Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol
The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al atoms in the framework as well as the Cu speciation and acidic features of the exchanged Cu/AEI zeolite catalysts and their catalytic properti...
Saved in:
| Published in: | Applied catalysis. B, Environmental Vol. 325; p. 122395 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.05.2023
|
| Subjects: | |
| ISSN: | 0926-3373, 1873-3883 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al atoms in the framework as well as the Cu speciation and acidic features of the exchanged Cu/AEI zeolite catalysts and their catalytic properties in the continuous direct conversion of methane to methanol (cDMTM) were investigated. The AEI zeolite synthesized with Na cations led to more Al and a higher percentage of Al pairs than the one prepared without Na cations. Consequently, the Cu/AEI zeolite catalysts synthesized with Na cations exhibited lower apparent activation energy of methane conversion, higher methanol formation rate, and less stable ability in the cDMTM reaction due to the more active dicopper species and higher acid amount than those prepared without Na cations. Adjustment of the close Al content in the framework of the two AEI zeolites by calcination, the Cu/AEI zeolite synthesized with Na cations evidenced a higher methanol selectivity and more stable reaction performance because of the different relationship between Cu species and acid sites, such as the distance, caused by the Al distribution. The methanol formation rate of 27.3 µmol·g−1·min−1 with about 50% selectivity and stable performance in the cDMTM reaction at 350 °C were obtained. Moreover, the stability of both 5Cu/AEI zeolite catalysts could be upgraded by further calcination to diminish the acid amount, the high methanol formation rate of the 5Cu/AEI zeolite synthesized with Na cations was maintained and the reaction stability was newly attained. The 5Cu/AEI zeolite synthesized without Na cations, merely the stable performance was reached, while the methanol formation rate and selectivity seriously declined. This work contributed to the development of AEI zeolite with different Al distributions and its significant impacts on the Cu speciation and acidic properties, thus providing a valuable strategy to obtain a robust Cu/AEI zeolite catalytic system for efficient and stable methanol production from methane.
[Display omitted]
•AEI zeolites with different distributions and contents of Al were synthesized with or without Na.•Cu/AEI(Na) zeolite obtained more dicopper species and acid amount.•Cu/AEI(Na) achieved higher methanol formation rate and selectivity.•The close Al content in the framework of AEI(Na) and AEI(Na free) was attained by calcination at different temperatures.•The similar maximum methanol formation rate but different stability of Cu/AEI(Na) and Cu/AEI(Na free) were obtained after regulation the close Al content in the framework. |
|---|---|
| AbstractList | The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al atoms in the framework as well as the Cu speciation and acidic features of the exchanged Cu/AEI zeolite catalysts and their catalytic properties in the continuous direct conversion of methane to methanol (cDMTM) were investigated. The AEI zeolite synthesized with Na cations led to more Al and a higher percentage of Al pairs than the one prepared without Na cations. Consequently, the Cu/AEI zeolite catalysts synthesized with Na cations exhibited lower apparent activation energy of methane conversion, higher methanol formation rate, and less stable ability in the cDMTM reaction due to the more active dicopper species and higher acid amount than those prepared without Na cations. Adjustment of the close Al content in the framework of the two AEI zeolites by calcination, the Cu/AEI zeolite synthesized with Na cations evidenced a higher methanol selectivity and more stable reaction performance because of the different relationship between Cu species and acid sites, such as the distance, caused by the Al distribution. The methanol formation rate of 27.3 µmol·g−1·min−1 with about 50% selectivity and stable performance in the cDMTM reaction at 350 °C were obtained. Moreover, the stability of both 5Cu/AEI zeolite catalysts could be upgraded by further calcination to diminish the acid amount, the high methanol formation rate of the 5Cu/AEI zeolite synthesized with Na cations was maintained and the reaction stability was newly attained. The 5Cu/AEI zeolite synthesized without Na cations, merely the stable performance was reached, while the methanol formation rate and selectivity seriously declined. This work contributed to the development of AEI zeolite with different Al distributions and its significant impacts on the Cu speciation and acidic properties, thus providing a valuable strategy to obtain a robust Cu/AEI zeolite catalytic system for efficient and stable methanol production from methane.
[Display omitted]
•AEI zeolites with different distributions and contents of Al were synthesized with or without Na.•Cu/AEI(Na) zeolite obtained more dicopper species and acid amount.•Cu/AEI(Na) achieved higher methanol formation rate and selectivity.•The close Al content in the framework of AEI(Na) and AEI(Na free) was attained by calcination at different temperatures.•The similar maximum methanol formation rate but different stability of Cu/AEI(Na) and Cu/AEI(Na free) were obtained after regulation the close Al content in the framework. |
| ArticleNumber | 122395 |
| Author | Yokoi, Toshiyuki De Baerdemaeker, Trees Marler, Bernd Gies, Hermann Xiao, Peipei Wang, Yong De Vos, Dirk Xiao, Feng-Shou Parvulescu, Andrei-Nicolae Lu, Yao Meng, Xiangju Müller, Ulrich Zhang, Weiping Kolb, Ute |
| Author_xml | – sequence: 1 givenname: Peipei surname: Xiao fullname: Xiao, Peipei organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan – sequence: 2 givenname: Yong surname: Wang fullname: Wang, Yong organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan – sequence: 3 givenname: Yao surname: Lu fullname: Lu, Yao organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan – sequence: 4 givenname: Trees surname: De Baerdemaeker fullname: De Baerdemaeker, Trees organization: Process Research and Chemical Engineering, BASF SE, Ludwigshafen 67056, Germany – sequence: 5 givenname: Andrei-Nicolae surname: Parvulescu fullname: Parvulescu, Andrei-Nicolae organization: Process Research and Chemical Engineering, BASF SE, Ludwigshafen 67056, Germany – sequence: 6 givenname: Ulrich surname: Müller fullname: Müller, Ulrich organization: Process Research and Chemical Engineering, BASF SE, Ludwigshafen 67056, Germany – sequence: 7 givenname: Dirk surname: De Vos fullname: De Vos, Dirk organization: Center for Surface Chemistry and Catalysis, K. U. Leuven, Leuven 3001, Belgium – sequence: 8 givenname: Xiangju surname: Meng fullname: Meng, Xiangju organization: Department of Chemistry, Zhejiang University, Hangzhou 310028, China – sequence: 9 givenname: Feng-Shou surname: Xiao fullname: Xiao, Feng-Shou organization: College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 10 givenname: Weiping surname: Zhang fullname: Zhang, Weiping organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 11 givenname: Bernd surname: Marler fullname: Marler, Bernd organization: Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, Bochum 44780, Germany – sequence: 12 givenname: Ute surname: Kolb fullname: Kolb, Ute organization: Institute of Physical Chemistry, Johannes Gutenberg-University Mainz, Mainz 55128, Germany – sequence: 13 givenname: Hermann surname: Gies fullname: Gies, Hermann organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan – sequence: 14 givenname: Toshiyuki surname: Yokoi fullname: Yokoi, Toshiyuki email: yokoi@cat.res.titech.ac.jp organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan |
| BookMark | eNqFkMFOAyEURYmpibX6By74gakwr-0wLkyapmqTJm50TRjmYWmmQwO0UT_Cb5ZxunKhK17gnUvuuSSD1rVIyA1nY8747HY7VnutYjXOWQ5jnudQTs_IkIsCMhACBmTIynyWARRwQS5D2DKWNnMxJF9LY1DHQJ2h84bWNkRvq0O0rqW2pXGDdHHI8F1vVPuGNZ0vV_QTXWMjJqZf8Kj0D7BHb5zfqVZjl6ddG217cIeQcn36pbs5og_dbnrfYUypSKM7ja65IudGNQGvT-eIvD4sXxZP2fr5cbWYrzMNRR4zMAWfFYpVU1ZPgJVlVQqtJgw5MKXQpBFK0Iob4KXKS1EJxcTUIEOR6gKMyF2fq70LwaOR2kbVlYhe2UZyJjuzcit7s7IzK3uzCZ78gvfe7pT_-A-77zFMxY4WvQzaYnLVy5G1s38HfAPP7pnI |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_05_237 crossref_primary_10_1002_ange_202403179 crossref_primary_10_1039_D3CY00584D crossref_primary_10_1016_j_apcatb_2023_122746 crossref_primary_10_1002_ange_202506023 crossref_primary_10_1038_s41467_024_46924_2 crossref_primary_10_1016_j_fuel_2023_130694 crossref_primary_10_1016_j_jaap_2024_106359 crossref_primary_10_1016_j_mcat_2024_114721 crossref_primary_10_1016_S1872_2067_25_64702_4 crossref_primary_10_1016_j_mcat_2025_114863 crossref_primary_10_1016_j_cjche_2025_02_006 crossref_primary_10_1002_cssc_202402728 crossref_primary_10_1021_jacsau_5c00094 crossref_primary_10_3390_catal13081226 crossref_primary_10_1016_j_apsusc_2024_159492 crossref_primary_10_1021_jacs_4c00646 crossref_primary_10_1039_D5RE00119F crossref_primary_10_1002_anie_202403179 crossref_primary_10_1002_anie_202506023 crossref_primary_10_1016_j_cclet_2023_108800 crossref_primary_10_1039_D3CY00482A crossref_primary_10_1016_j_seppur_2024_127544 crossref_primary_10_1016_j_micromeso_2023_112727 crossref_primary_10_1007_s11426_024_2287_6 crossref_primary_10_1016_j_jece_2025_118385 crossref_primary_10_1039_D3CY00127J crossref_primary_10_1016_j_ijhydene_2024_07_329 |
| Cites_doi | 10.1016/j.jcat.2016.12.024 10.1021/acscatal.5b01577 10.1021/jp106247g 10.1002/9783527618286.ch14 10.1016/j.apcatb.2016.08.053 10.1002/chem.201503758 10.1021/jacs.8b11443 10.1021/cm301629a 10.1038/s41467-019-09336-1 10.1039/C8CS00502H 10.1002/anie.201702550 10.1021/acs.iecr.9b06708 10.1021/acscentsci.6b00139 10.1021/acs.chemrev.7b00738 10.1021/acs.chemmater.9b03738 10.1016/j.jcat.2019.12.038 10.1039/D0CC06534J 10.1039/C9TA00174C 10.1006/jcat.1999.2548 10.1126/science.aam9035 10.1021/acs.chemmater.0c03154 10.1021/acs.iecr.7b04985 10.1021/acs.jpcc.1c04055 10.1039/B203966B 10.1016/j.micromeso.2008.03.032 10.1039/C6CP00136J 10.1021/acs.jpcc.5b03213 10.1016/j.jcat.2018.03.032 10.1021/jacs.9b13817 10.1016/j.micromeso.2018.11.002 10.1039/C7CP07650A 10.1021/jacs.6b02651 10.1039/C6CC07893A 10.1021/acs.jpcc.1c01649 10.1021/acscatal.7b01273 10.1039/C7CS00709D 10.1021/acs.chemmater.5b00651 10.1021/cm4018024 10.1021/acs.jpcc.5b03289 10.1016/j.jcat.2014.01.019 10.1039/b301634j 10.1039/c3dt50732g 10.1021/acscatal.1c00691 10.1016/j.jcat.2020.08.008 10.1039/D0CC02284E 10.1016/j.micromeso.2014.09.056 10.1002/chem.201803637 10.1021/acs.est.1c06475 10.1021/acs.chemrev.6b00715 10.1007/s11814-021-0796-2 10.1016/j.jcat.2016.09.025 10.1016/j.apcatb.2019.118511 10.1016/j.coche.2019.04.002 10.1016/j.jcat.2017.06.026 10.1021/acscatal.9b05431 10.1021/acs.jpcc.8b03475 10.1021/acscatal.7b03676 10.1021/acscatal.2c02125 10.1021/acs.chemmater.9b02227 10.1002/anie.202105167 10.1016/j.jcat.2019.11.004 10.1007/s11244-009-9273-6 10.1039/c3cy20782j 10.3390/catal11060751 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apcatb.2023.122395 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| EISSN | 1873-3883 |
| ExternalDocumentID | 10_1016_j_apcatb_2023_122395 S0926337323000383 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPD SSG SSZ T5K ~02 ~G- 53G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE VH1 WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c372t-3f7167a0b50d43099b98ca40e130aaefa40393ca1f319a298b8a085fe0e8fec33 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001812400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-3373 |
| IngestDate | Tue Nov 18 21:50:46 EST 2025 Sat Nov 29 07:11:45 EST 2025 Sat Mar 02 16:01:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AEI zeolite Al distribution Methane to methanol Cu speciation Acidic properties |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-3f7167a0b50d43099b98ca40e130aaefa40393ca1f319a298b8a085fe0e8fec33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2023_122395 crossref_primary_10_1016_j_apcatb_2023_122395 elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_122395 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied catalysis. B, Environmental |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Szanyi, Gao, Kwak, Kollar, Wang, Peden (bib64) 2016; 18 Gallego, Li, Paris, Martín, Martínez-Triguero, Boronat, Moliner, Corma (bib25) 2018; 24 Dědeček, Kaucký, Wichterlová, Gonsiorová (bib48) 2002; 4 Dusselier, Schmidt, Moulton, Haymore, Hellums, Davis (bib32) 2015; 27 Xu, Chen, Wu, Lei, Zhang, Han, Zhang, Zhu, Meng, Dai, Maurer, Parvulescu, Müller, Zhang, Yokoi, Bao, Marler, De Vos, Kolb, Zheng, Xiao (bib39) 2019; 7 Zhou, Cheng, Kang, Zhou, Subramanian, Zhang, Wang (bib44) 2019; 48 Li, Wang, Liu, Wu, Zhang, Zhang, Cheng, Wang (bib65) 2022; 12 Song, Chu, Wang, Shi, Zhao, Guo, Yang, Shen, Xue, Peng, Ding (bib5) 2017; 349 Yokoi, Mochizuki, Namba, Kondo, Tatsumi (bib27) 2015; 119 Findley, Ravikovitch, Sholl (bib14) 2018; 122 Dedecek, Balgova, Pashkova, Klein, Wichterlová (bib2) 2012; 24 Göltl, Bhandari, Mavrikakis (bib46) 2021; 11 Paolucci, Parekh, Khurana, Di Iorio, Li, Caballero, Shih, Anggara, Delgass, Miller, Ribeiro, Gounder, Schneider (bib9) 2016; 138 Dinh, Sullivan, Narsimhan, Serna, Meyer, Dincă, Román-Leshkov (bib41) 2019; 141 Kefirov, Penkova, Hadjiivanov, Dzwigaj, Cheb (bib62) 2008; 116 Schwach, Pan, Bao (bib43) 2017; 117 Razdan, Kumar, Foley, Bhan (bib12) 2020; 381 Prodinger, Derewinski, Wang, Washton, Walter, Szanyi, Gao, Wang, Peden (bib15) 2017; 201 Bernauer, Tabor, Pashkova, Kaucký, Sobalík, Wichterlová, Dedecek (bib6) 2016; 344 Freude (bib49) 2002; 1 Wu, Hei, Guan, Li (bib52) 2013; 3 Iorio, Li, Jones, Nimlos, Wang, Kunkes, Vattipalli, Prasad, Moini, Schneider, Gounder (bib23) 2020; 142 Zhu, Shan, Shan, Lian, Du, He (bib33) 2021; 55 Pashkova, Klein, Dedecek, Tokarová, Wichterlová (bib30) 2015; 202 Iorio, Nimlosand, Gounder (bib24) 2017; 7 Knott, Nimlos, Robichaud, Nimlos, Kim, Gounder (bib20) 2018; 8 Gábová, Dědeček, Čejka (bib31) 2003; 10 Tsunoji, Shimono, Tsuchiya, Sadakane, Sano (bib37) 2020; 32 Pashkova, Sklenak, Klein, Urbanova, Dedecek (bib26) 2016; 22 Phadke, Mansoor, Bondil, Head-Gordon, Bell (bib11) 2019; 141 Han, Zhang, Chen, Lin, Wan, Wang, Wang (bib50) 2021; 11 Pinilla-Herrero, Borfecchia, Holzinger, Mentzel, Joensen, Lomachenko, Bordiga, Lamberti, Berlier, Olsbye, Svelle, Skibsted, Beato (bib13) 2018; 362 Kwak, Kwak, Park, Myung-June Park, Lee (bib17) 2021; 38 Kharchenko, Zholobenko, Vicente, Fernandez, Vezin, De Waele, Mintova (bib58) 2018; 20 Nishitoba, Yoshida, Kondo, Yokoi (bib29) 2018; 57 Márquez-Alvarez, Pinar, García, Grande-Casas, Pérez-Pariente (bib21) 2009; 52 Newton, Knorpp, Sushkevich, Palagin, van Bokhoven (bib47) 2020; 49 Roma, n-Leshkov, Davis (bib28) 2011; 115 Pinar, Gómez-Hortigüela, McCusker, Pérez-Pariente (bib22) 2013; 25 Ipek, Lobo (bib35) 2016; 52 Xu, Liu, Dai, Li, Zhang, Wu, Yu, Chen (bib42) 2021; 60 Osuga, Bayarsaikhan, Yasuda, Manabe, Shima, Tsutsuminai, Fukuoka, Kobayashi, Yokoi (bib8) 2020; 56 Sushkevich, Palagin, Ranocchiari, van Bokhoven (bib60) 2017; 356 Su, Zhou, Liu, Wang, Jiao, Wang, Liu, Ye, Zhang, Zhang, Liu, Wang, Yang, Xie, He (bib55) 2019; 10 Biligetu, Wang, Nishitoba, Otomo, Park, Mochizuki, Kondo, Tatsumi, Yokoi (bib4) 2017; 353 Le, Chawla, Rimer (bib19) 2020; 391 Zdravkova, Drenchev, Ivanova, Mihaylov, Hadjiivanov (bib63) 2015; 119 Sazama, Wichterlová, Tábor, Šťastný, Naveen, Sobalík, Dědeček, Sklenák, Klein, Vondrová (bib10) 2014; 312 Sazama, Moravkova, Sklenak, Vondrova, Tabor, Sadovska, Pilar (bib59) 2020; 10 Dusselier, Deimund, Schmidt, Davis (bib16) 2015; 5 Ransom, Moulton, Shantz (bib38) 2020; 382 Wang, He, Jiao, Wang, Fan (bib18) 2019; 23 Nimlos, Hoffman, Hur, Lee, Iorio, Hibbitts, Gounder (bib1) 2020; 32 Devos, Bols, Plessers, Goethem, Seo, Hwang, Sels, Dusselier (bib7) 2019; 32 Wang, Nishitoba, Wang, Meng, Xiao, Zhang, Gies, Marler, Vos, Kolb, Feyen, McGuire, Parvulescu, Yokoi (bib57) 2020; 59 Zhou, Tang, Wang, Wang, Liu (bib54) 2021; 125 Giordanino, Vennestrom, Lundegaard, Stappen, Mossin, Beato, Bordiga, Lamberti (bib56) 2013; 42 Narsimhan, Iyoki, Dinh, Roman-Leshkov (bib40) 2016; 2 Boruntea, Lundegaard, Corma, Vennestrøm (bib51) 2019; 278 Ravi, Ranocchiari, van Bokhoven (bib45) 2017; 56 Shan, Shan, Shi, Du, Yu, He (bib3) 2020; 264 Palagin, Sushkevich, Knorpp, Ranocchiari, J.A.van Bokhoven (bib61) 2021; 125 Memioglu, Ipek (bib34) 2021; 57 Dusselier, Davis (bib36) 2018; 118 Lobree, Hwang, Reimer, Bell (bib53) 1999; 186 Wu (10.1016/j.apcatb.2023.122395_bib52) 2013; 3 Knott (10.1016/j.apcatb.2023.122395_bib20) 2018; 8 Memioglu (10.1016/j.apcatb.2023.122395_bib34) 2021; 57 Ipek (10.1016/j.apcatb.2023.122395_bib35) 2016; 52 Le (10.1016/j.apcatb.2023.122395_bib19) 2020; 391 Dusselier (10.1016/j.apcatb.2023.122395_bib32) 2015; 27 Ransom (10.1016/j.apcatb.2023.122395_bib38) 2020; 382 Xu (10.1016/j.apcatb.2023.122395_bib42) 2021; 60 Iorio (10.1016/j.apcatb.2023.122395_bib24) 2017; 7 Gábová (10.1016/j.apcatb.2023.122395_bib31) 2003; 10 Pashkova (10.1016/j.apcatb.2023.122395_bib26) 2016; 22 Devos (10.1016/j.apcatb.2023.122395_bib7) 2019; 32 Sazama (10.1016/j.apcatb.2023.122395_bib59) 2020; 10 Su (10.1016/j.apcatb.2023.122395_bib55) 2019; 10 Song (10.1016/j.apcatb.2023.122395_bib5) 2017; 349 Dinh (10.1016/j.apcatb.2023.122395_bib41) 2019; 141 Ravi (10.1016/j.apcatb.2023.122395_bib45) 2017; 56 Palagin (10.1016/j.apcatb.2023.122395_bib61) 2021; 125 Szanyi (10.1016/j.apcatb.2023.122395_bib64) 2016; 18 Shan (10.1016/j.apcatb.2023.122395_bib3) 2020; 264 Pinilla-Herrero (10.1016/j.apcatb.2023.122395_bib13) 2018; 362 Freude (10.1016/j.apcatb.2023.122395_bib49) 2002; 1 Iorio (10.1016/j.apcatb.2023.122395_bib23) 2020; 142 Kefirov (10.1016/j.apcatb.2023.122395_bib62) 2008; 116 Razdan (10.1016/j.apcatb.2023.122395_bib12) 2020; 381 Márquez-Alvarez (10.1016/j.apcatb.2023.122395_bib21) 2009; 52 Li (10.1016/j.apcatb.2023.122395_bib65) 2022; 12 Sazama (10.1016/j.apcatb.2023.122395_bib10) 2014; 312 Zhou (10.1016/j.apcatb.2023.122395_bib44) 2019; 48 Zhou (10.1016/j.apcatb.2023.122395_bib54) 2021; 125 Göltl (10.1016/j.apcatb.2023.122395_bib46) 2021; 11 Prodinger (10.1016/j.apcatb.2023.122395_bib15) 2017; 201 Pinar (10.1016/j.apcatb.2023.122395_bib22) 2013; 25 Zhu (10.1016/j.apcatb.2023.122395_bib33) 2021; 55 Dědeček (10.1016/j.apcatb.2023.122395_bib48) 2002; 4 Gallego (10.1016/j.apcatb.2023.122395_bib25) 2018; 24 Dusselier (10.1016/j.apcatb.2023.122395_bib16) 2015; 5 Narsimhan (10.1016/j.apcatb.2023.122395_bib40) 2016; 2 Wang (10.1016/j.apcatb.2023.122395_bib18) 2019; 23 Nishitoba (10.1016/j.apcatb.2023.122395_bib29) 2018; 57 Zdravkova (10.1016/j.apcatb.2023.122395_bib63) 2015; 119 Dedecek (10.1016/j.apcatb.2023.122395_bib2) 2012; 24 Bernauer (10.1016/j.apcatb.2023.122395_bib6) 2016; 344 Yokoi (10.1016/j.apcatb.2023.122395_bib27) 2015; 119 Osuga (10.1016/j.apcatb.2023.122395_bib8) 2020; 56 Boruntea (10.1016/j.apcatb.2023.122395_bib51) 2019; 278 Wang (10.1016/j.apcatb.2023.122395_bib57) 2020; 59 Tsunoji (10.1016/j.apcatb.2023.122395_bib37) 2020; 32 Lobree (10.1016/j.apcatb.2023.122395_bib53) 1999; 186 Giordanino (10.1016/j.apcatb.2023.122395_bib56) 2013; 42 Phadke (10.1016/j.apcatb.2023.122395_bib11) 2019; 141 Pashkova (10.1016/j.apcatb.2023.122395_bib30) 2015; 202 Xu (10.1016/j.apcatb.2023.122395_bib39) 2019; 7 Han (10.1016/j.apcatb.2023.122395_bib50) 2021; 11 Nimlos (10.1016/j.apcatb.2023.122395_bib1) 2020; 32 Dusselier (10.1016/j.apcatb.2023.122395_bib36) 2018; 118 Newton (10.1016/j.apcatb.2023.122395_bib47) 2020; 49 Roma (10.1016/j.apcatb.2023.122395_bib28) 2011; 115 Findley (10.1016/j.apcatb.2023.122395_bib14) 2018; 122 Paolucci (10.1016/j.apcatb.2023.122395_bib9) 2016; 138 Kharchenko (10.1016/j.apcatb.2023.122395_bib58) 2018; 20 Sushkevich (10.1016/j.apcatb.2023.122395_bib60) 2017; 356 Biligetu (10.1016/j.apcatb.2023.122395_bib4) 2017; 353 Kwak (10.1016/j.apcatb.2023.122395_bib17) 2021; 38 Schwach (10.1016/j.apcatb.2023.122395_bib43) 2017; 117 |
| References_xml | – volume: 356 start-page: 523 year: 2017 end-page: 527 ident: bib60 article-title: Selective anaerobic oxidation of methane enables direct synthesis of methanol publication-title: Science – volume: 11 start-page: 7719 year: 2021 end-page: 7734 ident: bib46 article-title: Thermodynamics perspective on the stepwise conversion of methane to methanol over Cu-exchanged SSZ-13 publication-title: ACS Catal. – volume: 118 start-page: 5265 year: 2018 end-page: 5329 ident: bib36 article-title: Small-pore zeolites: synthesis and catalysis publication-title: Chem. Rev. – volume: 115 start-page: 1096 year: 2011 end-page: 1102 ident: bib28 article-title: Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites publication-title: J. Phys. Chem. C. – volume: 362 start-page: 146 year: 2018 end-page: 163 ident: bib13 article-title: High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics publication-title: J. Catal. – volume: 56 start-page: 16464 year: 2017 end-page: 16483 ident: bib45 article-title: The direct catalytic oxidation of methane to methanol—a critical assessment publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 770 year: 2018 end-page: 784 ident: bib20 article-title: Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research publication-title: ACS Catal. – volume: 264 year: 2020 ident: bib3 article-title: A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13 publication-title: Appl. Catal. B: Environ. – volume: 49 start-page: 1449 year: 2020 end-page: 1486 ident: bib47 article-title: Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination publication-title: Chem. Soc. Rev. – volume: 186 start-page: 242 year: 1999 end-page: 253 ident: bib53 article-title: Investigations of the state of Fe in H–ZSM-5 publication-title: J. Catal. – volume: 116 start-page: 180 year: 2008 end-page: 187 ident: bib62 article-title: Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR publication-title: Microporous Mesoporous Mater. – volume: 312 start-page: 123 year: 2014 end-page: 138 ident: bib10 article-title: Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx publication-title: J. Catal. – volume: 48 start-page: 3193 year: 2019 ident: bib44 article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO publication-title: Chem. Soc. Rev. – volume: 119 start-page: 15292 year: 2015 end-page: 15302 ident: bib63 article-title: Surprising coordination chemistry of Cu+ cations in zeolites: FTIR study of adsorption and coadsorption of CO, NO, N2, and H2O on Cu−ZSM‑5 publication-title: J. Phys. Chem. C. – volume: 20 start-page: 2880 year: 2018 end-page: 2889 ident: bib58 article-title: Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization publication-title: Phys. Chem. Chem. Phys. – volume: 24 start-page: 14631 year: 2018 end-page: 14635 ident: bib25 article-title: Making nanosized CHA zeolites with controlled Al distribution for optimizing methanol-to-olefin performance publication-title: Chem. Eur. J. – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: bib55 article-title: Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts publication-title: Nat. Commun. – volume: 22 start-page: 3937 year: 2016 end-page: 3941 ident: bib26 article-title: Location of framework Al atoms in the channels of ZSM-5: effect of the (hydrothermal) synthesis publication-title: Chemistry – volume: 56 start-page: 5913 year: 2020 end-page: 5916 ident: bib8 article-title: Metal cation-exchanged zeolites with the location, state, and size of metal species controlled publication-title: Chem. Commun. (Camb. ) – volume: 55 start-page: 16175 year: 2021 end-page: 16183 ident: bib33 article-title: Reaction pathways of standard and fast selective catalytic reduction over Cu-SSZ-39 publication-title: Environ. Sci. Technol. – volume: 5 start-page: 6078 year: 2015 end-page: 6085 ident: bib16 article-title: Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39 publication-title: ACS Catal. – volume: 7 start-page: 4420 year: 2019 end-page: 4425 ident: bib39 article-title: Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite publication-title: J. Mater. Chem. A – volume: 59 start-page: 7375 year: 2020 end-page: 7382 ident: bib57 article-title: Cu-exchanged CHA-type zeolite from organic template-free synthesis: an effective catalyst for NH3–SCR publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 3984 year: 2020 end-page: 4002 ident: bib59 article-title: Effect of the nuclearity and coordination of Cu and Fe sites in beta zeolites on the oxidation of hydrocarbons publication-title: ACS Catal. – volume: 349 start-page: 163 year: 2017 end-page: 174 ident: bib5 article-title: Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes publication-title: J. Catal. – volume: 1 start-page: 465 year: 2002 end-page: 504 ident: bib49 publication-title: NMR Tech., Handb. Porous Solids – volume: 141 start-page: 1614 year: 2019 end-page: 1627 ident: bib11 article-title: Mechanism and Kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: us10473 year: 2016 end-page: us10485 ident: bib64 article-title: Characterization of Fe(2)(+) ions in Fe,H/SSZ-13 zeolites: FTIR spectroscopy of CO and NO probe molecules publication-title: Phys. Chem. Chem. Phys. – volume: 25 start-page: 3654 year: 2013 end-page: 3661 ident: bib22 article-title: Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent publication-title: Chem. Mater. – volume: 278 start-page: 105 year: 2019 end-page: 114 ident: bib51 article-title: Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations publication-title: Microporous Mesoporous Mater. – volume: 125 start-page: 14675 year: 2021 end-page: 14680 ident: bib54 article-title: Effect of Cu concentration on the selective catalytic reduction of NO with ammonia for aluminosilicate zeolite SSZ-13 catalysts publication-title: J. Phys. Chem. C. – volume: 32 start-page: 60 year: 2020 end-page: 74 ident: bib37 article-title: Formation pathway of AEI zeolites as a basis for a streamlined synthesis publication-title: Chem. Mater. – volume: 201 start-page: 461 year: 2017 end-page: 469 ident: bib15 article-title: Sub-micron Cu/SSZ-13: synthesis and application as selective catalytic reduction (SCR) catalysts publication-title: Appl. Catal. B: Environ. – volume: 142 start-page: 4807 year: 2020 end-page: 4819 ident: bib23 article-title: Cooperative and competitive occlusion of organic and inorganic structure-directing agents within chabazite zeolites influences their aluminum arrangement publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 16634 year: 2021 end-page: 16640 ident: bib42 article-title: H2O-built proton transfer bridge enhances continuous methane oxidation to methanolover Cu-BEA zeolite publication-title: Angew. Chem. Int. Ed. – volume: 32 start-page: 9277 year: 2020 end-page: 9298 ident: bib1 article-title: Experimental and theoretical assessments of aluminum proximity in MFI zeolites and its alteration by organic and inorganic structure-directing agents publication-title: Chem. Mater. – volume: 7 start-page: 6663 year: 2017 end-page: 6674 ident: bib24 article-title: Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity publication-title: ACS Catal. – volume: 344 start-page: 157 year: 2016 end-page: 172 ident: bib6 article-title: Proton proximity–New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites publication-title: J. Catal. – volume: 52 start-page: 1281 year: 2009 end-page: 1291 ident: bib21 article-title: Influence of Al distribution and defects concentration of ferrierite catalysts synthesized from Na-free gels in the skeletal isomerization of n-butene publication-title: Top. Catal. – volume: 52 start-page: 13401 year: 2016 end-page: 13404 ident: bib35 article-title: Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant publication-title: Chem. Commun. (Camb. ) – volume: 11 start-page: 751 year: 2021 ident: bib50 article-title: Critical role of Al pair sites in methane oxidation to methanol on Cu-exchanged mordenite zeolites publication-title: Catalysts – volume: 42 start-page: 12741 year: 2013 end-page: 12761 ident: bib56 article-title: Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios publication-title: Dalton Trans. – volume: 353 start-page: 1 year: 2017 end-page: 10 ident: bib4 article-title: Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols publication-title: J. Catal. – volume: 3 start-page: 1333 year: 2013 end-page: 1342 ident: bib52 article-title: Oxidative dehydrogenation of propane with nitrous oxide over Fe–MFI prepared by ion-exchange: effect of acid post-treatments publication-title: Catal. Sci. Technol. – volume: 27 start-page: 2695 year: 2015 end-page: 2702 ident: bib32 article-title: Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39 publication-title: Chem. Mater. – volume: 122 start-page: 12332 year: 2018 end-page: 12340 ident: bib14 article-title: The effect of aluminum short-range ordering on carbon dioxide adsorption in zeolites publication-title: J. Phys. Chem. C. – volume: 2 start-page: 424 year: 2016 end-page: 429 ident: bib40 article-title: Catalytic Oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature publication-title: ACS Cent. Sci. – volume: 38 start-page: 1117 year: 2021 end-page: 1128 ident: bib17 article-title: Recent progress on Al distribution over zeolite frameworks: linking theories and experiments publication-title: Korean J. Chem. Eng. – volume: 391 start-page: 56 year: 2020 end-page: 68 ident: bib19 article-title: Impact of acid site speciation and spatial gradients on zeolite catalysis publication-title: J. Catal. – volume: 4 start-page: 5406 year: 2002 end-page: 5413 ident: bib48 article-title: Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study publication-title: Phys. Chem. Chem. Phys. – volume: 32 start-page: 273 year: 2019 end-page: 285 ident: bib7 article-title: Synthesis–structure–activity relations in Fe-CHA for C–H activation: control of Al distribution by iNTERZEOLITE CONversion publication-title: Chem. Mater. – volume: 57 start-page: 3914 year: 2018 end-page: 3922 ident: bib29 article-title: Control of Al distribution in the CHA-type aluminosilicate zeolites and its impact on the hydrothermal stability and catalytic properties publication-title: Ind. Eng. Chem. Res. – volume: 381 start-page: 261 year: 2020 end-page: 270 ident: bib12 article-title: Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts publication-title: J. Catal. – volume: 23 start-page: 146 year: 2019 end-page: 154 ident: bib18 article-title: Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework publication-title: Curr. Opin. Chem. Eng. – volume: 119 start-page: 15303 year: 2015 end-page: 15315 ident: bib27 article-title: Control of the Al distribution in the framework of ZSM‑5 Zeolite and its evaluation by solid-state NMR technique and catalytic properties publication-title: J. Phys. Chem. C. – volume: 117 start-page: 8497 year: 2017 end-page: 8520 ident: bib43 article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects publication-title: Chem. Rev. – volume: 138 start-page: 6028 year: 2016 end-page: 6048 ident: bib9 article-title: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites publication-title: J. Am. Chem. Soc. – volume: 202 start-page: 138 year: 2015 end-page: 146 ident: bib30 article-title: Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework publication-title: Microporous Mesoporous Mater. – volume: 382 start-page: 339 year: 2020 end-page: 346 ident: bib38 article-title: The structure directing agent isomer used in SSZ-39 synthesis impacts the zeolite activity towards selective catalytic reduction of nitric oxides publication-title: J. Catal. – volume: 12 start-page: 8793 year: 2022 end-page: 8801 ident: bib65 article-title: Distance for communication between metal and acid sites for syngas conversion publication-title: ACS Catal. – volume: 141 start-page: 11641 year: 2019 end-page: 11650 ident: bib41 article-title: Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Cu Dimers in Copper-Exchanged Zeolites publication-title: J. Am. Chem. Soc – volume: 125 start-page: 12094 year: 2021 end-page: 12106 ident: bib61 article-title: Mapping vibrational spectra to the structures of copper species in zeolites based on calculated stretching frequencies of adsorbed nitrogen and carbon monoxides publication-title: J. Phys. Chem. C. – volume: 24 start-page: 3231 year: 2012 end-page: 3239 ident: bib2 article-title: Synthesis of ZSM-5 zeolites with defined distRibution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution publication-title: Chem. Mater. – volume: 10 start-page: 1196 year: 2003 end-page: 1197 ident: bib31 article-title: Control of Al distribution in ZSM-5 by conditions of zeolite synthesis publication-title: Chem. Commun. – volume: 57 start-page: 1364 year: 2021 end-page: 1367 ident: bib34 article-title: A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39 publication-title: Chem. Commun. – volume: 349 start-page: 163 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib5 article-title: Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes publication-title: J. Catal. doi: 10.1016/j.jcat.2016.12.024 – volume: 5 start-page: 6078 year: 2015 ident: 10.1016/j.apcatb.2023.122395_bib16 article-title: Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01577 – volume: 115 start-page: 1096 year: 2011 ident: 10.1016/j.apcatb.2023.122395_bib28 article-title: Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites publication-title: J. Phys. Chem. C. doi: 10.1021/jp106247g – volume: 1 start-page: 465 year: 2002 ident: 10.1016/j.apcatb.2023.122395_bib49 publication-title: NMR Tech., Handb. Porous Solids doi: 10.1002/9783527618286.ch14 – volume: 201 start-page: 461 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib15 article-title: Sub-micron Cu/SSZ-13: synthesis and application as selective catalytic reduction (SCR) catalysts publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.08.053 – volume: 22 start-page: 3937 year: 2016 ident: 10.1016/j.apcatb.2023.122395_bib26 article-title: Location of framework Al atoms in the channels of ZSM-5: effect of the (hydrothermal) synthesis publication-title: Chemistry doi: 10.1002/chem.201503758 – volume: 141 start-page: 1614 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib11 article-title: Mechanism and Kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11443 – volume: 24 start-page: 3231 year: 2012 ident: 10.1016/j.apcatb.2023.122395_bib2 article-title: Synthesis of ZSM-5 zeolites with defined distRibution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution publication-title: Chem. Mater. doi: 10.1021/cm301629a – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib55 article-title: Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-09336-1 – volume: 48 start-page: 3193 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib44 article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H – volume: 56 start-page: 16464 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib45 article-title: The direct catalytic oxidation of methane to methanol—a critical assessment publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702550 – volume: 59 start-page: 7375 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib57 article-title: Cu-exchanged CHA-type zeolite from organic template-free synthesis: an effective catalyst for NH3–SCR publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b06708 – volume: 2 start-page: 424 year: 2016 ident: 10.1016/j.apcatb.2023.122395_bib40 article-title: Catalytic Oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00139 – volume: 118 start-page: 5265 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib36 article-title: Small-pore zeolites: synthesis and catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00738 – volume: 32 start-page: 273 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib7 article-title: Synthesis–structure–activity relations in Fe-CHA for C–H activation: control of Al distribution by iNTERZEOLITE CONversion publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03738 – volume: 382 start-page: 339 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib38 article-title: The structure directing agent isomer used in SSZ-39 synthesis impacts the zeolite activity towards selective catalytic reduction of nitric oxides publication-title: J. Catal. doi: 10.1016/j.jcat.2019.12.038 – volume: 57 start-page: 1364 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib34 article-title: A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39 publication-title: Chem. Commun. doi: 10.1039/D0CC06534J – volume: 7 start-page: 4420 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib39 article-title: Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00174C – volume: 186 start-page: 242 year: 1999 ident: 10.1016/j.apcatb.2023.122395_bib53 article-title: Investigations of the state of Fe in H–ZSM-5 publication-title: J. Catal. doi: 10.1006/jcat.1999.2548 – volume: 356 start-page: 523 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib60 article-title: Selective anaerobic oxidation of methane enables direct synthesis of methanol publication-title: Science doi: 10.1126/science.aam9035 – volume: 32 start-page: 9277 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib1 article-title: Experimental and theoretical assessments of aluminum proximity in MFI zeolites and its alteration by organic and inorganic structure-directing agents publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03154 – volume: 57 start-page: 3914 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib29 article-title: Control of Al distribution in the CHA-type aluminosilicate zeolites and its impact on the hydrothermal stability and catalytic properties publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04985 – volume: 125 start-page: 14675 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib54 article-title: Effect of Cu concentration on the selective catalytic reduction of NO with ammonia for aluminosilicate zeolite SSZ-13 catalysts publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c04055 – volume: 4 start-page: 5406 year: 2002 ident: 10.1016/j.apcatb.2023.122395_bib48 article-title: Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B203966B – volume: 116 start-page: 180 year: 2008 ident: 10.1016/j.apcatb.2023.122395_bib62 article-title: Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.03.032 – volume: 18 start-page: us10473 year: 2016 ident: 10.1016/j.apcatb.2023.122395_bib64 article-title: Characterization of Fe(2)(+) ions in Fe,H/SSZ-13 zeolites: FTIR spectroscopy of CO and NO probe molecules publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00136J – volume: 119 start-page: 15292 year: 2015 ident: 10.1016/j.apcatb.2023.122395_bib63 article-title: Surprising coordination chemistry of Cu+ cations in zeolites: FTIR study of adsorption and coadsorption of CO, NO, N2, and H2O on Cu−ZSM‑5 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b03213 – volume: 362 start-page: 146 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib13 article-title: High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics publication-title: J. Catal. doi: 10.1016/j.jcat.2018.03.032 – volume: 142 start-page: 4807 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib23 article-title: Cooperative and competitive occlusion of organic and inorganic structure-directing agents within chabazite zeolites influences their aluminum arrangement publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13817 – volume: 278 start-page: 105 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib51 article-title: Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.11.002 – volume: 20 start-page: 2880 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib58 article-title: Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07650A – volume: 138 start-page: 6028 year: 2016 ident: 10.1016/j.apcatb.2023.122395_bib9 article-title: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02651 – volume: 52 start-page: 13401 year: 2016 ident: 10.1016/j.apcatb.2023.122395_bib35 article-title: Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant publication-title: Chem. Commun. (Camb. ) doi: 10.1039/C6CC07893A – volume: 125 start-page: 12094 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib61 article-title: Mapping vibrational spectra to the structures of copper species in zeolites based on calculated stretching frequencies of adsorbed nitrogen and carbon monoxides publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c01649 – volume: 7 start-page: 6663 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib24 article-title: Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity publication-title: ACS Catal. doi: 10.1021/acscatal.7b01273 – volume: 49 start-page: 1449 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib47 article-title: Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00709D – volume: 27 start-page: 2695 year: 2015 ident: 10.1016/j.apcatb.2023.122395_bib32 article-title: Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00651 – volume: 25 start-page: 3654 year: 2013 ident: 10.1016/j.apcatb.2023.122395_bib22 article-title: Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent publication-title: Chem. Mater. doi: 10.1021/cm4018024 – volume: 119 start-page: 15303 year: 2015 ident: 10.1016/j.apcatb.2023.122395_bib27 article-title: Control of the Al distribution in the framework of ZSM‑5 Zeolite and its evaluation by solid-state NMR technique and catalytic properties publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b03289 – volume: 312 start-page: 123 year: 2014 ident: 10.1016/j.apcatb.2023.122395_bib10 article-title: Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx publication-title: J. Catal. doi: 10.1016/j.jcat.2014.01.019 – volume: 10 start-page: 1196 year: 2003 ident: 10.1016/j.apcatb.2023.122395_bib31 article-title: Control of Al distribution in ZSM-5 by conditions of zeolite synthesis publication-title: Chem. Commun. doi: 10.1039/b301634j – volume: 42 start-page: 12741 year: 2013 ident: 10.1016/j.apcatb.2023.122395_bib56 article-title: Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios publication-title: Dalton Trans. doi: 10.1039/c3dt50732g – volume: 11 start-page: 7719 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib46 article-title: Thermodynamics perspective on the stepwise conversion of methane to methanol over Cu-exchanged SSZ-13 publication-title: ACS Catal. doi: 10.1021/acscatal.1c00691 – volume: 391 start-page: 56 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib19 article-title: Impact of acid site speciation and spatial gradients on zeolite catalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2020.08.008 – volume: 56 start-page: 5913 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib8 article-title: Metal cation-exchanged zeolites with the location, state, and size of metal species controlled publication-title: Chem. Commun. (Camb. ) doi: 10.1039/D0CC02284E – volume: 202 start-page: 138 year: 2015 ident: 10.1016/j.apcatb.2023.122395_bib30 article-title: Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2014.09.056 – volume: 24 start-page: 14631 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib25 article-title: Making nanosized CHA zeolites with controlled Al distribution for optimizing methanol-to-olefin performance publication-title: Chem. Eur. J. doi: 10.1002/chem.201803637 – volume: 55 start-page: 16175 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib33 article-title: Reaction pathways of standard and fast selective catalytic reduction over Cu-SSZ-39 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c06475 – volume: 117 start-page: 8497 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib43 article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00715 – volume: 38 start-page: 1117 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib17 article-title: Recent progress on Al distribution over zeolite frameworks: linking theories and experiments publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0796-2 – volume: 344 start-page: 157 year: 2016 ident: 10.1016/j.apcatb.2023.122395_bib6 article-title: Proton proximity–New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites publication-title: J. Catal. doi: 10.1016/j.jcat.2016.09.025 – volume: 264 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib3 article-title: A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118511 – volume: 141 start-page: 11641 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib41 article-title: Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Cu Dimers in Copper-Exchanged Zeolites – volume: 23 start-page: 146 year: 2019 ident: 10.1016/j.apcatb.2023.122395_bib18 article-title: Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2019.04.002 – volume: 353 start-page: 1 year: 2017 ident: 10.1016/j.apcatb.2023.122395_bib4 article-title: Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols publication-title: J. Catal. doi: 10.1016/j.jcat.2017.06.026 – volume: 10 start-page: 3984 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib59 article-title: Effect of the nuclearity and coordination of Cu and Fe sites in beta zeolites on the oxidation of hydrocarbons publication-title: ACS Catal. doi: 10.1021/acscatal.9b05431 – volume: 122 start-page: 12332 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib14 article-title: The effect of aluminum short-range ordering on carbon dioxide adsorption in zeolites publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b03475 – volume: 8 start-page: 770 year: 2018 ident: 10.1016/j.apcatb.2023.122395_bib20 article-title: Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research publication-title: ACS Catal. doi: 10.1021/acscatal.7b03676 – volume: 12 start-page: 8793 year: 2022 ident: 10.1016/j.apcatb.2023.122395_bib65 article-title: Distance for communication between metal and acid sites for syngas conversion publication-title: ACS Catal. doi: 10.1021/acscatal.2c02125 – volume: 32 start-page: 60 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib37 article-title: Formation pathway of AEI zeolites as a basis for a streamlined synthesis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02227 – volume: 60 start-page: 16634 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib42 article-title: H2O-built proton transfer bridge enhances continuous methane oxidation to methanolover Cu-BEA zeolite publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105167 – volume: 381 start-page: 261 year: 2020 ident: 10.1016/j.apcatb.2023.122395_bib12 article-title: Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2019.11.004 – volume: 52 start-page: 1281 year: 2009 ident: 10.1016/j.apcatb.2023.122395_bib21 article-title: Influence of Al distribution and defects concentration of ferrierite catalysts synthesized from Na-free gels in the skeletal isomerization of n-butene publication-title: Top. Catal. doi: 10.1007/s11244-009-9273-6 – volume: 3 start-page: 1333 year: 2013 ident: 10.1016/j.apcatb.2023.122395_bib52 article-title: Oxidative dehydrogenation of propane with nitrous oxide over Fe–MFI prepared by ion-exchange: effect of acid post-treatments publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy20782j – volume: 11 start-page: 751 year: 2021 ident: 10.1016/j.apcatb.2023.122395_bib50 article-title: Critical role of Al pair sites in methane oxidation to methanol on Cu-exchanged mordenite zeolites publication-title: Catalysts doi: 10.3390/catal11060751 |
| SSID | ssj0002328 |
| Score | 2.5730124 |
| Snippet | The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122395 |
| SubjectTerms | Acidic properties AEI zeolite Al distribution Cu speciation Methane to methanol |
| Title | Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol |
| URI | https://dx.doi.org/10.1016/j.apcatb.2023.122395 |
| Volume | 325 |
| WOSCitedRecordID | wos001001812400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002328 issn: 0926-3373 databaseCode: AIEXJ dateStart: 19950211 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKFwk4ICisWL7kA7coVWunG-eYrYpYDiskilROkZNMpK66SdVtVxU_gt_CT2TsiZMsRXxJXKIoTeIk8-p5Hr_xMPZGaAhFoMCfBNgFBiKb-CrNtZ-CyNMwykZCZ7bYRHhxoRaL6EOv983lwtyswrJU-320_q-mxmNobJM6-xfmbm6KB3AfjY5bNDtu_8jws1ahEdsJmKamldM0Tnc-7CnjN_fi2bn3BYwKDtzMgYdEkiqIrztpBVZ_bupK7IxqllwhidZtxI0m6k0g3hbjoN1q1SW_jvHakJFZCWXondm-uE22043gY7HUFQmIl2tYtnF_6ps-V7XHNVqinT2iq4aUg3emYZPDlYZaNDLfANyKcAirJ6QcTwq7HaTeUPxSnPpSUh2UIVDvrULpS0WVcVz3Limx-sBVUNTicqjX-Nbp0DQ8HCNZopqfPyzC_dE0Z1rDEZuZTJV32JEIJ5Hqs6P4fLZ433h_ZKjW-7vHc-maVlN42NbP6VCH4swfsYf12ITHhKnHrAflgN2bupKAA_ags3rlgB3fshuvvcT1E_a1hiCvCh6veBeCfFlyRBjvQpAjBLmDIK_oBAdB3oGguV8LQU4Q5C0Eze81BPm24g6CT9mnt7P59J1f1_3wMxmKrS8LHMSHepRORnkgcQiTRirTwQiQb2kNBe7KSGZ6XKD_0CJSqdI4cihgBApfT8pj1i-rEp4xjt67CCIkaRny_jDNo0yOUwVwGilRjAs4YdJ9_iSrF8U3tVlWiVM_XiZktMQYLSGjnTC_uWpNi8L85vzQWTapiS19ogTB-Msrn__zlS_Y_fa_9JL1t5sdvGJ3s5vt8nrzukbtd4L9z0g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Al+distribution+in+the+Cu-exchanged+AEI+zeolites+on+the+reaction+performance+of+continuous+direct+conversion+of+methane+to+methanol&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Xiao%2C+Peipei&rft.au=Wang%2C+Yong&rft.au=Lu%2C+Yao&rft.au=De+Baerdemaeker%2C+Trees&rft.date=2023-05-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=325&rft_id=info:doi/10.1016%2Fj.apcatb.2023.122395&rft.externalDocID=S0926337323000383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |