Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol

The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al atoms in the framework as well as the Cu speciation and acidic features of the exchanged Cu/AEI zeolite catalysts and their catalytic properti...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Vol. 325; p. 122395
Main Authors: Xiao, Peipei, Wang, Yong, Lu, Yao, De Baerdemaeker, Trees, Parvulescu, Andrei-Nicolae, Müller, Ulrich, De Vos, Dirk, Meng, Xiangju, Xiao, Feng-Shou, Zhang, Weiping, Marler, Bernd, Kolb, Ute, Gies, Hermann, Yokoi, Toshiyuki
Format: Journal Article
Language:English
Published: Elsevier B.V 15.05.2023
Subjects:
ISSN:0926-3373, 1873-3883
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al atoms in the framework as well as the Cu speciation and acidic features of the exchanged Cu/AEI zeolite catalysts and their catalytic properties in the continuous direct conversion of methane to methanol (cDMTM) were investigated. The AEI zeolite synthesized with Na cations led to more Al and a higher percentage of Al pairs than the one prepared without Na cations. Consequently, the Cu/AEI zeolite catalysts synthesized with Na cations exhibited lower apparent activation energy of methane conversion, higher methanol formation rate, and less stable ability in the cDMTM reaction due to the more active dicopper species and higher acid amount than those prepared without Na cations. Adjustment of the close Al content in the framework of the two AEI zeolites by calcination, the Cu/AEI zeolite synthesized with Na cations evidenced a higher methanol selectivity and more stable reaction performance because of the different relationship between Cu species and acid sites, such as the distance, caused by the Al distribution. The methanol formation rate of 27.3 µmol·g−1·min−1 with about 50% selectivity and stable performance in the cDMTM reaction at 350 °C were obtained. Moreover, the stability of both 5Cu/AEI zeolite catalysts could be upgraded by further calcination to diminish the acid amount, the high methanol formation rate of the 5Cu/AEI zeolite synthesized with Na cations was maintained and the reaction stability was newly attained. The 5Cu/AEI zeolite synthesized without Na cations, merely the stable performance was reached, while the methanol formation rate and selectivity seriously declined. This work contributed to the development of AEI zeolite with different Al distributions and its significant impacts on the Cu speciation and acidic properties, thus providing a valuable strategy to obtain a robust Cu/AEI zeolite catalytic system for efficient and stable methanol production from methane. [Display omitted] •AEI zeolites with different distributions and contents of Al were synthesized with or without Na.•Cu/AEI(Na) zeolite obtained more dicopper species and acid amount.•Cu/AEI(Na) achieved higher methanol formation rate and selectivity.•The close Al content in the framework of AEI(Na) and AEI(Na free) was attained by calcination at different temperatures.•The similar maximum methanol formation rate but different stability of Cu/AEI(Na) and Cu/AEI(Na free) were obtained after regulation the close Al content in the framework.
AbstractList The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al atoms in the framework as well as the Cu speciation and acidic features of the exchanged Cu/AEI zeolite catalysts and their catalytic properties in the continuous direct conversion of methane to methanol (cDMTM) were investigated. The AEI zeolite synthesized with Na cations led to more Al and a higher percentage of Al pairs than the one prepared without Na cations. Consequently, the Cu/AEI zeolite catalysts synthesized with Na cations exhibited lower apparent activation energy of methane conversion, higher methanol formation rate, and less stable ability in the cDMTM reaction due to the more active dicopper species and higher acid amount than those prepared without Na cations. Adjustment of the close Al content in the framework of the two AEI zeolites by calcination, the Cu/AEI zeolite synthesized with Na cations evidenced a higher methanol selectivity and more stable reaction performance because of the different relationship between Cu species and acid sites, such as the distance, caused by the Al distribution. The methanol formation rate of 27.3 µmol·g−1·min−1 with about 50% selectivity and stable performance in the cDMTM reaction at 350 °C were obtained. Moreover, the stability of both 5Cu/AEI zeolite catalysts could be upgraded by further calcination to diminish the acid amount, the high methanol formation rate of the 5Cu/AEI zeolite synthesized with Na cations was maintained and the reaction stability was newly attained. The 5Cu/AEI zeolite synthesized without Na cations, merely the stable performance was reached, while the methanol formation rate and selectivity seriously declined. This work contributed to the development of AEI zeolite with different Al distributions and its significant impacts on the Cu speciation and acidic properties, thus providing a valuable strategy to obtain a robust Cu/AEI zeolite catalytic system for efficient and stable methanol production from methane. [Display omitted] •AEI zeolites with different distributions and contents of Al were synthesized with or without Na.•Cu/AEI(Na) zeolite obtained more dicopper species and acid amount.•Cu/AEI(Na) achieved higher methanol formation rate and selectivity.•The close Al content in the framework of AEI(Na) and AEI(Na free) was attained by calcination at different temperatures.•The similar maximum methanol formation rate but different stability of Cu/AEI(Na) and Cu/AEI(Na free) were obtained after regulation the close Al content in the framework.
ArticleNumber 122395
Author Yokoi, Toshiyuki
De Baerdemaeker, Trees
Marler, Bernd
Gies, Hermann
Xiao, Peipei
Wang, Yong
De Vos, Dirk
Xiao, Feng-Shou
Parvulescu, Andrei-Nicolae
Lu, Yao
Meng, Xiangju
Müller, Ulrich
Zhang, Weiping
Kolb, Ute
Author_xml – sequence: 1
  givenname: Peipei
  surname: Xiao
  fullname: Xiao, Peipei
  organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
– sequence: 2
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
– sequence: 3
  givenname: Yao
  surname: Lu
  fullname: Lu, Yao
  organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
– sequence: 4
  givenname: Trees
  surname: De Baerdemaeker
  fullname: De Baerdemaeker, Trees
  organization: Process Research and Chemical Engineering, BASF SE, Ludwigshafen 67056, Germany
– sequence: 5
  givenname: Andrei-Nicolae
  surname: Parvulescu
  fullname: Parvulescu, Andrei-Nicolae
  organization: Process Research and Chemical Engineering, BASF SE, Ludwigshafen 67056, Germany
– sequence: 6
  givenname: Ulrich
  surname: Müller
  fullname: Müller, Ulrich
  organization: Process Research and Chemical Engineering, BASF SE, Ludwigshafen 67056, Germany
– sequence: 7
  givenname: Dirk
  surname: De Vos
  fullname: De Vos, Dirk
  organization: Center for Surface Chemistry and Catalysis, K. U. Leuven, Leuven 3001, Belgium
– sequence: 8
  givenname: Xiangju
  surname: Meng
  fullname: Meng, Xiangju
  organization: Department of Chemistry, Zhejiang University, Hangzhou 310028, China
– sequence: 9
  givenname: Feng-Shou
  surname: Xiao
  fullname: Xiao, Feng-Shou
  organization: College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 10
  givenname: Weiping
  surname: Zhang
  fullname: Zhang, Weiping
  organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 11
  givenname: Bernd
  surname: Marler
  fullname: Marler, Bernd
  organization: Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, Bochum 44780, Germany
– sequence: 12
  givenname: Ute
  surname: Kolb
  fullname: Kolb, Ute
  organization: Institute of Physical Chemistry, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
– sequence: 13
  givenname: Hermann
  surname: Gies
  fullname: Gies, Hermann
  organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
– sequence: 14
  givenname: Toshiyuki
  surname: Yokoi
  fullname: Yokoi, Toshiyuki
  email: yokoi@cat.res.titech.ac.jp
  organization: Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
BookMark eNqFkMFOAyEURYmpibX6By74gakwr-0wLkyapmqTJm50TRjmYWmmQwO0UT_Cb5ZxunKhK17gnUvuuSSD1rVIyA1nY8747HY7VnutYjXOWQ5jnudQTs_IkIsCMhACBmTIynyWARRwQS5D2DKWNnMxJF9LY1DHQJ2h84bWNkRvq0O0rqW2pXGDdHHI8F1vVPuGNZ0vV_QTXWMjJqZf8Kj0D7BHb5zfqVZjl6ddG217cIeQcn36pbs5og_dbnrfYUypSKM7ja65IudGNQGvT-eIvD4sXxZP2fr5cbWYrzMNRR4zMAWfFYpVU1ZPgJVlVQqtJgw5MKXQpBFK0Iob4KXKS1EJxcTUIEOR6gKMyF2fq70LwaOR2kbVlYhe2UZyJjuzcit7s7IzK3uzCZ78gvfe7pT_-A-77zFMxY4WvQzaYnLVy5G1s38HfAPP7pnI
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_05_237
crossref_primary_10_1002_ange_202403179
crossref_primary_10_1039_D3CY00584D
crossref_primary_10_1016_j_apcatb_2023_122746
crossref_primary_10_1002_ange_202506023
crossref_primary_10_1038_s41467_024_46924_2
crossref_primary_10_1016_j_fuel_2023_130694
crossref_primary_10_1016_j_jaap_2024_106359
crossref_primary_10_1016_j_mcat_2024_114721
crossref_primary_10_1016_S1872_2067_25_64702_4
crossref_primary_10_1016_j_mcat_2025_114863
crossref_primary_10_1016_j_cjche_2025_02_006
crossref_primary_10_1002_cssc_202402728
crossref_primary_10_1021_jacsau_5c00094
crossref_primary_10_3390_catal13081226
crossref_primary_10_1016_j_apsusc_2024_159492
crossref_primary_10_1021_jacs_4c00646
crossref_primary_10_1039_D5RE00119F
crossref_primary_10_1002_anie_202403179
crossref_primary_10_1002_anie_202506023
crossref_primary_10_1016_j_cclet_2023_108800
crossref_primary_10_1039_D3CY00482A
crossref_primary_10_1016_j_seppur_2024_127544
crossref_primary_10_1016_j_micromeso_2023_112727
crossref_primary_10_1007_s11426_024_2287_6
crossref_primary_10_1016_j_jece_2025_118385
crossref_primary_10_1039_D3CY00127J
crossref_primary_10_1016_j_ijhydene_2024_07_329
Cites_doi 10.1016/j.jcat.2016.12.024
10.1021/acscatal.5b01577
10.1021/jp106247g
10.1002/9783527618286.ch14
10.1016/j.apcatb.2016.08.053
10.1002/chem.201503758
10.1021/jacs.8b11443
10.1021/cm301629a
10.1038/s41467-019-09336-1
10.1039/C8CS00502H
10.1002/anie.201702550
10.1021/acs.iecr.9b06708
10.1021/acscentsci.6b00139
10.1021/acs.chemrev.7b00738
10.1021/acs.chemmater.9b03738
10.1016/j.jcat.2019.12.038
10.1039/D0CC06534J
10.1039/C9TA00174C
10.1006/jcat.1999.2548
10.1126/science.aam9035
10.1021/acs.chemmater.0c03154
10.1021/acs.iecr.7b04985
10.1021/acs.jpcc.1c04055
10.1039/B203966B
10.1016/j.micromeso.2008.03.032
10.1039/C6CP00136J
10.1021/acs.jpcc.5b03213
10.1016/j.jcat.2018.03.032
10.1021/jacs.9b13817
10.1016/j.micromeso.2018.11.002
10.1039/C7CP07650A
10.1021/jacs.6b02651
10.1039/C6CC07893A
10.1021/acs.jpcc.1c01649
10.1021/acscatal.7b01273
10.1039/C7CS00709D
10.1021/acs.chemmater.5b00651
10.1021/cm4018024
10.1021/acs.jpcc.5b03289
10.1016/j.jcat.2014.01.019
10.1039/b301634j
10.1039/c3dt50732g
10.1021/acscatal.1c00691
10.1016/j.jcat.2020.08.008
10.1039/D0CC02284E
10.1016/j.micromeso.2014.09.056
10.1002/chem.201803637
10.1021/acs.est.1c06475
10.1021/acs.chemrev.6b00715
10.1007/s11814-021-0796-2
10.1016/j.jcat.2016.09.025
10.1016/j.apcatb.2019.118511
10.1016/j.coche.2019.04.002
10.1016/j.jcat.2017.06.026
10.1021/acscatal.9b05431
10.1021/acs.jpcc.8b03475
10.1021/acscatal.7b03676
10.1021/acscatal.2c02125
10.1021/acs.chemmater.9b02227
10.1002/anie.202105167
10.1016/j.jcat.2019.11.004
10.1007/s11244-009-9273-6
10.1039/c3cy20782j
10.3390/catal11060751
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2023.122395
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2023_122395
S0926337323000383
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
~02
~G-
53G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
VH1
WUQ
XPP
~HD
ID FETCH-LOGICAL-c372t-3f7167a0b50d43099b98ca40e130aaefa40393ca1f319a298b8a085fe0e8fec33
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001812400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-3373
IngestDate Tue Nov 18 21:50:46 EST 2025
Sat Nov 29 07:11:45 EST 2025
Sat Mar 02 16:01:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AEI zeolite
Al distribution
Methane to methanol
Cu speciation
Acidic properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-3f7167a0b50d43099b98ca40e130aaefa40393ca1f319a298b8a085fe0e8fec33
ParticipantIDs crossref_citationtrail_10_1016_j_apcatb_2023_122395
crossref_primary_10_1016_j_apcatb_2023_122395
elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_122395
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Szanyi, Gao, Kwak, Kollar, Wang, Peden (bib64) 2016; 18
Gallego, Li, Paris, Martín, Martínez-Triguero, Boronat, Moliner, Corma (bib25) 2018; 24
Dědeček, Kaucký, Wichterlová, Gonsiorová (bib48) 2002; 4
Dusselier, Schmidt, Moulton, Haymore, Hellums, Davis (bib32) 2015; 27
Xu, Chen, Wu, Lei, Zhang, Han, Zhang, Zhu, Meng, Dai, Maurer, Parvulescu, Müller, Zhang, Yokoi, Bao, Marler, De Vos, Kolb, Zheng, Xiao (bib39) 2019; 7
Zhou, Cheng, Kang, Zhou, Subramanian, Zhang, Wang (bib44) 2019; 48
Li, Wang, Liu, Wu, Zhang, Zhang, Cheng, Wang (bib65) 2022; 12
Song, Chu, Wang, Shi, Zhao, Guo, Yang, Shen, Xue, Peng, Ding (bib5) 2017; 349
Yokoi, Mochizuki, Namba, Kondo, Tatsumi (bib27) 2015; 119
Findley, Ravikovitch, Sholl (bib14) 2018; 122
Dedecek, Balgova, Pashkova, Klein, Wichterlová (bib2) 2012; 24
Göltl, Bhandari, Mavrikakis (bib46) 2021; 11
Paolucci, Parekh, Khurana, Di Iorio, Li, Caballero, Shih, Anggara, Delgass, Miller, Ribeiro, Gounder, Schneider (bib9) 2016; 138
Dinh, Sullivan, Narsimhan, Serna, Meyer, Dincă, Román-Leshkov (bib41) 2019; 141
Kefirov, Penkova, Hadjiivanov, Dzwigaj, Cheb (bib62) 2008; 116
Schwach, Pan, Bao (bib43) 2017; 117
Razdan, Kumar, Foley, Bhan (bib12) 2020; 381
Prodinger, Derewinski, Wang, Washton, Walter, Szanyi, Gao, Wang, Peden (bib15) 2017; 201
Bernauer, Tabor, Pashkova, Kaucký, Sobalík, Wichterlová, Dedecek (bib6) 2016; 344
Freude (bib49) 2002; 1
Wu, Hei, Guan, Li (bib52) 2013; 3
Iorio, Li, Jones, Nimlos, Wang, Kunkes, Vattipalli, Prasad, Moini, Schneider, Gounder (bib23) 2020; 142
Zhu, Shan, Shan, Lian, Du, He (bib33) 2021; 55
Pashkova, Klein, Dedecek, Tokarová, Wichterlová (bib30) 2015; 202
Iorio, Nimlosand, Gounder (bib24) 2017; 7
Knott, Nimlos, Robichaud, Nimlos, Kim, Gounder (bib20) 2018; 8
Gábová, Dědeček, Čejka (bib31) 2003; 10
Tsunoji, Shimono, Tsuchiya, Sadakane, Sano (bib37) 2020; 32
Pashkova, Sklenak, Klein, Urbanova, Dedecek (bib26) 2016; 22
Phadke, Mansoor, Bondil, Head-Gordon, Bell (bib11) 2019; 141
Han, Zhang, Chen, Lin, Wan, Wang, Wang (bib50) 2021; 11
Pinilla-Herrero, Borfecchia, Holzinger, Mentzel, Joensen, Lomachenko, Bordiga, Lamberti, Berlier, Olsbye, Svelle, Skibsted, Beato (bib13) 2018; 362
Kwak, Kwak, Park, Myung-June Park, Lee (bib17) 2021; 38
Kharchenko, Zholobenko, Vicente, Fernandez, Vezin, De Waele, Mintova (bib58) 2018; 20
Nishitoba, Yoshida, Kondo, Yokoi (bib29) 2018; 57
Márquez-Alvarez, Pinar, García, Grande-Casas, Pérez-Pariente (bib21) 2009; 52
Newton, Knorpp, Sushkevich, Palagin, van Bokhoven (bib47) 2020; 49
Roma, n-Leshkov, Davis (bib28) 2011; 115
Pinar, Gómez-Hortigüela, McCusker, Pérez-Pariente (bib22) 2013; 25
Ipek, Lobo (bib35) 2016; 52
Xu, Liu, Dai, Li, Zhang, Wu, Yu, Chen (bib42) 2021; 60
Osuga, Bayarsaikhan, Yasuda, Manabe, Shima, Tsutsuminai, Fukuoka, Kobayashi, Yokoi (bib8) 2020; 56
Sushkevich, Palagin, Ranocchiari, van Bokhoven (bib60) 2017; 356
Su, Zhou, Liu, Wang, Jiao, Wang, Liu, Ye, Zhang, Zhang, Liu, Wang, Yang, Xie, He (bib55) 2019; 10
Biligetu, Wang, Nishitoba, Otomo, Park, Mochizuki, Kondo, Tatsumi, Yokoi (bib4) 2017; 353
Le, Chawla, Rimer (bib19) 2020; 391
Zdravkova, Drenchev, Ivanova, Mihaylov, Hadjiivanov (bib63) 2015; 119
Sazama, Wichterlová, Tábor, Šťastný, Naveen, Sobalík, Dědeček, Sklenák, Klein, Vondrová (bib10) 2014; 312
Sazama, Moravkova, Sklenak, Vondrova, Tabor, Sadovska, Pilar (bib59) 2020; 10
Dusselier, Deimund, Schmidt, Davis (bib16) 2015; 5
Ransom, Moulton, Shantz (bib38) 2020; 382
Wang, He, Jiao, Wang, Fan (bib18) 2019; 23
Nimlos, Hoffman, Hur, Lee, Iorio, Hibbitts, Gounder (bib1) 2020; 32
Devos, Bols, Plessers, Goethem, Seo, Hwang, Sels, Dusselier (bib7) 2019; 32
Wang, Nishitoba, Wang, Meng, Xiao, Zhang, Gies, Marler, Vos, Kolb, Feyen, McGuire, Parvulescu, Yokoi (bib57) 2020; 59
Zhou, Tang, Wang, Wang, Liu (bib54) 2021; 125
Giordanino, Vennestrom, Lundegaard, Stappen, Mossin, Beato, Bordiga, Lamberti (bib56) 2013; 42
Narsimhan, Iyoki, Dinh, Roman-Leshkov (bib40) 2016; 2
Boruntea, Lundegaard, Corma, Vennestrøm (bib51) 2019; 278
Ravi, Ranocchiari, van Bokhoven (bib45) 2017; 56
Shan, Shan, Shi, Du, Yu, He (bib3) 2020; 264
Palagin, Sushkevich, Knorpp, Ranocchiari, J.A.van Bokhoven (bib61) 2021; 125
Memioglu, Ipek (bib34) 2021; 57
Dusselier, Davis (bib36) 2018; 118
Lobree, Hwang, Reimer, Bell (bib53) 1999; 186
Wu (10.1016/j.apcatb.2023.122395_bib52) 2013; 3
Knott (10.1016/j.apcatb.2023.122395_bib20) 2018; 8
Memioglu (10.1016/j.apcatb.2023.122395_bib34) 2021; 57
Ipek (10.1016/j.apcatb.2023.122395_bib35) 2016; 52
Le (10.1016/j.apcatb.2023.122395_bib19) 2020; 391
Dusselier (10.1016/j.apcatb.2023.122395_bib32) 2015; 27
Ransom (10.1016/j.apcatb.2023.122395_bib38) 2020; 382
Xu (10.1016/j.apcatb.2023.122395_bib42) 2021; 60
Iorio (10.1016/j.apcatb.2023.122395_bib24) 2017; 7
Gábová (10.1016/j.apcatb.2023.122395_bib31) 2003; 10
Pashkova (10.1016/j.apcatb.2023.122395_bib26) 2016; 22
Devos (10.1016/j.apcatb.2023.122395_bib7) 2019; 32
Sazama (10.1016/j.apcatb.2023.122395_bib59) 2020; 10
Su (10.1016/j.apcatb.2023.122395_bib55) 2019; 10
Song (10.1016/j.apcatb.2023.122395_bib5) 2017; 349
Dinh (10.1016/j.apcatb.2023.122395_bib41) 2019; 141
Ravi (10.1016/j.apcatb.2023.122395_bib45) 2017; 56
Palagin (10.1016/j.apcatb.2023.122395_bib61) 2021; 125
Szanyi (10.1016/j.apcatb.2023.122395_bib64) 2016; 18
Shan (10.1016/j.apcatb.2023.122395_bib3) 2020; 264
Pinilla-Herrero (10.1016/j.apcatb.2023.122395_bib13) 2018; 362
Freude (10.1016/j.apcatb.2023.122395_bib49) 2002; 1
Iorio (10.1016/j.apcatb.2023.122395_bib23) 2020; 142
Kefirov (10.1016/j.apcatb.2023.122395_bib62) 2008; 116
Razdan (10.1016/j.apcatb.2023.122395_bib12) 2020; 381
Márquez-Alvarez (10.1016/j.apcatb.2023.122395_bib21) 2009; 52
Li (10.1016/j.apcatb.2023.122395_bib65) 2022; 12
Sazama (10.1016/j.apcatb.2023.122395_bib10) 2014; 312
Zhou (10.1016/j.apcatb.2023.122395_bib44) 2019; 48
Zhou (10.1016/j.apcatb.2023.122395_bib54) 2021; 125
Göltl (10.1016/j.apcatb.2023.122395_bib46) 2021; 11
Prodinger (10.1016/j.apcatb.2023.122395_bib15) 2017; 201
Pinar (10.1016/j.apcatb.2023.122395_bib22) 2013; 25
Zhu (10.1016/j.apcatb.2023.122395_bib33) 2021; 55
Dědeček (10.1016/j.apcatb.2023.122395_bib48) 2002; 4
Gallego (10.1016/j.apcatb.2023.122395_bib25) 2018; 24
Dusselier (10.1016/j.apcatb.2023.122395_bib16) 2015; 5
Narsimhan (10.1016/j.apcatb.2023.122395_bib40) 2016; 2
Wang (10.1016/j.apcatb.2023.122395_bib18) 2019; 23
Nishitoba (10.1016/j.apcatb.2023.122395_bib29) 2018; 57
Zdravkova (10.1016/j.apcatb.2023.122395_bib63) 2015; 119
Dedecek (10.1016/j.apcatb.2023.122395_bib2) 2012; 24
Bernauer (10.1016/j.apcatb.2023.122395_bib6) 2016; 344
Yokoi (10.1016/j.apcatb.2023.122395_bib27) 2015; 119
Osuga (10.1016/j.apcatb.2023.122395_bib8) 2020; 56
Boruntea (10.1016/j.apcatb.2023.122395_bib51) 2019; 278
Wang (10.1016/j.apcatb.2023.122395_bib57) 2020; 59
Tsunoji (10.1016/j.apcatb.2023.122395_bib37) 2020; 32
Lobree (10.1016/j.apcatb.2023.122395_bib53) 1999; 186
Giordanino (10.1016/j.apcatb.2023.122395_bib56) 2013; 42
Phadke (10.1016/j.apcatb.2023.122395_bib11) 2019; 141
Pashkova (10.1016/j.apcatb.2023.122395_bib30) 2015; 202
Xu (10.1016/j.apcatb.2023.122395_bib39) 2019; 7
Han (10.1016/j.apcatb.2023.122395_bib50) 2021; 11
Nimlos (10.1016/j.apcatb.2023.122395_bib1) 2020; 32
Dusselier (10.1016/j.apcatb.2023.122395_bib36) 2018; 118
Newton (10.1016/j.apcatb.2023.122395_bib47) 2020; 49
Roma (10.1016/j.apcatb.2023.122395_bib28) 2011; 115
Findley (10.1016/j.apcatb.2023.122395_bib14) 2018; 122
Paolucci (10.1016/j.apcatb.2023.122395_bib9) 2016; 138
Kharchenko (10.1016/j.apcatb.2023.122395_bib58) 2018; 20
Sushkevich (10.1016/j.apcatb.2023.122395_bib60) 2017; 356
Biligetu (10.1016/j.apcatb.2023.122395_bib4) 2017; 353
Kwak (10.1016/j.apcatb.2023.122395_bib17) 2021; 38
Schwach (10.1016/j.apcatb.2023.122395_bib43) 2017; 117
References_xml – volume: 356
  start-page: 523
  year: 2017
  end-page: 527
  ident: bib60
  article-title: Selective anaerobic oxidation of methane enables direct synthesis of methanol
  publication-title: Science
– volume: 11
  start-page: 7719
  year: 2021
  end-page: 7734
  ident: bib46
  article-title: Thermodynamics perspective on the stepwise conversion of methane to methanol over Cu-exchanged SSZ-13
  publication-title: ACS Catal.
– volume: 118
  start-page: 5265
  year: 2018
  end-page: 5329
  ident: bib36
  article-title: Small-pore zeolites: synthesis and catalysis
  publication-title: Chem. Rev.
– volume: 115
  start-page: 1096
  year: 2011
  end-page: 1102
  ident: bib28
  article-title: Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites
  publication-title: J. Phys. Chem. C.
– volume: 362
  start-page: 146
  year: 2018
  end-page: 163
  ident: bib13
  article-title: High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics
  publication-title: J. Catal.
– volume: 56
  start-page: 16464
  year: 2017
  end-page: 16483
  ident: bib45
  article-title: The direct catalytic oxidation of methane to methanol—a critical assessment
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 770
  year: 2018
  end-page: 784
  ident: bib20
  article-title: Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research
  publication-title: ACS Catal.
– volume: 264
  year: 2020
  ident: bib3
  article-title: A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13
  publication-title: Appl. Catal. B: Environ.
– volume: 49
  start-page: 1449
  year: 2020
  end-page: 1486
  ident: bib47
  article-title: Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination
  publication-title: Chem. Soc. Rev.
– volume: 186
  start-page: 242
  year: 1999
  end-page: 253
  ident: bib53
  article-title: Investigations of the state of Fe in H–ZSM-5
  publication-title: J. Catal.
– volume: 116
  start-page: 180
  year: 2008
  end-page: 187
  ident: bib62
  article-title: Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR
  publication-title: Microporous Mesoporous Mater.
– volume: 312
  start-page: 123
  year: 2014
  end-page: 138
  ident: bib10
  article-title: Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx
  publication-title: J. Catal.
– volume: 48
  start-page: 3193
  year: 2019
  ident: bib44
  article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
  publication-title: Chem. Soc. Rev.
– volume: 119
  start-page: 15292
  year: 2015
  end-page: 15302
  ident: bib63
  article-title: Surprising coordination chemistry of Cu+ cations in zeolites: FTIR study of adsorption and coadsorption of CO, NO, N2, and H2O on Cu−ZSM‑5
  publication-title: J. Phys. Chem. C.
– volume: 20
  start-page: 2880
  year: 2018
  end-page: 2889
  ident: bib58
  article-title: Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 14631
  year: 2018
  end-page: 14635
  ident: bib25
  article-title: Making nanosized CHA zeolites with controlled Al distribution for optimizing methanol-to-olefin performance
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib55
  article-title: Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3937
  year: 2016
  end-page: 3941
  ident: bib26
  article-title: Location of framework Al atoms in the channels of ZSM-5: effect of the (hydrothermal) synthesis
  publication-title: Chemistry
– volume: 56
  start-page: 5913
  year: 2020
  end-page: 5916
  ident: bib8
  article-title: Metal cation-exchanged zeolites with the location, state, and size of metal species controlled
  publication-title: Chem. Commun. (Camb. )
– volume: 55
  start-page: 16175
  year: 2021
  end-page: 16183
  ident: bib33
  article-title: Reaction pathways of standard and fast selective catalytic reduction over Cu-SSZ-39
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 6078
  year: 2015
  end-page: 6085
  ident: bib16
  article-title: Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39
  publication-title: ACS Catal.
– volume: 7
  start-page: 4420
  year: 2019
  end-page: 4425
  ident: bib39
  article-title: Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 7375
  year: 2020
  end-page: 7382
  ident: bib57
  article-title: Cu-exchanged CHA-type zeolite from organic template-free synthesis: an effective catalyst for NH3–SCR
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 3984
  year: 2020
  end-page: 4002
  ident: bib59
  article-title: Effect of the nuclearity and coordination of Cu and Fe sites in beta zeolites on the oxidation of hydrocarbons
  publication-title: ACS Catal.
– volume: 349
  start-page: 163
  year: 2017
  end-page: 174
  ident: bib5
  article-title: Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes
  publication-title: J. Catal.
– volume: 1
  start-page: 465
  year: 2002
  end-page: 504
  ident: bib49
  publication-title: NMR Tech., Handb. Porous Solids
– volume: 141
  start-page: 1614
  year: 2019
  end-page: 1627
  ident: bib11
  article-title: Mechanism and Kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: us10473
  year: 2016
  end-page: us10485
  ident: bib64
  article-title: Characterization of Fe(2)(+) ions in Fe,H/SSZ-13 zeolites: FTIR spectroscopy of CO and NO probe molecules
  publication-title: Phys. Chem. Chem. Phys.
– volume: 25
  start-page: 3654
  year: 2013
  end-page: 3661
  ident: bib22
  article-title: Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent
  publication-title: Chem. Mater.
– volume: 278
  start-page: 105
  year: 2019
  end-page: 114
  ident: bib51
  article-title: Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations
  publication-title: Microporous Mesoporous Mater.
– volume: 125
  start-page: 14675
  year: 2021
  end-page: 14680
  ident: bib54
  article-title: Effect of Cu concentration on the selective catalytic reduction of NO with ammonia for aluminosilicate zeolite SSZ-13 catalysts
  publication-title: J. Phys. Chem. C.
– volume: 32
  start-page: 60
  year: 2020
  end-page: 74
  ident: bib37
  article-title: Formation pathway of AEI zeolites as a basis for a streamlined synthesis
  publication-title: Chem. Mater.
– volume: 201
  start-page: 461
  year: 2017
  end-page: 469
  ident: bib15
  article-title: Sub-micron Cu/SSZ-13: synthesis and application as selective catalytic reduction (SCR) catalysts
  publication-title: Appl. Catal. B: Environ.
– volume: 142
  start-page: 4807
  year: 2020
  end-page: 4819
  ident: bib23
  article-title: Cooperative and competitive occlusion of organic and inorganic structure-directing agents within chabazite zeolites influences their aluminum arrangement
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 16634
  year: 2021
  end-page: 16640
  ident: bib42
  article-title: H2O-built proton transfer bridge enhances continuous methane oxidation to methanolover Cu-BEA zeolite
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  start-page: 9277
  year: 2020
  end-page: 9298
  ident: bib1
  article-title: Experimental and theoretical assessments of aluminum proximity in MFI zeolites and its alteration by organic and inorganic structure-directing agents
  publication-title: Chem. Mater.
– volume: 7
  start-page: 6663
  year: 2017
  end-page: 6674
  ident: bib24
  article-title: Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity
  publication-title: ACS Catal.
– volume: 344
  start-page: 157
  year: 2016
  end-page: 172
  ident: bib6
  article-title: Proton proximity–New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites
  publication-title: J. Catal.
– volume: 52
  start-page: 1281
  year: 2009
  end-page: 1291
  ident: bib21
  article-title: Influence of Al distribution and defects concentration of ferrierite catalysts synthesized from Na-free gels in the skeletal isomerization of n-butene
  publication-title: Top. Catal.
– volume: 52
  start-page: 13401
  year: 2016
  end-page: 13404
  ident: bib35
  article-title: Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant
  publication-title: Chem. Commun. (Camb. )
– volume: 11
  start-page: 751
  year: 2021
  ident: bib50
  article-title: Critical role of Al pair sites in methane oxidation to methanol on Cu-exchanged mordenite zeolites
  publication-title: Catalysts
– volume: 42
  start-page: 12741
  year: 2013
  end-page: 12761
  ident: bib56
  article-title: Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios
  publication-title: Dalton Trans.
– volume: 353
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib4
  article-title: Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols
  publication-title: J. Catal.
– volume: 3
  start-page: 1333
  year: 2013
  end-page: 1342
  ident: bib52
  article-title: Oxidative dehydrogenation of propane with nitrous oxide over Fe–MFI prepared by ion-exchange: effect of acid post-treatments
  publication-title: Catal. Sci. Technol.
– volume: 27
  start-page: 2695
  year: 2015
  end-page: 2702
  ident: bib32
  article-title: Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39
  publication-title: Chem. Mater.
– volume: 122
  start-page: 12332
  year: 2018
  end-page: 12340
  ident: bib14
  article-title: The effect of aluminum short-range ordering on carbon dioxide adsorption in zeolites
  publication-title: J. Phys. Chem. C.
– volume: 2
  start-page: 424
  year: 2016
  end-page: 429
  ident: bib40
  article-title: Catalytic Oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature
  publication-title: ACS Cent. Sci.
– volume: 38
  start-page: 1117
  year: 2021
  end-page: 1128
  ident: bib17
  article-title: Recent progress on Al distribution over zeolite frameworks: linking theories and experiments
  publication-title: Korean J. Chem. Eng.
– volume: 391
  start-page: 56
  year: 2020
  end-page: 68
  ident: bib19
  article-title: Impact of acid site speciation and spatial gradients on zeolite catalysis
  publication-title: J. Catal.
– volume: 4
  start-page: 5406
  year: 2002
  end-page: 5413
  ident: bib48
  article-title: Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 32
  start-page: 273
  year: 2019
  end-page: 285
  ident: bib7
  article-title: Synthesis–structure–activity relations in Fe-CHA for C–H activation: control of Al distribution by iNTERZEOLITE CONversion
  publication-title: Chem. Mater.
– volume: 57
  start-page: 3914
  year: 2018
  end-page: 3922
  ident: bib29
  article-title: Control of Al distribution in the CHA-type aluminosilicate zeolites and its impact on the hydrothermal stability and catalytic properties
  publication-title: Ind. Eng. Chem. Res.
– volume: 381
  start-page: 261
  year: 2020
  end-page: 270
  ident: bib12
  article-title: Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts
  publication-title: J. Catal.
– volume: 23
  start-page: 146
  year: 2019
  end-page: 154
  ident: bib18
  article-title: Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework
  publication-title: Curr. Opin. Chem. Eng.
– volume: 119
  start-page: 15303
  year: 2015
  end-page: 15315
  ident: bib27
  article-title: Control of the Al distribution in the framework of ZSM‑5 Zeolite and its evaluation by solid-state NMR technique and catalytic properties
  publication-title: J. Phys. Chem. C.
– volume: 117
  start-page: 8497
  year: 2017
  end-page: 8520
  ident: bib43
  article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects
  publication-title: Chem. Rev.
– volume: 138
  start-page: 6028
  year: 2016
  end-page: 6048
  ident: bib9
  article-title: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites
  publication-title: J. Am. Chem. Soc.
– volume: 202
  start-page: 138
  year: 2015
  end-page: 146
  ident: bib30
  article-title: Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework
  publication-title: Microporous Mesoporous Mater.
– volume: 382
  start-page: 339
  year: 2020
  end-page: 346
  ident: bib38
  article-title: The structure directing agent isomer used in SSZ-39 synthesis impacts the zeolite activity towards selective catalytic reduction of nitric oxides
  publication-title: J. Catal.
– volume: 12
  start-page: 8793
  year: 2022
  end-page: 8801
  ident: bib65
  article-title: Distance for communication between metal and acid sites for syngas conversion
  publication-title: ACS Catal.
– volume: 141
  start-page: 11641
  year: 2019
  end-page: 11650
  ident: bib41
  article-title: Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Cu Dimers in Copper-Exchanged Zeolites
  publication-title: J. Am. Chem. Soc
– volume: 125
  start-page: 12094
  year: 2021
  end-page: 12106
  ident: bib61
  article-title: Mapping vibrational spectra to the structures of copper species in zeolites based on calculated stretching frequencies of adsorbed nitrogen and carbon monoxides
  publication-title: J. Phys. Chem. C.
– volume: 24
  start-page: 3231
  year: 2012
  end-page: 3239
  ident: bib2
  article-title: Synthesis of ZSM-5 zeolites with defined distRibution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1196
  year: 2003
  end-page: 1197
  ident: bib31
  article-title: Control of Al distribution in ZSM-5 by conditions of zeolite synthesis
  publication-title: Chem. Commun.
– volume: 57
  start-page: 1364
  year: 2021
  end-page: 1367
  ident: bib34
  article-title: A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39
  publication-title: Chem. Commun.
– volume: 349
  start-page: 163
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib5
  article-title: Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.12.024
– volume: 5
  start-page: 6078
  year: 2015
  ident: 10.1016/j.apcatb.2023.122395_bib16
  article-title: Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01577
– volume: 115
  start-page: 1096
  year: 2011
  ident: 10.1016/j.apcatb.2023.122395_bib28
  article-title: Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp106247g
– volume: 1
  start-page: 465
  year: 2002
  ident: 10.1016/j.apcatb.2023.122395_bib49
  publication-title: NMR Tech., Handb. Porous Solids
  doi: 10.1002/9783527618286.ch14
– volume: 201
  start-page: 461
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib15
  article-title: Sub-micron Cu/SSZ-13: synthesis and application as selective catalytic reduction (SCR) catalysts
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.08.053
– volume: 22
  start-page: 3937
  year: 2016
  ident: 10.1016/j.apcatb.2023.122395_bib26
  article-title: Location of framework Al atoms in the channels of ZSM-5: effect of the (hydrothermal) synthesis
  publication-title: Chemistry
  doi: 10.1002/chem.201503758
– volume: 141
  start-page: 1614
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib11
  article-title: Mechanism and Kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11443
– volume: 24
  start-page: 3231
  year: 2012
  ident: 10.1016/j.apcatb.2023.122395_bib2
  article-title: Synthesis of ZSM-5 zeolites with defined distRibution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution
  publication-title: Chem. Mater.
  doi: 10.1021/cm301629a
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib55
  article-title: Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09336-1
– volume: 48
  start-page: 3193
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib44
  article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00502H
– volume: 56
  start-page: 16464
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib45
  article-title: The direct catalytic oxidation of methane to methanol—a critical assessment
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201702550
– volume: 59
  start-page: 7375
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib57
  article-title: Cu-exchanged CHA-type zeolite from organic template-free synthesis: an effective catalyst for NH3–SCR
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b06708
– volume: 2
  start-page: 424
  year: 2016
  ident: 10.1016/j.apcatb.2023.122395_bib40
  article-title: Catalytic Oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00139
– volume: 118
  start-page: 5265
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib36
  article-title: Small-pore zeolites: synthesis and catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00738
– volume: 32
  start-page: 273
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib7
  article-title: Synthesis–structure–activity relations in Fe-CHA for C–H activation: control of Al distribution by iNTERZEOLITE CONversion
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03738
– volume: 382
  start-page: 339
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib38
  article-title: The structure directing agent isomer used in SSZ-39 synthesis impacts the zeolite activity towards selective catalytic reduction of nitric oxides
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.12.038
– volume: 57
  start-page: 1364
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib34
  article-title: A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC06534J
– volume: 7
  start-page: 4420
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib39
  article-title: Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00174C
– volume: 186
  start-page: 242
  year: 1999
  ident: 10.1016/j.apcatb.2023.122395_bib53
  article-title: Investigations of the state of Fe in H–ZSM-5
  publication-title: J. Catal.
  doi: 10.1006/jcat.1999.2548
– volume: 356
  start-page: 523
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib60
  article-title: Selective anaerobic oxidation of methane enables direct synthesis of methanol
  publication-title: Science
  doi: 10.1126/science.aam9035
– volume: 32
  start-page: 9277
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib1
  article-title: Experimental and theoretical assessments of aluminum proximity in MFI zeolites and its alteration by organic and inorganic structure-directing agents
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03154
– volume: 57
  start-page: 3914
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib29
  article-title: Control of Al distribution in the CHA-type aluminosilicate zeolites and its impact on the hydrothermal stability and catalytic properties
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b04985
– volume: 125
  start-page: 14675
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib54
  article-title: Effect of Cu concentration on the selective catalytic reduction of NO with ammonia for aluminosilicate zeolite SSZ-13 catalysts
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c04055
– volume: 4
  start-page: 5406
  year: 2002
  ident: 10.1016/j.apcatb.2023.122395_bib48
  article-title: Co2+ions as probes of Al distribution in the framework of zeolites. ZSM-5 study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B203966B
– volume: 116
  start-page: 180
  year: 2008
  ident: 10.1016/j.apcatb.2023.122395_bib62
  article-title: Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.03.032
– volume: 18
  start-page: us10473
  year: 2016
  ident: 10.1016/j.apcatb.2023.122395_bib64
  article-title: Characterization of Fe(2)(+) ions in Fe,H/SSZ-13 zeolites: FTIR spectroscopy of CO and NO probe molecules
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00136J
– volume: 119
  start-page: 15292
  year: 2015
  ident: 10.1016/j.apcatb.2023.122395_bib63
  article-title: Surprising coordination chemistry of Cu+ cations in zeolites: FTIR study of adsorption and coadsorption of CO, NO, N2, and H2O on Cu−ZSM‑5
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b03213
– volume: 362
  start-page: 146
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib13
  article-title: High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.03.032
– volume: 142
  start-page: 4807
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib23
  article-title: Cooperative and competitive occlusion of organic and inorganic structure-directing agents within chabazite zeolites influences their aluminum arrangement
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13817
– volume: 278
  start-page: 105
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib51
  article-title: Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.11.002
– volume: 20
  start-page: 2880
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib58
  article-title: Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07650A
– volume: 138
  start-page: 6028
  year: 2016
  ident: 10.1016/j.apcatb.2023.122395_bib9
  article-title: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02651
– volume: 52
  start-page: 13401
  year: 2016
  ident: 10.1016/j.apcatb.2023.122395_bib35
  article-title: Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant
  publication-title: Chem. Commun. (Camb. )
  doi: 10.1039/C6CC07893A
– volume: 125
  start-page: 12094
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib61
  article-title: Mapping vibrational spectra to the structures of copper species in zeolites based on calculated stretching frequencies of adsorbed nitrogen and carbon monoxides
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c01649
– volume: 7
  start-page: 6663
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib24
  article-title: Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01273
– volume: 49
  start-page: 1449
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib47
  article-title: Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00709D
– volume: 27
  start-page: 2695
  year: 2015
  ident: 10.1016/j.apcatb.2023.122395_bib32
  article-title: Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00651
– volume: 25
  start-page: 3654
  year: 2013
  ident: 10.1016/j.apcatb.2023.122395_bib22
  article-title: Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent
  publication-title: Chem. Mater.
  doi: 10.1021/cm4018024
– volume: 119
  start-page: 15303
  year: 2015
  ident: 10.1016/j.apcatb.2023.122395_bib27
  article-title: Control of the Al distribution in the framework of ZSM‑5 Zeolite and its evaluation by solid-state NMR technique and catalytic properties
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b03289
– volume: 312
  start-page: 123
  year: 2014
  ident: 10.1016/j.apcatb.2023.122395_bib10
  article-title: Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.01.019
– volume: 10
  start-page: 1196
  year: 2003
  ident: 10.1016/j.apcatb.2023.122395_bib31
  article-title: Control of Al distribution in ZSM-5 by conditions of zeolite synthesis
  publication-title: Chem. Commun.
  doi: 10.1039/b301634j
– volume: 42
  start-page: 12741
  year: 2013
  ident: 10.1016/j.apcatb.2023.122395_bib56
  article-title: Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt50732g
– volume: 11
  start-page: 7719
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib46
  article-title: Thermodynamics perspective on the stepwise conversion of methane to methanol over Cu-exchanged SSZ-13
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00691
– volume: 391
  start-page: 56
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib19
  article-title: Impact of acid site speciation and spatial gradients on zeolite catalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.08.008
– volume: 56
  start-page: 5913
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib8
  article-title: Metal cation-exchanged zeolites with the location, state, and size of metal species controlled
  publication-title: Chem. Commun. (Camb. )
  doi: 10.1039/D0CC02284E
– volume: 202
  start-page: 138
  year: 2015
  ident: 10.1016/j.apcatb.2023.122395_bib30
  article-title: Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2014.09.056
– volume: 24
  start-page: 14631
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib25
  article-title: Making nanosized CHA zeolites with controlled Al distribution for optimizing methanol-to-olefin performance
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201803637
– volume: 55
  start-page: 16175
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib33
  article-title: Reaction pathways of standard and fast selective catalytic reduction over Cu-SSZ-39
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06475
– volume: 117
  start-page: 8497
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib43
  article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00715
– volume: 38
  start-page: 1117
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib17
  article-title: Recent progress on Al distribution over zeolite frameworks: linking theories and experiments
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0796-2
– volume: 344
  start-page: 157
  year: 2016
  ident: 10.1016/j.apcatb.2023.122395_bib6
  article-title: Proton proximity–New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.09.025
– volume: 264
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib3
  article-title: A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118511
– volume: 141
  start-page: 11641
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib41
  article-title: Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Cu Dimers in Copper-Exchanged Zeolites
– volume: 23
  start-page: 146
  year: 2019
  ident: 10.1016/j.apcatb.2023.122395_bib18
  article-title: Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2019.04.002
– volume: 353
  start-page: 1
  year: 2017
  ident: 10.1016/j.apcatb.2023.122395_bib4
  article-title: Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.06.026
– volume: 10
  start-page: 3984
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib59
  article-title: Effect of the nuclearity and coordination of Cu and Fe sites in beta zeolites on the oxidation of hydrocarbons
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05431
– volume: 122
  start-page: 12332
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib14
  article-title: The effect of aluminum short-range ordering on carbon dioxide adsorption in zeolites
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.8b03475
– volume: 8
  start-page: 770
  year: 2018
  ident: 10.1016/j.apcatb.2023.122395_bib20
  article-title: Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03676
– volume: 12
  start-page: 8793
  year: 2022
  ident: 10.1016/j.apcatb.2023.122395_bib65
  article-title: Distance for communication between metal and acid sites for syngas conversion
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02125
– volume: 32
  start-page: 60
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib37
  article-title: Formation pathway of AEI zeolites as a basis for a streamlined synthesis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02227
– volume: 60
  start-page: 16634
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib42
  article-title: H2O-built proton transfer bridge enhances continuous methane oxidation to methanolover Cu-BEA zeolite
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105167
– volume: 381
  start-page: 261
  year: 2020
  ident: 10.1016/j.apcatb.2023.122395_bib12
  article-title: Influence of ethylene and acetylene on the rate and reversibility of methane dehydroaromatization on Mo/H-ZSM-5 catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.11.004
– volume: 52
  start-page: 1281
  year: 2009
  ident: 10.1016/j.apcatb.2023.122395_bib21
  article-title: Influence of Al distribution and defects concentration of ferrierite catalysts synthesized from Na-free gels in the skeletal isomerization of n-butene
  publication-title: Top. Catal.
  doi: 10.1007/s11244-009-9273-6
– volume: 3
  start-page: 1333
  year: 2013
  ident: 10.1016/j.apcatb.2023.122395_bib52
  article-title: Oxidative dehydrogenation of propane with nitrous oxide over Fe–MFI prepared by ion-exchange: effect of acid post-treatments
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy20782j
– volume: 11
  start-page: 751
  year: 2021
  ident: 10.1016/j.apcatb.2023.122395_bib50
  article-title: Critical role of Al pair sites in methane oxidation to methanol on Cu-exchanged mordenite zeolites
  publication-title: Catalysts
  doi: 10.3390/catal11060751
SSID ssj0002328
Score 2.5730124
Snippet The effects of the organic structure-directing agent (OSDA) with or without Na cations for the synthesis of AEI zeolite on the location and content of the Al...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122395
SubjectTerms Acidic properties
AEI zeolite
Al distribution
Cu speciation
Methane to methanol
Title Effects of Al distribution in the Cu-exchanged AEI zeolites on the reaction performance of continuous direct conversion of methane to methanol
URI https://dx.doi.org/10.1016/j.apcatb.2023.122395
Volume 325
WOSCitedRecordID wos001001812400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002328
  issn: 0926-3373
  databaseCode: AIEXJ
  dateStart: 19950211
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKFwk4ICisWL7kA7coVWunG-eYrYpYDiskilROkZNMpK66SdVtVxU_gt_CT2TsiZMsRXxJXKIoTeIk8-p5Hr_xMPZGaAhFoMCfBNgFBiKb-CrNtZ-CyNMwykZCZ7bYRHhxoRaL6EOv983lwtyswrJU-320_q-mxmNobJM6-xfmbm6KB3AfjY5bNDtu_8jws1ahEdsJmKamldM0Tnc-7CnjN_fi2bn3BYwKDtzMgYdEkiqIrztpBVZ_bupK7IxqllwhidZtxI0m6k0g3hbjoN1q1SW_jvHakJFZCWXondm-uE22043gY7HUFQmIl2tYtnF_6ps-V7XHNVqinT2iq4aUg3emYZPDlYZaNDLfANyKcAirJ6QcTwq7HaTeUPxSnPpSUh2UIVDvrULpS0WVcVz3Limx-sBVUNTicqjX-Nbp0DQ8HCNZopqfPyzC_dE0Z1rDEZuZTJV32JEIJ5Hqs6P4fLZ433h_ZKjW-7vHc-maVlN42NbP6VCH4swfsYf12ITHhKnHrAflgN2bupKAA_ags3rlgB3fshuvvcT1E_a1hiCvCh6veBeCfFlyRBjvQpAjBLmDIK_oBAdB3oGguV8LQU4Q5C0Eze81BPm24g6CT9mnt7P59J1f1_3wMxmKrS8LHMSHepRORnkgcQiTRirTwQiQb2kNBe7KSGZ6XKD_0CJSqdI4cihgBApfT8pj1i-rEp4xjt67CCIkaRny_jDNo0yOUwVwGilRjAs4YdJ9_iSrF8U3tVlWiVM_XiZktMQYLSGjnTC_uWpNi8L85vzQWTapiS19ogTB-Msrn__zlS_Y_fa_9JL1t5sdvGJ3s5vt8nrzukbtd4L9z0g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Al+distribution+in+the+Cu-exchanged+AEI+zeolites+on+the+reaction+performance+of+continuous+direct+conversion+of+methane+to+methanol&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Xiao%2C+Peipei&rft.au=Wang%2C+Yong&rft.au=Lu%2C+Yao&rft.au=De+Baerdemaeker%2C+Trees&rft.date=2023-05-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=325&rft_id=info:doi/10.1016%2Fj.apcatb.2023.122395&rft.externalDocID=S0926337323000383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon