Fulazzaky, Salim, Abdullah, Mohd Yusoff, Paul (bib0019) 2014; 253 Nie, Yan, Li, Wang, Bi, Dong (bib0054) 2015; 279 Yan, Yue, Guo, Wang, Qian, Zhao (bib0081) 2020; 31 Rao, Qu, Yang, Chu (bib0059) 2014; 268 Li, Luo, Wang, Zhang, Zhang, Klu, Yan, Qi, Sun, Wang, Li (bib0042) 2019; 372 Gao, Yang, Jian, Zhen, Zhang, Tang, Fu, Xu, Wang, Sun (bib0021) 2021; 9 Zhang, Kang, Yu, Chen, Quan (bib0089) 2020; 398 Dai, Li, Ao, Wang, An (bib0009) 2021; 405 Dan, Wang, Rao, Dong, Zhang, Zhang, He, Gao, Deng (bib0010) 2022; 429 Kanakaraju, Motti, Glass, Oelgemoller (bib0035) 2015; 139 Tan, Gao, Fu, Deng, Deng (bib0066) 2017; 175 Ding, Wang, Fu, Peng, Pan, Mao, Wang, Yan (bib0012) 2021; 765 Huang, Wang, Yang, Guo, Yu (bib0026) 2017; 51 Ji, Lu, Wang, Jiang, Yang, Yang, Zhou, Ferronato, Chovelon (bib0032) 2018; 147 Gao, Chen, Zhu, Li, Hu (bib0020) 2020; 54 Huang, Huang, Huang, Chen (bib0029) 2009; 170 Li, Xiang, Zhou, Huang, Wang, Wu, Mao, Wang (bib0044) 2020; 31 Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (bib0070) 2017; 330 Xu, Qi, Han, Lu, Han, Qiao, Mei, Pan, Song, Ling, Gan (bib0077) 2022; 430 Wang, Shao, Gao, Chu, Shen, Lu, Chen, Zhu (bib0073) 2016; 304 Peng, You, Zhou, Zhou, Qi, Hu (bib0056) 2021; 266 Yang, Guo, Wang, Dzakpasu, Dai, Ding, Wu, huang, Zhang, Jin, Wang (bib0082) 2019; 359 Sánchez, Llanos, Sáez, Cañizares, Rodrigo (bib0060) 2013; 233 Bu, Zhu, Zhou (bib0003) 2018; 195 Lu, Ding, Zhang, Fu, Xia, Fang (bib0049) 2019; 28 Xue, Cao, Liu, Tang, Chen, Jiang (bib0080) 2020; 248 Zhao, Chen, Wang, Ji, Ma, Zang, Zhao (bib0090) 2008; 112 Liang, Zhang, Duan, Sun, Liu, Tade, Wang (bib0045) 2017; 4 Tian, Zhou, Zhang, Zhou, You, Yao, Pan, Liu, Lai (bib0068) 2022; 428 Jia (10.1016/j.watres.2022.118896_bib0033) 2020; 253 Xie (10.1016/j.watres.2022.118896_bib0076) 2014; 254 Xu (10.1016/j.watres.2022.118896_bib0077) 2022; 430 Liu (10.1016/j.watres.2022.118896_bib0046) 2020; 238 Zhou (10.1016/j.watres.2022.118896_bib0094) 2018; 138 Tian (10.1016/j.watres.2022.118896_bib0068) 2022; 428 Duan (10.1016/j.watres.2022.118896_bib0016) 2018; 51 Li (10.1016/j.watres.2022.118896_bib0043) 2020; 397 Hu (10.1016/j.watres.2022.118896_bib0024) 2018; 338 Zhao (10.1016/j.watres.2022.118896_bib0090) 2008; 112 Gao (10.1016/j.watres.2022.118896_bib0020) 2020; 54 Li (10.1016/j.watres.2022.118896_bib0041) 2018; 348 Lu (10.1016/j.watres.2022.118896_bib0049) 2019; 28 Huang (10.1016/j.watres.2022.118896_bib0029) 2009; 170 Lou (10.1016/j.watres.2022.118896_bib0048) 2014; 117 Yuan (10.1016/j.watres.2022.118896_bib0088) 2021; 212 Zhou (10.1016/j.watres.2022.118896_bib0095) 2018; 359 Yang (10.1016/j.watres.2022.118896_bib0084) 2018; 52 Yang (10.1016/j.watres.2022.118896_bib0083) 2010; 179 Nie (10.1016/j.watres.2022.118896_bib0054) 2015; 279 Yan (10.1016/j.watres.2022.118896_bib0081) 2020; 31 Song (10.1016/j.watres.2022.118896_bib0062) 2018; 344 Tan (10.1016/j.watres.2022.118896_bib0066) 2017; 175 Wang (10.1016/j.watres.2022.118896_bib0071) 2018; 352 Ding (10.1016/j.watres.2022.118896_bib0012) 2021; 765 Chubar (10.1016/j.watres.2022.118896_bib0008) 2005; 255 Isari (10.1016/j.watres.2022.118896_bib0031) 2021; 275 Peng (10.1016/j.watres.2022.118896_bib0056) 2021; 266 Maruthamuthu (10.1016/j.watres.2022.118896_bib0052) 1978; 82 Teel (10.1016/j.watres.2022.118896_bib0067) 2009; 44 Ghauch (10.1016/j.watres.2022.118896_bib0022) 2012; 183 Zhao (10.1016/j.watres.2022.118896_bib0091) 2021; 409 Peng (10.1016/j.watres.2022.118896_bib0057) 2018; 354 Xu (10.1016/j.watres.2022.118896_bib0079) 2010; 72 Li (10.1016/j.watres.2022.118896_bib0044) 2020; 31 Li (10.1016/j.watres.2022.118896_bib0042) 2019; 372 Satizabal-Gómez (10.1016/j.watres.2022.118896_bib0061) 2021; 170 Li (10.1016/j.watres.2022.118896_bib0040) 2015; 5 Huang (10.1016/j.watres.2022.118896_bib0025) 2022; 424 Mamba (10.1016/j.watres.2022.118896_bib0051) 2016; 198 Liang (10.1016/j.watres.2022.118896_bib0045) 2017; 4 Chen (10.1016/j.watres.2022.118896_bib0005) 2019; 359 Duan (10.1016/j.watres.2022.118896_bib0013) 2021; 298 Wu (10.1016/j.watres.2022.118896_bib0074) 2019; 221 Zhang (10.1016/j.watres.2022.118896_bib0089) 2020; 398 Fulazzaky (10.1016/j.watres.2022.118896_bib0019) 2014; 253 Kanakaraju (10.1016/j.watres.2022.118896_bib0035) 2015; 139 Duan (10.1016/j.watres.2022.118896_bib0015) 2020; 267 Sánchez (10.1016/j.watres.2022.118896_bib0060) 2013; 233 Matzek (10.1016/j.watres.2022.118896_bib0053) 2016; 151 Waclawek (10.1016/j.watres.2022.118896_bib0069) 2016; 23 Xu (10.1016/j.watres.2022.118896_bib0078) 2017; 185 Yang (10.1016/j.watres.2022.118896_bib0082) 2019; 359 Chen (10.1016/j.watres.2022.118896_bib0006) 2017; 168 Duan (10.1016/j.watres.2022.118896_bib0014) 2019; 6 Hong (10.1016/j.watres.2022.118896_bib0023) 2020; 391 Dai (10.1016/j.watres.2022.118896_bib0009) 2021; 405 Sun (10.1016/j.watres.2022.118896_bib0065) 2022; 286 Jimmy (10.1016/j.watres.2022.118896_bib0034) 2003; 15 Huang (10.1016/j.watres.2022.118896_bib0026) 2017; 51 Song (10.1016/j.watres.2022.118896_bib0064) 2020; 188 Yin (10.1016/j.watres.2022.118896_bib0086) 2018; 334 Yu (10.1016/j.watres.2022.118896_bib0087) 2021; 423 Bu (10.1016/j.watres.2022.118896_bib0003) 2018; 195 Zhou (10.1016/j.watres.2022.118896_bib0092) 2020; 384 Perrin (10.1016/j.watres.2022.118896_bib0055) 1974 Huang (10.1016/j.watres.2022.118896_bib0028) 2020; 400 Li (10.1016/j.watres.2022.118896_bib0039) 2019; 664 Cheng (10.1016/j.watres.2022.118896_bib0007) 2019; 157 Zhu (10.1016/j.watres.2022.118896_bib0096) 2021; 409 Gao (10.1016/j.watres.2022.118896_bib0021) 2021; 9 Anipsitakis (10.1016/j.watres.2022.118896_bib0001) 2004; 38 Li (10.1016/j.watres.2022.118896_bib0038) 2019; 247 Liu (10.1016/j.watres.2022.118896_bib0047) 2013; 215-216 Ma (10.1016/j.watres.2022.118896_bib0050) 2018; 190 Peng (10.1016/j.watres.2022.118896_bib0058) 2021; 421 Wacławek (10.1016/j.watres.2022.118896_bib0070) 2017; 330 Dan (10.1016/j.watres.2022.118896_bib0010) 2022; 429 Cai (10.1016/j.watres.2022.118896_bib0004) 2016; 313 Fu (10.1016/j.watres.2022.118896_bib0017) 2019; 360 Zhou (10.1016/j.watres.2022.118896_bib0093) 2020; 379 Kang (10.1016/j.watres.2022.118896_bib0037) 2020; 387 Wang (10.1016/j.watres.2022.118896_bib0072) 2020; 177 Wu (10.1016/j.watres.2022.118896_bib0075) 2018; 341 Fu (10.1016/j.watres.2022.118896_bib0018) 2022; 287 Huang (10.1016/j.watres.2022.118896_bib0030) 2014; 154-155 Kang (10.1016/j.watres.2022.118896_bib0036) 2021; 9 Song (10.1016/j.watres.2022.118896_bib0063) 2017; 116 Rao (10.1016/j.watres.2022.118896_bib0059) 2014; 268 Anipsitakis (10.1016/j.watres.2022.118896_bib0002) 2004; 54 Xue (10.1016/j.watres.2022.118896_bib0080) 2020; 248 Ji (10.1016/j.watres.2022.118896_bib0032) 2018; 147 Devi (10.1016/j.watres.2022.118896_bib0011) 2016; 571 Huang (10.1016/j.watres.2022.118896_bib0027) 2021; 418 Wang (10.1016/j.watres.2022.118896_bib0073) 2016; 304 Yang (10.1016/j.watres.2022.118896_bib0085) 2021; 538 |
| References_xml | – volume: 400 year: 2020 ident: bib0028 article-title: Mechanism insight into efficient peroxydisulfate activation by novel nano zero-valent iron anchored yCo publication-title: J. Hazard. Mater. – volume: 112 start-page: 5993 year: 2008 end-page: 6001 ident: bib0090 article-title: Surface Modification of TiO publication-title: J. Phys. Chem. C – volume: 9 year: 2021 ident: bib0021 article-title: Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range publication-title: J. Environ. Chem. Eng. – volume: 248 year: 2020 ident: bib0080 article-title: Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A publication-title: Chemosphere – volume: 421 year: 2021 ident: bib0058 article-title: Non-radical reactions in persulfate-based homogeneous degradation processes: a review publication-title: Chem. Eng. J. – volume: 154-155 start-page: 36 year: 2014 end-page: 43 ident: bib0030 article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst publication-title: Appl. Catal. B Environ – volume: 177 year: 2020 ident: bib0072 article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions publication-title: Water Res. – volume: 185 start-page: 833 year: 2017 end-page: 843 ident: bib0078 article-title: Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways publication-title: Chemosphere – volume: 5 start-page: 99935 year: 2015 end-page: 99943 ident: bib0040 article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron publication-title: RSC Adv. – volume: 341 start-page: 126 year: 2018 end-page: 136 ident: bib0075 article-title: Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms publication-title: Chem. Eng. J. – volume: 247 start-page: 10 year: 2019 end-page: 23 ident: bib0038 article-title: Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine publication-title: Appl. Catal. B Environ. – volume: 287 year: 2022 ident: bib0018 article-title: Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation publication-title: Chemosphere – volume: 275 year: 2021 ident: bib0031 article-title: Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism publication-title: Sep. Purif. Technol. – volume: 51 start-page: 678 year: 2018 end-page: 687 ident: bib0016 article-title: Metal-free carbocatalysis in advanced oxidation reactions publication-title: Acc. Chem. Res. – volume: 138 start-page: 56 year: 2018 end-page: 66 ident: bib0094 article-title: Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling publication-title: Water Res. – volume: 157 start-page: 406 year: 2019 end-page: 414 ident: bib0007 article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship publication-title: Water Res. – volume: 765 year: 2021 ident: bib0012 article-title: Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): recent advances and perspective publication-title: Sci. Total Environ. – volume: 359 start-page: 373 year: 2019 end-page: 384 ident: bib0005 article-title: Rational design and synthesis of hollow Co publication-title: Chem. Eng. J. – volume: 348 start-page: 1012 year: 2018 end-page: 1024 ident: bib0041 article-title: Enhancement of the degradation of atrazine through CoFe publication-title: Chem. Eng. J. – volume: 147 start-page: 82 year: 2018 end-page: 90 ident: bib0032 article-title: Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment publication-title: Water Res. – volume: 279 start-page: 507 year: 2015 end-page: 515 ident: bib0054 article-title: Degradation of chloramphenicol by persulfate activated by Fe publication-title: Chem. Eng. J. – volume: 352 start-page: 1004 year: 2018 end-page: 1013 ident: bib0071 article-title: Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide publication-title: Chem. Eng. J. – volume: 398 year: 2020 ident: bib0089 article-title: Electrochemical activation of peroxymonosulfate in cathodic micro-channels for effective degradation of organic pollutants in wastewater publication-title: J. Hazard. Mater. – volume: 359 start-page: 396 year: 2018 end-page: 407 ident: bib0095 article-title: Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds publication-title: J. Hazard. Mater. – volume: 195 start-page: 236 year: 2018 end-page: 244 ident: bib0003 article-title: Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors publication-title: Chemosphere – volume: 168 start-page: 1628 year: 2017 end-page: 1636 ident: bib0006 article-title: Heat-activated persulfate oxidation of methyl- and ethyl-parabens: effect, kinetics, and mechanism publication-title: Chemosphere – volume: 338 start-page: 300 year: 2018 end-page: 310 ident: bib0024 article-title: Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co publication-title: Chem. Eng. J. – volume: 387 year: 2020 ident: bib0037 article-title: Fe(III) adsorption on graphene oxide: a low-cost and simple modification method for persulfate activation publication-title: Chem. Eng. J. – volume: 188 year: 2020 ident: bib0064 article-title: Significant acceleration of Fe publication-title: Environ. Res. – volume: 170 year: 2021 ident: bib0061 article-title: Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater publication-title: Miner. Eng. – volume: 372 start-page: 774 year: 2019 end-page: 784 ident: bib0042 article-title: Iron-tannic modified cotton derived Fe publication-title: Chem. Eng. J. – volume: 51 start-page: 12611 year: 2017 end-page: 12618 ident: bib0026 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn publication-title: Environ. Sci. Technol. – volume: 15 start-page: 2280 year: 2003 end-page: 2286 ident: bib0034 article-title: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity publication-title: Chem. Mater. – volume: 31 start-page: 2757 year: 2020 end-page: 2761 ident: bib0044 article-title: Visible light induced efficient activation of persulfate by a carbon quantum dots (CQDs) modified γ-Fe publication-title: Chin. Chem. Lett. – volume: 9 year: 2021 ident: bib0036 article-title: The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C publication-title: J. Environ. Chem. Eng. – volume: 405 year: 2021 ident: bib0009 article-title: Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation publication-title: J. Hazard. Mater. – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: bib0001 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 313 start-page: 209 year: 2016 end-page: 218 ident: bib0004 article-title: Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II publication-title: J. Hazard. Mater. – volume: 384 year: 2020 ident: bib0092 article-title: Molybdenum disulfide (MoS publication-title: Chem. Eng. J. – volume: 238 year: 2020 ident: bib0046 article-title: Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth publication-title: Chemosphere – volume: 255 start-page: 55 year: 2005 end-page: 63 ident: bib0008 article-title: Adsorption of phosphate ions on novel inorganic ion exchangers publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 360 start-page: 157 year: 2019 end-page: 170 ident: bib0017 article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe publication-title: Chem. Eng. J. – volume: 31 start-page: 1535 year: 2020 end-page: 1539 ident: bib0081 article-title: Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate publication-title: Chin. Chem. Lett. – volume: 212 year: 2021 ident: bib0088 article-title: Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe publication-title: Ecotoxicol. Environ. Saf. – volume: 538 year: 2021 ident: bib0085 article-title: Surface-active MnFeO@C cubes as enhanced peroxymonosulfate activators for efficient degradation of bisphenol A publication-title: Appl. Surf. Sci. – volume: 175 start-page: 47 year: 2017 end-page: 57 ident: bib0066 article-title: Efficient degradation of paracetamol with nanoscaled magnetic CoFe publication-title: Sep. Purif. Tech. – volume: 304 start-page: 201 year: 2016 end-page: 208 ident: bib0073 article-title: Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate publication-title: Chem. Eng. J. – volume: 44 start-page: 1098 year: 2009 end-page: 1103 ident: bib0067 article-title: Effect of sorption on contaminant oxidation in activated persulfate systems publication-title: J. Environ. Sci. Health. A Toxic Hazard. Subst. Environ. Eng. – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: bib0053 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere – volume: 330 start-page: 44 year: 2017 end-page: 62 ident: bib0070 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 409 year: 2021 ident: bib0091 article-title: Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process publication-title: J. Hazard. Mater. – volume: 183 start-page: 162 year: 2012 end-page: 171 ident: bib0022 article-title: Oxidation of bisoprolol in heated persulfate/H publication-title: Chem. Eng. J. – volume: 268 start-page: 23 year: 2014 end-page: 32 ident: bib0059 article-title: Degradation of carbamazepine by Fe(II)-activated persulfate process publication-title: J. Hazard. Mater. – volume: 52 start-page: 5911 year: 2018 end-page: 5919 ident: bib0084 article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate publication-title: Environ. Sci. Technol. – volume: 4 start-page: 315 year: 2017 end-page: 324 ident: bib0045 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate publication-title: Environ. Sci. Nano – volume: 359 start-page: 552 year: 2019 end-page: 563 ident: bib0082 article-title: Significance of B-site cobalt on bisphenol A degradation by MOFs-templated Co publication-title: Chem. Eng. J. – volume: 267 year: 2020 ident: bib0015 article-title: Enhanced degradation of clothianidin in peroxymonosulfate/catalyst system via core-shell FeMn@N-C and phosphate surrounding publication-title: Appl. Catal. B Environ. – volume: 117 start-page: 582 year: 2014 end-page: 585 ident: bib0048 article-title: Peroxymonosulfate activation by phosphate anion for organics degradation in water publication-title: Chemosphere – volume: 82 start-page: 710 year: 1978 end-page: 713 ident: bib0052 article-title: Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds publication-title: J. Phys Chem. – volume: 54 start-page: 155 year: 2004 end-page: 163 ident: bib0002 article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination publication-title: Appl. Catal. B-Environ. – volume: 286 year: 2022 ident: bib0065 article-title: Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions publication-title: Chemosphere – volume: 54 start-page: 1232 year: 2020 end-page: 1241 ident: bib0020 article-title: New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms publication-title: Environ. Sci. Technol. – volume: 424 year: 2022 ident: bib0025 article-title: Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: indispensable role of intermediate complex publication-title: J. Hazard. Mater. – volume: 391 year: 2020 ident: bib0023 article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: efficiency, mechanism and degradation pathways publication-title: Chem. Eng. J. – volume: 664 start-page: 133 year: 2019 end-page: 139 ident: bib0039 article-title: Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways publication-title: Sci. Total. Environ. – volume: 221 start-page: 412 year: 2019 end-page: 422 ident: bib0074 article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe publication-title: Chemosphere – volume: 429 year: 2022 ident: bib0010 article-title: Bimetallic oxides with package structure for enhanced degradation of bisphenol a through peroxymonosulfate activation publication-title: Chem. Eng. J. – volume: 379 year: 2020 ident: bib0093 article-title: Transformation of tetracycline antibiotics during water treatment with unactivated peroxymonosulfate publication-title: Chem. Eng. J. – volume: 298 year: 2021 ident: bib0013 article-title: Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism publication-title: Appl. Catal. B Environ. – volume: 397 year: 2020 ident: bib0043 article-title: High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation publication-title: J. Hazard. Mater. – volume: 179 start-page: 552 year: 2010 end-page: 558 ident: bib0083 article-title: Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. – volume: 139 start-page: 579 year: 2015 end-page: 588 ident: bib0035 article-title: TiO publication-title: Chemosphere – volume: 198 start-page: 347 year: 2016 end-page: 377 ident: bib0051 article-title: Graphitic carbon nitride (g-C publication-title: Appl. Catal. B Environ. – volume: 266 year: 2021 ident: bib0056 article-title: Activation of peroxymonosulfate by phosphite: kinetics and mechanism for the removal of organic pollutants publication-title: Chemosphere – volume: 428 year: 2022 ident: bib0068 article-title: Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies publication-title: Chem. Eng. J. – volume: 190 start-page: 296 year: 2018 end-page: 306 ident: bib0050 article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water publication-title: Chemosphere – volume: 170 start-page: 1110 year: 2009 end-page: 1118 ident: bib0029 article-title: Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co publication-title: J. Hazard. Mater. – volume: 430 year: 2022 ident: bib0077 article-title: Improvement of Fe publication-title: Chem. Eng. J. – volume: 409 year: 2021 ident: bib0096 article-title: Trace Co publication-title: J. Hazard. Mater. – volume: 6 start-page: 1799 year: 2019 end-page: 1811 ident: bib0014 article-title: Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation publication-title: Environ. Sci. Nano – volume: 253 year: 2020 ident: bib0033 article-title: Visible-light-induced activation of peroxymonosulfate by TiO publication-title: Sep. Purif. Technol. – volume: 233 start-page: 8 year: 2013 end-page: 13 ident: bib0060 article-title: On the applications of peroxodiphosphate produced by BDD-electrolyses publication-title: Chem. Eng. J. – volume: 254 start-page: 163 year: 2014 end-page: 170 ident: bib0076 article-title: Removal and recovery of phosphate from water by lanthanum hydroxide materials publication-title: Chem. Eng. J. – volume: 334 start-page: 2539 year: 2018 end-page: 2546 ident: bib0086 article-title: Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms publication-title: Chem. Eng. J. – volume: 571 start-page: 643 year: 2016 end-page: 657 ident: bib0011 article-title: chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. – volume: 418 year: 2021 ident: bib0027 article-title: Activation of persulfates by carbonaceous materials: a review publication-title: Chem. Eng. J. – volume: 23 start-page: 765 year: 2016 end-page: 773 ident: bib0069 article-title: Remediation of hexachlorocyclohexanes by electrochemically activated persulfates publication-title: Environ. Sci. Pollut. Res. Int. – volume: 28 start-page: 2735 year: 2019 end-page: 2744 ident: bib0049 article-title: Degradation of atrazine by UV/PMS in phosphate buffer publication-title: Pol. J. Environ. Stud. – start-page: 156 year: 1974 end-page: 162 ident: bib0055 article-title: Buffers For pH and Metal Ion Control – volume: 253 start-page: 291 year: 2014 end-page: 297 ident: bib0019 article-title: Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process publication-title: Chem. Eng. J. – volume: 354 start-page: 740 year: 2018 end-page: 752 ident: bib0057 article-title: Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism publication-title: Chem. Eng. J. – volume: 72 start-page: 105 year: 2010 end-page: 111 ident: bib0079 article-title: Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion publication-title: Sep. Purif. Technol. – volume: 344 start-page: 12 year: 2018 end-page: 20 ident: bib0062 article-title: Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes publication-title: Chem. Eng. J. – volume: 116 start-page: 182 year: 2017 end-page: 193 ident: bib0063 article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors publication-title: Water Res. – volume: 423 year: 2021 ident: bib0087 article-title: Photocatalysis of tris-(2-chloroethyl) phosphate by ultraviolet driven peroxymonosulfate oxidation process: removal performance, energy evaluation and toxicity on bacterial metabolism network publication-title: Chem. Eng. J. – volume: 215-216 start-page: 859 year: 2013 end-page: 867 ident: bib0047 article-title: Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber publication-title: Chem. Eng. J. – volume: 198 start-page: 347 year: 2016 ident: 10.1016/j.watres.2022.118896_bib0051 article-title: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.05.052 – volume: 51 start-page: 678 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0016 article-title: Metal-free carbocatalysis in advanced oxidation reactions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00535 – volume: 185 start-page: 833 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0078 article-title: Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.090 – volume: 28 start-page: 2735 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0049 article-title: Degradation of atrazine by UV/PMS in phosphate buffer publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/94213 – volume: 354 start-page: 740 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0057 article-title: Degradation of atrazine by persulfate activation with copper sulfide (CuS): kinetics study, degradation pathways and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.038 – volume: 5 start-page: 99935 year: 2015 ident: 10.1016/j.watres.2022.118896_bib0040 article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron publication-title: RSC Adv. doi: 10.1039/C5RA16094D – volume: 195 start-page: 236 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0003 article-title: Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.088 – volume: 190 start-page: 296 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0050 article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.148 – volume: 398 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0089 article-title: Electrochemical activation of peroxymonosulfate in cathodic micro-channels for effective degradation of organic pollutants in wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122879 – volume: 175 start-page: 47 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0066 article-title: Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate publication-title: Sep. Purif. Tech. doi: 10.1016/j.seppur.2016.11.016 – volume: 54 start-page: 155 year: 2004 ident: 10.1016/j.watres.2022.118896_bib0002 article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2004.05.025 – volume: 51 start-page: 12611 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0026 article-title: Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03007 – volume: 179 start-page: 552 year: 2010 ident: 10.1016/j.watres.2022.118896_bib0083 article-title: Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.039 – volume: 139 start-page: 579 year: 2015 ident: 10.1016/j.watres.2022.118896_bib0035 article-title: TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.07.070 – volume: 286 year: 2022 ident: 10.1016/j.watres.2022.118896_bib0065 article-title: Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131640 – volume: 6 start-page: 1799 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0014 article-title: Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation publication-title: Environ. Sci. Nano doi: 10.1039/C9EN00220K – volume: 15 start-page: 2280 year: 2003 ident: 10.1016/j.watres.2022.118896_bib0034 article-title: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity publication-title: Chem. Mater. doi: 10.1021/cm0340781 – volume: 538 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0085 article-title: Surface-active MnFeO@C cubes as enhanced peroxymonosulfate activators for efficient degradation of bisphenol A publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148008 – volume: 188 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0064 article-title: Significant acceleration of Fe2+/peroxydisulfate oxidation towards sulfisoxazole by addition of MoS2 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109692 – volume: 334 start-page: 2539 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0086 article-title: Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.174 – volume: 72 start-page: 105 year: 2010 ident: 10.1016/j.watres.2022.118896_bib0079 article-title: Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.01.012 – volume: 31 start-page: 1535 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0081 article-title: Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.11.003 – volume: 430 year: 2022 ident: 10.1016/j.watres.2022.118896_bib0077 article-title: Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132828 – volume: 359 start-page: 373 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0005 article-title: Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.120 – volume: 154-155 start-page: 36 year: 2014 ident: 10.1016/j.watres.2022.118896_bib0030 article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst publication-title: Appl. Catal. B Environ doi: 10.1016/j.apcatb.2014.02.005 – volume: 387 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0037 article-title: Fe(III) adsorption on graphene oxide: a low-cost and simple modification method for persulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124012 – volume: 183 start-page: 162 year: 2012 ident: 10.1016/j.watres.2022.118896_bib0022 article-title: Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.12.048 – volume: 571 start-page: 643 year: 2016 ident: 10.1016/j.watres.2022.118896_bib0011 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.032 – volume: 54 start-page: 1232 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0020 article-title: New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05856 – volume: 275 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0031 article-title: Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119163 – volume: 341 start-page: 126 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0075 article-title: Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.136 – volume: 247 start-page: 10 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0038 article-title: Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.01.079 – volume: 359 start-page: 552 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0082 article-title: Significance of B-site cobalt on bisphenol A degradation by MOFs-templated CoxFe3−xO4 catalysts and its severe attenuation by excessive cobalt-rich phase publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.187 – volume: 418 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0027 article-title: Activation of persulfates by carbonaceous materials: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129297 – volume: 170 start-page: 1110 year: 2009 ident: 10.1016/j.watres.2022.118896_bib0029 article-title: Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.05.091 – volume: 360 start-page: 157 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0017 article-title: Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: structure dependence and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.207 – volume: 248 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0080 article-title: Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126053 – volume: 238 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0046 article-title: Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124611 – volume: 765 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0012 article-title: Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): recent advances and perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142794 – volume: 400 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0028 article-title: Mechanism insight into efficient peroxydisulfate activation by novel nano zero-valent iron anchored yCo3O4(nZVI/yCo3O4) composites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123157 – volume: 4 start-page: 315 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0045 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate publication-title: Environ. Sci. Nano doi: 10.1039/C6EN00633G – volume: 117 start-page: 582 year: 2014 ident: 10.1016/j.watres.2022.118896_bib0048 article-title: Peroxymonosulfate activation by phosphate anion for organics degradation in water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.09.046 – volume: 116 start-page: 182 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0063 article-title: Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors publication-title: Water Res. doi: 10.1016/j.watres.2017.03.035 – volume: 38 start-page: 3705 year: 2004 ident: 10.1016/j.watres.2022.118896_bib0001 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 9 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0021 article-title: Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106733 – volume: 9 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0036 article-title: The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105524 – volume: 170 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0061 article-title: Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.107031 – volume: 338 start-page: 300 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0024 article-title: Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.016 – start-page: 156 year: 1974 ident: 10.1016/j.watres.2022.118896_bib0055 – volume: 31 start-page: 2757 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0044 article-title: Visible light induced efficient activation of persulfate by a carbon quantum dots (CQDs) modified γ-Fe2O3 catalyst publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.01.032 – volume: 82 start-page: 710 year: 1978 ident: 10.1016/j.watres.2022.118896_bib0052 article-title: Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds publication-title: J. Phys Chem. doi: 10.1021/j100495a019 – volume: 664 start-page: 133 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0039 article-title: Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.02.039 – volume: 266 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0056 article-title: Activation of peroxymonosulfate by phosphite: kinetics and mechanism for the removal of organic pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129016 – volume: 177 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0072 article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions publication-title: Water Res. doi: 10.1016/j.watres.2020.115752 – volume: 391 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0023 article-title: Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: efficiency, mechanism and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123604 – volume: 424 year: 2022 ident: 10.1016/j.watres.2022.118896_bib0025 article-title: Ultrafast degradation of contaminants in a trace cobalt(II) activated peroxymonosulfate process triggered through borate: indispensable role of intermediate complex publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127641 – volume: 344 start-page: 12 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0062 article-title: Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.050 – volume: 352 start-page: 1004 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0071 article-title: Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.103 – volume: 409 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0091 article-title: Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124893 – volume: 267 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0015 article-title: Enhanced degradation of clothianidin in peroxymonosulfate/catalyst system via core-shell FeMn@N-C and phosphate surrounding publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118717 – volume: 268 start-page: 23 year: 2014 ident: 10.1016/j.watres.2022.118896_bib0059 article-title: Degradation of carbamazepine by Fe(II)-activated persulfate process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.01.010 – volume: 23 start-page: 765 year: 2016 ident: 10.1016/j.watres.2022.118896_bib0069 article-title: Remediation of hexachlorocyclohexanes by electrochemically activated persulfates publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-015-5312-y – volume: 112 start-page: 5993 year: 2008 ident: 10.1016/j.watres.2022.118896_bib0090 article-title: Surface Modification of TiO2 by Phosphate: effect on photocatalytic activity and mechanism implication publication-title: J. Phys. Chem. C doi: 10.1021/jp712049c – volume: 405 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0009 article-title: Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124684 – volume: 409 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0096 article-title: Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124920 – volume: 384 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0092 article-title: Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123264 – volume: 255 start-page: 55 year: 2005 ident: 10.1016/j.watres.2022.118896_bib0008 article-title: Adsorption of phosphate ions on novel inorganic ion exchangers publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2004.12.015 – volume: 253 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0033 article-title: Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol A publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117510 – volume: 428 year: 2022 ident: 10.1016/j.watres.2022.118896_bib0068 article-title: Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131166 – volume: 138 start-page: 56 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0094 article-title: Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling publication-title: Water Res. doi: 10.1016/j.watres.2018.03.045 – volume: 423 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0087 article-title: Photocatalysis of tris-(2-chloroethyl) phosphate by ultraviolet driven peroxymonosulfate oxidation process: removal performance, energy evaluation and toxicity on bacterial metabolism network publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130261 – volume: 168 start-page: 1628 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0006 article-title: Heat-activated persulfate oxidation of methyl- and ethyl-parabens: effect, kinetics, and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.143 – volume: 52 start-page: 5911 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0084 article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00735 – volume: 233 start-page: 8 year: 2013 ident: 10.1016/j.watres.2022.118896_bib0060 article-title: On the applications of peroxodiphosphate produced by BDD-electrolyses publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.08.022 – volume: 279 start-page: 507 year: 2015 ident: 10.1016/j.watres.2022.118896_bib0054 article-title: Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.055 – volume: 313 start-page: 209 year: 2016 ident: 10.1016/j.watres.2022.118896_bib0004 article-title: Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.007 – volume: 429 year: 2022 ident: 10.1016/j.watres.2022.118896_bib0010 article-title: Bimetallic oxides with package structure for enhanced degradation of bisphenol a through peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132189 – volume: 397 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0043 article-title: High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122764 – volume: 215-216 start-page: 859 year: 2013 ident: 10.1016/j.watres.2022.118896_bib0047 article-title: Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.067 – volume: 212 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0088 article-title: Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe3+/Fe2+ couple for degradation of organic pollutants publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.111975 – volume: 254 start-page: 163 year: 2014 ident: 10.1016/j.watres.2022.118896_bib0076 article-title: Removal and recovery of phosphate from water by lanthanum hydroxide materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.113 – volume: 304 start-page: 201 year: 2016 ident: 10.1016/j.watres.2022.118896_bib0073 article-title: Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.092 – volume: 379 year: 2020 ident: 10.1016/j.watres.2022.118896_bib0093 article-title: Transformation of tetracycline antibiotics during water treatment with unactivated peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122378 – volume: 44 start-page: 1098 year: 2009 ident: 10.1016/j.watres.2022.118896_bib0067 article-title: Effect of sorption on contaminant oxidation in activated persulfate systems publication-title: J. Environ. Sci. Health. A Toxic Hazard. Subst. Environ. Eng. doi: 10.1080/10934520903005095 – volume: 348 start-page: 1012 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0041 article-title: Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.032 – volume: 330 start-page: 44 year: 2017 ident: 10.1016/j.watres.2022.118896_bib0070 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.132 – volume: 147 start-page: 82 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0032 article-title: Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment publication-title: Water Res. doi: 10.1016/j.watres.2018.09.037 – volume: 157 start-page: 406 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0007 article-title: Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship publication-title: Water Res. doi: 10.1016/j.watres.2019.03.096 – volume: 287 year: 2022 ident: 10.1016/j.watres.2022.118896_bib0018 article-title: Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132094 – volume: 421 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0058 article-title: Non-radical reactions in persulfate-based homogeneous degradation processes: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127818 – volume: 359 start-page: 396 year: 2018 ident: 10.1016/j.watres.2022.118896_bib0095 article-title: Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.07.083 – volume: 151 start-page: 178 year: 2016 ident: 10.1016/j.watres.2022.118896_bib0053 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 221 start-page: 412 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0074 article-title: Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-X publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.049 – volume: 298 year: 2021 ident: 10.1016/j.watres.2022.118896_bib0013 article-title: Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120532 – volume: 253 start-page: 291 year: 2014 ident: 10.1016/j.watres.2022.118896_bib0019 article-title: Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic–anoxic process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.049 – volume: 372 start-page: 774 year: 2019 ident: 10.1016/j.watres.2022.118896_bib0042 article-title: Iron-tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.187 |
| SSID | ssj0002239 |
| Score | 2.7080019 |
| SecondaryResourceType | review_article |
| Snippet | •The effects and mechanisms of phosphate ions on persulfate (PS) activation are discussed.•Phosphate ions favor to attack asymmetric PMS compared to PDS.•The... Currently, various strategies have been applied to activate persulfate (PS) for contaminant removal from water. However, the background phosphate ions in water... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118896 |
| SubjectTerms | adsorption dissociation energy Heterocatalysis Homogeneous catalysis oxidation Persulfate Phosphate phosphates water Water treatment |
| Title | Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review |
| URI | https://dx.doi.org/10.1016/j.watres.2022.118896 https://www.proquest.com/docview/2697367908 https://www.proquest.com/docview/2718279364 |
| Volume | 222 |
| WOSCitedRecordID | wos000878990900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabpIf2UPok6SOo0Fvw4pXltdzbkqYkpYQeUtiejGxL2MvGNvtIF_pX-mM74_Fjm9CkOfRiFiFp7Z1vpU_jmW8Yew_nYiFjETuopeJIlaQoeRs7sLWEOpHKj4Wti00E5-dqOg2_Dga_2lyYq3lQFGqzCav_ampoA2Nj6uw9zN1NCg3wGYwOVzA7XP_J8Gdt2RFSX740mNubLy_rmI0qK5dVBvzyiALgCqCeFTDA9dxiI2Y5kI-2Hksln5KjFBUlqPgS-kd-aFRW7ELUKbl90b9kmLWVZbBboyaU1bqmGwql75wPX3JCY7N91o59Wny-wxaa9cg9zgy1T3NdLrO17kd8pILap7rc5Ns-DDj-oqasv70uo1CqR3LS7bosKGG5WVnhIKSo9u2NRZ_8D7MhPD080xC_YNh3_1Nj-9re10UktsFus4hmiXCWiGbZYXsi8ENYM_cmZyfTz91OD9QqbCMY8O7b1Mw6fvDm3fyN-lwjATWzuXjCHjdHEj4hKD1lA1M8Y4-2hCqfs589qDgAg_eg4qXlHag4goojqHgPKt6Dqh7bgIpvgYrnBa9BxTtQfeATTpB6wb59Ork4PnWash1O4gVi5UgvsNZViQrd2LcWKKDxtBhZz_hSe95IGAksHXm2leglDKyQqTtSsZF6hAz5JdstysLsM66sghPzyDXCNzJNrYbTtdKJ9ZSbKuPKA-a1v2iUNJr2WFplHt1mzwPmdKMq0nS5o3_QGitqeCnxzQgQeMfId61tI1i28V2cLky5hk7jMPDGQeiqW_oAbxSwf47lq3ve8Wv2sP-bvWG7q8XavGUPkqtVvlwcsp1gqg4bMP8GfcjMPg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+and+mechanisms+of+phosphate+ions+onto+persulfate+activation+and+organic+degradation+in+water+treatment%3A+A+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Ning&rft.au=Wang%2C+Yanshan&rft.au=Cheng%2C+Xiaoshuang&rft.au=Dai%2C+Haoxi&rft.date=2022-08-15&rft.issn=0043-1354&rft.volume=222&rft.spage=118896&rft_id=info:doi/10.1016%2Fj.watres.2022.118896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2022_118896 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |