Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)

Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems Jg. 44; H. 1; S. 30 - 9
Hauptverfasser: Agnes, S. Akila, Anitha, J., Pandian, S. Immanuel Alex, Peter, J. Dinesh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2020
Springer Nature B.V
Schlagworte:
ISSN:0148-5598, 1573-689X, 1573-689X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.
AbstractList Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.
Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding proper clinical treatments. The digital mammography examination helps in diagnosing the breast cancer at its earlier stage. In this paper, Multiscale All Convolutional Neural Network (MA-CNN) is developed to assist the radiologist in diagnosing the breast cancer effectively. MA-CNN is a convolutional neural network-based approach that classifies mammogram images accurately. Convolutional neural networks are excellent in extracting the task specific features, since the feature learning is associated with classification task in order to attain the improved performance. The proposed approach automatically categorizes the mammographic images on mini-MIAS dataset into normal, malignant and benign classes. This model improves the accuracy of the classification system by fusing the wider context of information using multiscale filters without negotiating the computation speed. Experimental results show that MA-CNN is a powerful tool for diagnosing breast cancer by means of classifying the mammogram images with overall sensitivity of 96% and 0.99 AUC.
ArticleNumber 30
Author Agnes, S. Akila
Peter, J. Dinesh
Anitha, J.
Pandian, S. Immanuel Alex
Author_xml – sequence: 1
  givenname: S. Akila
  surname: Agnes
  fullname: Agnes, S. Akila
  organization: Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences
– sequence: 2
  givenname: J.
  surname: Anitha
  fullname: Anitha, J.
  organization: Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences
– sequence: 3
  givenname: S. Immanuel Alex
  surname: Pandian
  fullname: Pandian, S. Immanuel Alex
  email: immans@karunya.edu
  organization: Department of Electronic and communication Engineering, Karunya Institute of Technology and Sciences
– sequence: 4
  givenname: J. Dinesh
  surname: Peter
  fullname: Peter, J. Dinesh
  organization: Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31838610$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1PFDEYhxuCgWX1D-BCmnjBQ7Xv9Gt6JBNQEna9SOLFNN3SbgY6U2hnMPLXM7uLmpDo6b08z_v1O0L7feo9QsdAPwKl6lMBqkESCpoA15w87aEZCMWIrPX3fTSjwGsihK4P0VEpt5RSLaU6QIcMalZLoDP0o4m2lDa0zg5t6nEKeGG7Lq2z7fBlZ9e-4OvS9mu8GOPQFmejxzZG3KT-McVxI9mIl37M2zL8TPkOny7OSLNcfniL3gQbi3_3Uufo-uL8W_OFXH39fNmcXRHHVDUQXtVBiMBVkN4zZ2tQgnG58roOWgdaeVgpcDbcOL1SinHKNZOKM0ZBgONsjk53fe9zehh9GUw3repjtL1PYzEVqxRTQnExoe9fobdpzNMNW0oyqauJnaOTF2pcdf7G3Oe2s_mX-f24CYAd4HIqJfvwBwFqNuGYXThmCsdswjFPk6NeOa4dtm8fsm3jf81qZ5ZpSr_2-e_S_5aeAVU7oY4
CitedBy_id crossref_primary_10_1016_j_neucom_2023_03_028
crossref_primary_10_1109_ACCESS_2020_2986546
crossref_primary_10_1371_journal_pone_0290543
crossref_primary_10_3390_healthcare11091222
crossref_primary_10_7759_cureus_39634
crossref_primary_10_1016_j_procs_2024_11_122
crossref_primary_10_1016_j_imu_2020_100401
crossref_primary_10_1371_journal_pone_0237674
crossref_primary_10_3390_s22031160
crossref_primary_10_3389_fonc_2023_1110657
crossref_primary_10_3389_fonc_2024_1281922
crossref_primary_10_1007_s12046_025_02795_x
crossref_primary_10_1049_iet_ipr_2020_0773
crossref_primary_10_5812_iranjradiol_120758
crossref_primary_10_3390_biology10090859
crossref_primary_10_1007_s10619_021_07355_w
crossref_primary_10_3390_diagnostics12020557
crossref_primary_10_3390_cancers14051280
crossref_primary_10_3390_jimaging10020030
crossref_primary_10_1155_2022_6499461
crossref_primary_10_1049_cvi2_12105
crossref_primary_10_1159_000515698
crossref_primary_10_1109_TPEL_2022_3150026
crossref_primary_10_1007_s11277_022_10000_z
crossref_primary_10_1177_14759217251333761
crossref_primary_10_1186_s12880_024_01244_1
crossref_primary_10_1016_j_imu_2021_100756
crossref_primary_10_1007_s40846_020_00545_4
crossref_primary_10_3390_bioengineering12040325
crossref_primary_10_1007_s42452_021_04616_2
crossref_primary_10_1016_j_bspc_2021_102954
crossref_primary_10_1109_ACCESS_2021_3071297
crossref_primary_10_1007_s42835_024_01904_w
crossref_primary_10_1007_s10489_021_02935_w
crossref_primary_10_1371_journal_pone_0263126
crossref_primary_10_1109_ACCESS_2021_3123472
crossref_primary_10_1007_s12024_025_00943_7
crossref_primary_10_1038_s41598_025_05888_z
crossref_primary_10_3390_electronics11213552
crossref_primary_10_1016_j_measurement_2023_113551
crossref_primary_10_1049_ipr2_12035
crossref_primary_10_32604_cmes_2023_025484
crossref_primary_10_3390_diagnostics12102389
crossref_primary_10_1016_j_cmpb_2025_109030
crossref_primary_10_1016_j_apenergy_2022_119703
crossref_primary_10_3390_diagnostics12123088
crossref_primary_10_5937_serbjph2502134J
crossref_primary_10_3390_jimaging8040088
crossref_primary_10_1016_j_ijleo_2022_170465
crossref_primary_10_1109_TNNLS_2023_3250490
crossref_primary_10_1038_s41598_024_64082_9
crossref_primary_10_1055_s_0043_1775737
crossref_primary_10_1007_s11042_022_12599_4
crossref_primary_10_1002_ima_22718
crossref_primary_10_1007_s42835_023_01747_x
crossref_primary_10_7717_peerj_cs_1850
crossref_primary_10_1007_s11042_023_18012_y
crossref_primary_10_1016_j_measurement_2021_110233
crossref_primary_10_1016_j_matpr_2020_08_543
crossref_primary_10_3390_cancers15215216
crossref_primary_10_1016_j_eswa_2024_126223
crossref_primary_10_1080_08839514_2021_2001177
crossref_primary_10_1109_ACCESS_2024_3518612
crossref_primary_10_32604_cmc_2021_013952
crossref_primary_10_1038_s41746_022_00559_z
crossref_primary_10_32604_cmc_2022_030492
crossref_primary_10_1002_mp_17650
crossref_primary_10_1016_j_ejrad_2021_109878
crossref_primary_10_1007_s10489_025_06352_1
crossref_primary_10_1007_s00521_023_09156_x
crossref_primary_10_1016_j_eswa_2024_123747
crossref_primary_10_1016_j_bspc_2022_103696
crossref_primary_10_32604_cmc_2022_019917
crossref_primary_10_1007_s10586_020_03127_w
crossref_primary_10_1007_s12145_024_01319_1
crossref_primary_10_1007_s41870_021_00658_2
crossref_primary_10_1007_s11042_020_09518_w
crossref_primary_10_1007_s12539_021_00467_y
crossref_primary_10_1016_j_bspc_2022_104414
crossref_primary_10_3390_cancers14051349
crossref_primary_10_1007_s11042_024_20271_2
crossref_primary_10_1016_j_isprsjprs_2021_09_015
crossref_primary_10_1007_s42979_023_02534_1
crossref_primary_10_1016_j_bspc_2023_104919
crossref_primary_10_1007_s10278_022_00677_w
crossref_primary_10_1007_s11042_023_14410_4
crossref_primary_10_4103_jmss_JMSS_31_19
Cites_doi 10.1118/1.1997327
10.1118/1.597177
10.1148/radiol.12111119
10.1016/j.neucom.2016.02.060
10.1016/j.cmpb.2018.01.025
10.1016/j.cmpb.2018.01.011
10.1007/s11517-015-1280-0
10.1109/TMI.2004.842457
10.1109/34.295913
10.1016/j.cmpb.2015.12.014
10.1148/radiology.190.2.8284372
10.1148/radiology.187.1.8451441
10.1016/j.knosys.2011.11.021
10.1109/TITB.2008.2009441
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1494-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 9
ExternalDocumentID 31838610
10_1007_s10916_019_1494_z
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-428f55f47f6ee3ca8175346be98f99f02e1b71cafdc9b77340493674330151c43
IEDL.DBID K7-
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502798700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Fri Sep 05 08:03:28 EDT 2025
Tue Nov 04 23:04:07 EST 2025
Thu Apr 03 07:02:34 EDT 2025
Sat Nov 29 05:35:01 EST 2025
Tue Nov 18 22:23:58 EST 2025
Fri Feb 21 02:37:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature learning
Breast cancer
Deep convolutional neural network
Computer-aided detection
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-428f55f47f6ee3ca8175346be98f99f02e1b71cafdc9b77340493674330151c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31838610
PQID 2326369227
PQPubID 54050
PageCount 9
ParticipantIDs proquest_miscellaneous_2327375745
proquest_journals_2326369227
pubmed_primary_31838610
crossref_primary_10_1007_s10916_019_1494_z
crossref_citationtrail_10_1007_s10916_019_1494_z
springer_journals_10_1007_s10916_019_1494_z
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tang, Rangayyan, Xu, El Naqa, Yang (CR3) 2009; 13
CR2
LeCun, Bengio (CR9) 1995; 3361
Whang, Baker, Patel, Luk, Castro (CR1) 2013; 266
Wu, Giger, Doi, Vyborny, Schmidt, Metz (CR7) 1993; 187
CR18
CR17
CR16
CR15
Eklund, Cardenosa, Parsons (CR19) 1994; 190
Gibson, Li, Sudre, Fidon, Shakir, Wang, Eaton-Rosen, Gray, Doel, Hu, Whyntie, Nachev, Modat, Barratt, Ourselin, Cardoso, Vercauteren (CR22) 2018; 158
Wei, Sahiner, Hadjiiski, Chan, Petrick, Helvie, Roubidoux, Ge, Zhou (CR4) 2005; 32
Wei, Yang, Nishikawa, Jiang (CR5) 2005; 24
Adams, Bischof (CR21) 1994; 16
CR23
CR11
Jiao, Gao, Wang, Li (CR14) 2016; 197
CR10
Anitha, Peter (CR20) 2015; 53
Oliver (CR8) 2012; 28
Zhang, Doi, Giger, Wu, Nishikawa, Schmidt (CR6) 1994; 21
Arevalo, González, Ramos-Pollán, Oliveira, Lopez (CR13) 2016; 127
Chougrad, Zouaki, Alheyane (CR12) 2018; 157
J Wei (1494_CR4) 2005; 32
1494_CR10
L Wei (1494_CR5) 2005; 24
J Anitha (1494_CR20) 2015; 53
J Tang (1494_CR3) 2009; 13
1494_CR2
Y LeCun (1494_CR9) 1995; 3361
GW Eklund (1494_CR19) 1994; 190
R Adams (1494_CR21) 1994; 16
Z Jiao (1494_CR14) 2016; 197
Y Wu (1494_CR7) 1993; 187
J Arevalo (1494_CR13) 2016; 127
W Zhang (1494_CR6) 1994; 21
H Chougrad (1494_CR12) 2018; 157
A Oliver (1494_CR8) 2012; 28
1494_CR18
1494_CR17
1494_CR16
1494_CR15
JS Whang (1494_CR1) 2013; 266
1494_CR23
1494_CR11
E Gibson (1494_CR22) 2018; 158
References_xml – volume: 32
  start-page: 2827
  issue: 9
  year: 2005
  end-page: 2838
  ident: CR4
  article-title: Computer-aided detection of breast masses on full field digital mammograms
  publication-title: Med. Phys.
  doi: 10.1118/1.1997327
– ident: CR18
– volume: 21
  start-page: 517
  issue: 4
  year: 1994
  end-page: 524
  ident: CR6
  article-title: Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network
  publication-title: Med. Phys.
  doi: 10.1118/1.597177
– volume: 266
  start-page: 548
  issue: 2
  year: 2013
  end-page: 554
  ident: CR1
  article-title: The causes of medical malpractice suits against radiologists in the United States
  publication-title: Radiology
  doi: 10.1148/radiol.12111119
– volume: 197
  start-page: 221
  year: 2016
  end-page: 231
  ident: CR14
  article-title: A deep feature based framework for breast masses classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.060
– ident: CR15
– volume: 158
  start-page: 113
  year: 2018
  end-page: 122
  ident: CR22
  article-title: NiftyNet: A deep-learning platform for medical imaging
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.01.025
– ident: CR2
– ident: CR16
– volume: 157
  start-page: 19
  year: 2018
  end-page: 30
  ident: CR12
  article-title: Deep convolutional neural networks for breast cancer screening
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.01.011
– ident: CR17
– ident: CR10
– ident: CR11
– volume: 53
  start-page: 737
  issue: 8
  year: 2015
  end-page: 749
  ident: CR20
  article-title: Mammogram segmentation using maximal cell strength updation in cellular automata
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1280-0
– volume: 24
  start-page: 371
  issue: 3
  year: 2005
  end-page: 380
  ident: CR5
  article-title: A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.842457
– volume: 16
  start-page: 641
  issue: 6
  year: 1994
  end-page: 647
  ident: CR21
  article-title: Seeded region growing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.295913
– volume: 127
  start-page: 248
  year: 2016
  end-page: 257
  ident: CR13
  article-title: Representation learning for mammography mass lesion classification with convolutional neural networks
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2015.12.014
– volume: 190
  start-page: 297
  issue: 2
  year: 1994
  end-page: 307
  ident: CR19
  article-title: Assessing adequacy of mammographic image quality
  publication-title: Radiology
  doi: 10.1148/radiology.190.2.8284372
– volume: 187
  start-page: 81
  issue: 1
  year: 1993
  end-page: 87
  ident: CR7
  article-title: Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
  publication-title: Radiology
  doi: 10.1148/radiology.187.1.8451441
– volume: 28
  start-page: 68
  year: 2012
  end-page: 75
  ident: CR8
  article-title: Automatic microcalcification and cluster detection for digital and digitised mammograms
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.11.021
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: CR9
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 13
  start-page: 236
  issue: 2
  year: 2009
  end-page: 251
  ident: CR3
  article-title: Computer-aided detection and diagnosis of breast cancer with mammography: Recent advances
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.2009441
– ident: CR23
– volume: 21
  start-page: 517
  issue: 4
  year: 1994
  ident: 1494_CR6
  publication-title: Med. Phys.
  doi: 10.1118/1.597177
– volume: 28
  start-page: 68
  year: 2012
  ident: 1494_CR8
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.11.021
– ident: 1494_CR10
– ident: 1494_CR16
– ident: 1494_CR15
– ident: 1494_CR11
– volume: 24
  start-page: 371
  issue: 3
  year: 2005
  ident: 1494_CR5
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.842457
– volume: 187
  start-page: 81
  issue: 1
  year: 1993
  ident: 1494_CR7
  publication-title: Radiology
  doi: 10.1148/radiology.187.1.8451441
– volume: 158
  start-page: 113
  year: 2018
  ident: 1494_CR22
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.01.025
– volume: 16
  start-page: 641
  issue: 6
  year: 1994
  ident: 1494_CR21
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.295913
– ident: 1494_CR23
– volume: 53
  start-page: 737
  issue: 8
  year: 2015
  ident: 1494_CR20
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1280-0
– volume: 32
  start-page: 2827
  issue: 9
  year: 2005
  ident: 1494_CR4
  publication-title: Med. Phys.
  doi: 10.1118/1.1997327
– volume: 157
  start-page: 19
  year: 2018
  ident: 1494_CR12
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.01.011
– volume: 13
  start-page: 236
  issue: 2
  year: 2009
  ident: 1494_CR3
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.2009441
– ident: 1494_CR17
– volume: 266
  start-page: 548
  issue: 2
  year: 2013
  ident: 1494_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.12111119
– ident: 1494_CR18
– volume: 190
  start-page: 297
  issue: 2
  year: 1994
  ident: 1494_CR19
  publication-title: Radiology
  doi: 10.1148/radiology.190.2.8284372
– volume: 197
  start-page: 221
  year: 2016
  ident: 1494_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.060
– volume: 127
  start-page: 248
  year: 2016
  ident: 1494_CR13
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2015.12.014
– ident: 1494_CR2
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 1494_CR9
  publication-title: The Handbook of Brain Theory and Neural Networks
SSID ssj0009667
Score 2.536099
Snippet Breast cancer is one of the leading causes of cancer death among women in worldwide. Early diagnosis of breast cancer improves the chance of survival by aiding...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Artificial neural networks
Breast cancer
Breast Neoplasms - pathology
Classification
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Humans
Image & Signal Processing
Image classification
Image Interpretation, Computer-Assisted - methods
Machine Learning
Mammography
Mammography - methods
Medicine
Medicine & Public Health
Neural networks
Neural Networks, Computer
Recent Advances in Deep Learning for Biomedical Signal Processing
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64IYK4L3UjggcXAp1uSY4yKHqYQdzwIqXNcho7MouH-fW-pO2M4gJ66qFpGt57yfte3gZwJHiOalRLahS3LcyEpCJWiqJuTHLmy8jkyjWbYO02f3oSN1Ued7-Odq9dku6k_pDshlAGTV9BEdVHdDQNs6jtuN2Nt3ePk0q7SVLmSEec2urjtSvzuyk-K6MvCPOLd9Qpncvlfy13BZYqjEnOS6FYhSldrMF8q_Kir8FieVdHyhSkdXh2nTFtzJBjE-ka0spQPm3gFrl-wROnT1xoAXHpun1kqyZZp0Oa3eKtEl38n63z4R4usJwct85ps90-2YCHy4v75hWt2i5QGbJgQNEgMXFsImYSrUOZcVvMM0pyLbgRwviBbuSsITOjpMgZCyM0MkKby4BnRdyQUbgJM0W30NtAEM6h-RdkiYoZIjXFfSNUnvuKcSMbWeyBX9M_lVVNctsao5NOqilbMqZIxtSSMR15cDr-5LUsyPHb4L2aqWm1N_spYsgkTEQQMA8Ox69xV1lXSVbo7tCNYSGzi_ZgqxSG8d_sKcgRdXpwVnN-MvmPS9n50-hdWAisYe_uevZgZtAb6n2Yk2_I5N6BE_h3Kgr4cA
  priority: 102
  providerName: Springer Nature
Title Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)
URI https://link.springer.com/article/10.1007/s10916-019-1494-z
https://www.ncbi.nlm.nih.gov/pubmed/31838610
https://www.proquest.com/docview/2326369227
https://www.proquest.com/docview/2327375745
Volume 44
WOSCitedRecordID wos000502798700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5MIiIEHzGa0bi04EENjfPu7pPEJUGRHZY1hkUIw0w_TutMzCY55Ndb1TOziwRz8VJzmFfDV12PrhfAWyVrVKNWc2ckjTBTmqvMGI66Ma9FqFNXGz9sQhSFnM_VtD9wW_ZplYNM9ILatJrOyD-i5s-TXMWx-HT-m9PUKIqu9iM0NmAriuOI-Pyb4Oumu3nelUunklMj8iGq2ZXOoWGEjrTi6COk_OZvvXTL2LwVKPX65_jx_678CTzqLU922LHKU7hnmx14MOlj6zuw3Z3gsa4w6Rmc-XmZlEnkwWOtY5MKP0bpXOzrL5RDS-YTDpgv4l0i2JZViwUbt811z9D4P-r-4S8-3Zy9mxzycVG834Ufx0cn4y-8H8bAdSLiS45uissylwqXW5voSlKLzzSvrZJOKRfGNqpFpCtntKqFSFJ0PRKqcEAJkkU6TZ7DZtM2dg8YGnnoFMZVbjKB9puRoVOmrkMjpNNRlQUQDlCUuu9UTgMzFuW6xzKhVyJ6JaFX3gTwYfXKedem466H9wegyn7HLss1SgG8Wd3GvUYBlKqx7ZV_RiSCFh3Ai44vVn8j2SjRFg3gYGCU9cf_uZSXdy_lFTyMyb_3Rz77sHl5cWVfw319jahejGBDzE6JzoWncgRbn4-K6WzktwHSSXhCNJ4SFUSn2U-ks--nfwCG9QtF
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH9BNGpiQEG0AjommihmQrdfM3MwhqwSNrCNB0z2Ymo7H6e1RRYw8kf5N_retN2NIXLj4KmHtjOvnd_7mnkfAK-UrFCNWs2dkdTCTGmuUmM46sasEqFOXGV8swmR53IyUZ-X4HefC0Nhlb1M9ILaNJr2yHdR82dxpqJIfDj5walrFJ2u9i00Wlgc2l8_0WWbvR99xPV9HUX7n46HB7zrKsB1LKIzjva2S1OXCJdZG-tSUq3KJKuskk4pF0Z2UImBLp3RqhIiTtCGjilUH1khHegkxnFvwW2U44JCyMRELIr8Zlmbnp1IToXP-1PUNlUPDTF03BVHnyThl3_rwSvG7ZWDWa_v9lf_tz_1EFY6y5rttazwCJZsvQZ3x13swBo8aHcoWZt4tQ5ffT9QipTy4GSNY-MSiadwNTb6jnJ2xnxABfNJyjMEs2XldMqGTX3RMSzOR9VN_MWH07M34z0-zPO3j-HLjXzsBizXTW2fAkMjFp3eqMxMKtA-NTJ0ylRVaIR0elCmAYT90he6q8RODUGmxaKGNKGlQLQUhJbiMoCd-SsnbRmS6x7e6oFRdBJpVixQEcDL-W2UJXRAVNa2OffPiFgQ0QE8aXE4n41kv0RbO4B3PTAXg_-TlGfXk_IC7h0cj4-Ko1F-uAn3I9rL8NtbW7B8dnput-GOvsAVPn3uGY3Bt5vG6x-QAVzK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKkUQL_XS2KojKFhlMJvbzDyIlK2LS92wDwpFkDSZy9OatN22Yn-av67nTJJdpNi3PviUhyQzJ5nv3GbOBeCVkhWqUau5M5JamCnNVWoMR92YVSLUiauMbzYh8lzu76vpCvzpc2EorLKXiV5Qm0bTHvl71PxZnKkIXXXXhUVMd0cfD484dZCik9a-nUYLkT37-xe6b_MP411c69dRNPr0dfiZdx0GuI5FdMLR9nZp6hLhMmtjXUqqW5lklVXSKeXCyA4qMdClM1pVQsQJ2tMxhe0jW6QDncQ47g24KdDHJMdvmn5fFvzNsjZVO5GciqD3J6pt2h4aZejEK47-ScLP_9aJlwzdS4e0XveN7v3Pf-0-3O0sbrbTssgDWLH1OqxNupiCdbjT7lyyNiHrIfzwfUIpgsqDljWOTUoknsLY2Pgnyt8584EWzCcvzxHklpWzGRs29VnHyDgfVT3xFx9mz95Mdvgwz7cfwbdr-djHsFo3td0AhsYtOsNRmZlUoN1qZOiUqarQCOn0oEwDCHsYFLqr0E6NQmbFsrY0IadA5BSEnOI8gLeLVw7b8iRXPbzVg6ToJNW8WCIkgJeL2yhj6OCorG1z6p8RsSCiA3jSYnIxG-kEiTZ4AO96kC4H_ycpT68m5QWsIUyLL-N8bxNuR7TF4Xe9tmD15PjUPoNb-gwX-Pi55zkGB9cN1wvWpGW9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Mammogram+Images+Using+Multiscale+all+Convolutional+Neural+Network+%28MA-CNN%29&rft.jtitle=Journal+of+medical+systems&rft.au=Agnes%2C+S+Akila&rft.au=Anitha%2C+J&rft.au=Pandian%2C+S+Immanuel+Alex&rft.au=Peter%2C+J+Dinesh&rft.date=2020-01-01&rft.issn=1573-689X&rft.eissn=1573-689X&rft.volume=44&rft.issue=1&rft.spage=30&rft_id=info:doi/10.1007%2Fs10916-019-1494-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon