Optimistic Stackelberg solutions to bilevel linear programming with fuzzy random variable coefficients
In this paper, we consider a kind of bilevel linear programming problem where the coefficients of both objective functions are fuzzy random variables. The purpose of this paper is to develop a computational method for obtaining optimistic Stackelberg solutions to such a problem. Based on α-level set...
Uložené v:
| Vydané v: | Knowledge-based systems Ročník 67; s. 206 - 217 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.09.2014
|
| Predmet: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we consider a kind of bilevel linear programming problem where the coefficients of both objective functions are fuzzy random variables. The purpose of this paper is to develop a computational method for obtaining optimistic Stackelberg solutions to such a problem. Based on α-level sets of fuzzy random variables, we first transform the fuzzy random bilevel programming problem into an α-stochastic interval bilevel linear programming problem. To minimize the interval objective functions, the order relations which represent the decision maker’s preference are defined by the right limit and the center of random interval simultaneously. Using the order relations and expectation optimization, the α-stochastic interval bilevel linear programming problem can be converted into a deterministic multiobjective bilevel linear programming problem. According to optimistic anticipation from the upper level decision maker, the optimistic Stackelberg solution is introduced and a computational method is also presented. Finally, several numerical examples are provided to demonstrate the feasibility of the proposed approach. |
|---|---|
| AbstractList | In this paper, we consider a kind of bilevel linear programming problem where the coefficients of both objective functions are fuzzy random variables. The purpose of this paper is to develop a computational method for obtaining optimistic Stackelberg solutions to such a problem. Based on α-level sets of fuzzy random variables, we first transform the fuzzy random bilevel programming problem into an α-stochastic interval bilevel linear programming problem. To minimize the interval objective functions, the order relations which represent the decision maker’s preference are defined by the right limit and the center of random interval simultaneously. Using the order relations and expectation optimization, the α-stochastic interval bilevel linear programming problem can be converted into a deterministic multiobjective bilevel linear programming problem. According to optimistic anticipation from the upper level decision maker, the optimistic Stackelberg solution is introduced and a computational method is also presented. Finally, several numerical examples are provided to demonstrate the feasibility of the proposed approach. In this paper, we consider a kind of bilevel linear programming problem where the coefficients of both objective functions are fuzzy random variables. The purpose of this paper is to develop a computational method for obtaining optimistic Stackelberg solutions to such a problem. Based on alpha - alpha -level sets of fuzzy random variables, we first transform the fuzzy random bilevel programming problem into an alpha - alpha -stochastic interval bilevel linear programming problem. To minimize the interval objective functions, the order relations which represent the decision maker's preference are defined by the right limit and the center of random interval simultaneously. Using the order relations and expectation optimization, the alpha - alpha -stochastic interval bilevel linear programming problem can be converted into a deterministic multiobjective bilevel linear programming problem. According to optimistic anticipation from the upper level decision maker, the optimistic Stackelberg solution is introduced and a computational method is also presented. Finally, several numerical examples are provided to demonstrate the feasibility of the proposed approach. |
| Author | Wang, Yuping Ren, Aihong |
| Author_xml | – sequence: 1 givenname: Aihong surname: Ren fullname: Ren, Aihong organization: School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China – sequence: 2 givenname: Yuping surname: Wang fullname: Wang, Yuping email: ywang@xidian.edu.cn organization: School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China |
| BookMark | eNqFkD1v2zAQhokiBep8_IMMHLtIvaNEy-lQoAiaNkCADG1n4kSdXDoU6ZK0A-fXR4Y7dWinW97nxb3PuTgLMbAQ1wg1Ai4_bOqnEPMh1wqwrUHXgPBGLHDVqapr4eZMLOBGQ9WBxnfiPOcNACiFq4UYH7fFTS4XZ-X3QvaJfc9pLXP0u-JiyLJE2TvPe_bSu8CU5DbFdaJpcmEtn135Jcfdy8tBJgpDnOSekqPes7SRx9FZx6HkS_F2JJ_56s-9ED_vvvy4_VY9PH69v_38UNmmU6VqLA7c9K1qaMClZTtqUoy9xqEZuO0UrVpUbQOAeqmB5hnU2b7HjpRm5uZCvD_1zj_-3nEuZt5m2XsKHHfZ4LJDDS2imqPtKWpTzDnxaLbJTZQOBsEctZqNOWk1R60GtJm1ztjHvzDrCh1VlUTO_w_-dIJ5drB3nEw--rE8uMS2mCG6fxe8Ajxmm1M |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2018_02_030 crossref_primary_10_1080_0305215X_2021_2014829 crossref_primary_10_1007_s12597_024_00857_y crossref_primary_10_1108_K_10_2014_0226 crossref_primary_10_1109_ACCESS_2018_2828706 crossref_primary_10_3233_JIFS_152354 crossref_primary_10_1007_s00500_015_1996_7 crossref_primary_10_1007_s10489_018_1177_3 |
| Cites_doi | 10.1016/j.fss.2011.07.006 10.1007/978-3-540-71258-9_17 10.1109/TFUZZ.2009.2030329 10.1016/j.eswa.2012.08.048 10.1016/j.ins.2013.03.003 10.1016/S0165-0114(98)00130-4 10.1108/17410390710725760 10.1016/j.fss.2005.03.001 10.1016/j.fss.2007.04.005 10.1016/j.ejor.2005.09.023 10.1016/j.eswa.2012.10.052 10.1023/A:1021729618112 10.1016/0020-0255(79)90020-3 10.1080/0233193031000149894 10.1016/0020-0255(78)90019-1 10.1016/0165-0114(95)00043-7 10.1016/S0019-9958(65)90241-X 10.1109/91.963757 10.1007/s10898-008-9365-z 10.1016/0377-2217(95)00055-0 10.1016/0165-0114(78)90029-5 10.1016/j.eswa.2011.02.069 10.1002/net.20482 10.1007/s10107-008-0259-0 10.1016/0022-247X(86)90093-4 10.1007/978-3-642-01020-0_13 10.1007/BF00933152 10.1007/978-3-642-48782-8_32 10.1080/01969722.2010.511547 10.1007/s13042-011-0055-7 10.1007/s10100-010-0156-5 10.1016/0165-0114(93)90025-D 10.1016/j.omega.2010.02.002 10.1287/mnsc.30.8.1004 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2014.05.010 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 217 |
| ExternalDocumentID | 10_1016_j_knosys_2014_05_010 S0950705114001944 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c372t-3c1de3b423ad16cecf5a2e1b51d3de472a8412430015650a000a7cbb17a25eee3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340221600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Thu Oct 02 07:04:11 EDT 2025 Sat Nov 29 06:41:26 EST 2025 Tue Nov 18 21:22:38 EST 2025 Fri Feb 23 02:28:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiobjective Fuzzy random variables Level sets Bilevel linear programming Interval number Optimistic Stackelberg solutions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-3c1de3b423ad16cecf5a2e1b51d3de472a8412430015650a000a7cbb17a25eee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671504112 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1671504112 crossref_primary_10_1016_j_knosys_2014_05_010 crossref_citationtrail_10_1016_j_knosys_2014_05_010 elsevier_sciencedirect_doi_10_1016_j_knosys_2014_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sakawa, Matsui (b0060) 2013; 238 Liu (b0140) 2001; 9 Dempe (b0010) 2003; 52 Zhang, Lu (b0025) 2007; 20 Dubio, Prade (b0105) 1980 Sakawa, Katagiri (b0080) 2012; 20 Bialas, Karwan (b0190) 1984; 30 Puri, Ralescu (b0120) 1986; 114 Hop (b0145) 2007; 176 Gao, Zhang, Lu (b0035) 2010; 18 Mirandaa, Cousob, Gilb (b0155) 2005; 154 Sakawa, Katagiri, Matsui (b0085) 2012; 12 Zheng, Wan, Wang (b0165) 2011; 38 Sakawa, Nishizaki, Uemura (b0015) 2000; 109 Chanas, Kuchta (b0095) 1996; 94 Zadeh (b0160) 1978; 1 Nishizaki, Sakawa, Katagiri (b0045) 2003; 11 Sakawa, Katagiri (b0050) 2010; 41 Zhang, Lu (b0020) 2005; 6 Kosuch, Bodic, Leung, Lisser (b0055) 2012; 59 Zadeh (b0100) 1965; 8 Sakawa, Matsui (b0065) 2013; 40 Sakawa, Katagiri, Matsui (b0075) 2012; 188 Bard (b0005) 1998 Luhandjula (b0135) 1996; 77 Eichfelder (b0175) 2010; 123 Zhang, Lu, Dillon (b0030) 2007; 215 Benson (b0195) 1978; 26 Zhang, Lu (b0040) 2010; 47 Kwakernaak (b0115) 1979; 17 Wang, Qiao (b0130) 1993; 57 Calvete, Galé (b0185) 2011; 39 Kwakernaak (b0110) 1978; 15 Sakawa, Mastui (b0200) 2013; 40 Deb, Sinha (b0170) 2009; 5467 Rommelfanger (b0150) 2007; 156 Kruse, Meyer (b0125) 1987 Wierzbicki (b0180) 1979; 177 Nishizaki, Sakawa (b0090) 1999; 103 Sakawa, Katagiri, Matsui (b0070) 2012; 3 Bard (10.1016/j.knosys.2014.05.010_b0005) 1998 Zhang (10.1016/j.knosys.2014.05.010_b0025) 2007; 20 Kwakernaak (10.1016/j.knosys.2014.05.010_b0110) 1978; 15 Zheng (10.1016/j.knosys.2014.05.010_b0165) 2011; 38 Calvete (10.1016/j.knosys.2014.05.010_b0185) 2011; 39 Puri (10.1016/j.knosys.2014.05.010_b0120) 1986; 114 Sakawa (10.1016/j.knosys.2014.05.010_b0075) 2012; 188 Nishizaki (10.1016/j.knosys.2014.05.010_b0090) 1999; 103 Bialas (10.1016/j.knosys.2014.05.010_b0190) 1984; 30 Kruse (10.1016/j.knosys.2014.05.010_b0125) 1987 Sakawa (10.1016/j.knosys.2014.05.010_b0060) 2013; 238 Eichfelder (10.1016/j.knosys.2014.05.010_b0175) 2010; 123 Sakawa (10.1016/j.knosys.2014.05.010_b0070) 2012; 3 Sakawa (10.1016/j.knosys.2014.05.010_b0065) 2013; 40 Rommelfanger (10.1016/j.knosys.2014.05.010_b0150) 2007; 156 Sakawa (10.1016/j.knosys.2014.05.010_b0050) 2010; 41 Wierzbicki (10.1016/j.knosys.2014.05.010_b0180) 1979; 177 Sakawa (10.1016/j.knosys.2014.05.010_b0085) 2012; 12 Chanas (10.1016/j.knosys.2014.05.010_b0095) 1996; 94 Deb (10.1016/j.knosys.2014.05.010_b0170) 2009; 5467 Zhang (10.1016/j.knosys.2014.05.010_b0040) 2010; 47 Luhandjula (10.1016/j.knosys.2014.05.010_b0135) 1996; 77 Dubio (10.1016/j.knosys.2014.05.010_b0105) 1980 Sakawa (10.1016/j.knosys.2014.05.010_b0015) 2000; 109 Nishizaki (10.1016/j.knosys.2014.05.010_b0045) 2003; 11 Zadeh (10.1016/j.knosys.2014.05.010_b0100) 1965; 8 Zhang (10.1016/j.knosys.2014.05.010_b0020) 2005; 6 Sakawa (10.1016/j.knosys.2014.05.010_b0080) 2012; 20 Wang (10.1016/j.knosys.2014.05.010_b0130) 1993; 57 Liu (10.1016/j.knosys.2014.05.010_b0140) 2001; 9 Mirandaa (10.1016/j.knosys.2014.05.010_b0155) 2005; 154 Dempe (10.1016/j.knosys.2014.05.010_b0010) 2003; 52 Kosuch (10.1016/j.knosys.2014.05.010_b0055) 2012; 59 Benson (10.1016/j.knosys.2014.05.010_b0195) 1978; 26 Kwakernaak (10.1016/j.knosys.2014.05.010_b0115) 1979; 17 Zadeh (10.1016/j.knosys.2014.05.010_b0160) 1978; 1 Gao (10.1016/j.knosys.2014.05.010_b0035) 2010; 18 Zhang (10.1016/j.knosys.2014.05.010_b0030) 2007; 215 Sakawa (10.1016/j.knosys.2014.05.010_b0200) 2013; 40 Hop (10.1016/j.knosys.2014.05.010_b0145) 2007; 176 |
| References_xml | – volume: 114 start-page: 409 year: 1986 end-page: 422 ident: b0120 article-title: Fuzzy random variables publication-title: J. Math. Anal. Appl. – volume: 52 start-page: 333 year: 2003 end-page: 359 ident: b0010 article-title: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints publication-title: Optimization – volume: 18 start-page: 1 year: 2010 end-page: 13 ident: b0035 article-title: A publication-title: IEEE Trans. Fuzzy Syst. – volume: 3 start-page: 183 year: 2012 end-page: 192 ident: b0070 article-title: Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity publication-title: Int. J. Machine Learn. Cybernet. – volume: 12 start-page: 271 year: 2012 end-page: 286 ident: b0085 article-title: Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization publication-title: Oper. Res. – volume: 94 start-page: 594 year: 1996 end-page: 598 ident: b0095 article-title: Multiobjective programming in optimization of interval objective functions – a generalized approach publication-title: Eur. J. Oper. Res. – volume: 156 start-page: 1892 year: 2007 end-page: 1904 ident: b0150 article-title: A general concept for solving linear multicritaria programming problems with crip, fuzzy or stochastic values publication-title: Fuzzy Sets Syst. – volume: 41 start-page: 508 year: 2010 end-page: 521 ident: b0050 article-title: Interactive fuzzy Programming based on fractile criterion optimization model for two-level stochastic linear programming problems publication-title: Cybernet. Syst. – volume: 215 start-page: 351 year: 2007 end-page: 379 ident: b0030 article-title: Fuzzy linear bilevel optimization: solution concepts, approaches and applications publication-title: Stud. Fuzziness Soft Comput. – volume: 1 start-page: 3 year: 1978 end-page: 28 ident: b0160 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Sets Syst. – volume: 15 start-page: 1 year: 1978 end-page: 29 ident: b0110 article-title: Fuzzy random variables – I. Definitions and theorems publication-title: Inform. Sci. – year: 1980 ident: b0105 article-title: Fuzzy Sets and Systems: Theory and Applications – volume: 17 start-page: 253 year: 1979 end-page: 278 ident: b0115 article-title: Fuzzy random variables – II. Algorithms and examples for the discrete case publication-title: Inform. Sci. – volume: 5467 start-page: 110 year: 2009 end-page: 124 ident: b0170 article-title: Solving bilevel multi-objective optimization problems using evolutionary publication-title: Evolut. Multi-Crit. Optim. – volume: 40 start-page: 2487 year: 2013 end-page: 2492 ident: b0065 article-title: Interactive fuzzy programming for fuzzy random two-level linear programming problems through probability maximization with possibility publication-title: Expert Syst. Appl. – volume: 103 start-page: 161 year: 1999 end-page: 182 ident: b0090 article-title: Stackelberg solutions to multiobjective two-Level linear programming problems publication-title: J. Optim. Theory Appl. – volume: 30 start-page: 1004 year: 1984 end-page: 1020 ident: b0190 article-title: Two-level linear programming publication-title: Manage. Sci. – volume: 20 start-page: 178 year: 2007 end-page: 197 ident: b0025 article-title: Model and approach of fuzzy bilevel decision making for logistics planning problem publication-title: J. Enterprise Inform. Manage. – volume: 26 start-page: 569 year: 1978 end-page: 580 ident: b0195 article-title: Existence of efficient solutions for vector maximization problems publication-title: J. Optim. Theory Appl. – volume: 20 start-page: 101 year: 2012 end-page: 117 ident: b0080 article-title: Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization publication-title: Central Eur. J. Oper. Res. – year: 1987 ident: b0125 article-title: Statistics with Vague Data – volume: 109 start-page: 3 year: 2000 end-page: 19 ident: b0015 article-title: Interactive fuzzy programming for multilevel linear programming problems with fuzzy parameters publication-title: Fuzzy Sets Syst. – volume: 40 start-page: 1400 year: 2013 end-page: 1406 ident: b0200 article-title: Interactive fuzzy random cooperative two-level linear programming through level sets based probability maximization publication-title: Expert Syst. Appl. – volume: 188 start-page: 45 year: 2012 end-page: 57 ident: b0075 article-title: Stackelberg solutions for fuzzy random two-level linear programming through probability maximization with possibility publication-title: Fuzzy Sets Syst. – volume: 39 start-page: 33 year: 2011 end-page: 40 ident: b0185 article-title: On linear bilevel problems with multiple objectives at the lower level publication-title: Omega – volume: 123 start-page: 419 year: 2010 end-page: 449 ident: b0175 article-title: Multiobjective bilevel optimization publication-title: Math. Programm. – volume: 11 start-page: 281 year: 2003 end-page: 296 ident: b0045 article-title: Stackelberg solutions to multiobjective two-level linear programming problems with random variable coefficients publication-title: Central Eur. J. Oper. Res. – volume: 6 start-page: 1 year: 2005 end-page: 7 ident: b0020 article-title: The definition of optimal solution and an extended Kuhn-Tucker approach for fuzzy linear bilevel programming publication-title: IEEE Intell. Inform. Bull. – volume: 77 start-page: 291 year: 1996 end-page: 297 ident: b0135 article-title: Fuzziness and randomness in an optimization framework publication-title: Fuzzy Sets Syst. – year: 1998 ident: b0005 article-title: Practical bilevel optimization: algorithms and applications – volume: 38 start-page: 10384 year: 2011 end-page: 10388 ident: b0165 article-title: A fuzzy interactive method for a class of bilevel multiobjective programming problem publication-title: Expert Syst. Appl. – volume: 57 start-page: 295 year: 1993 end-page: 311 ident: b0130 article-title: Linear programming with fuzzy random variable coefficients publication-title: Fuzzy Sets Syst. – volume: 238 start-page: 163 year: 2013 end-page: 175 ident: b0060 article-title: Interactive fuzzy random two-level linear programming based on level sets and fractile criterion optimization publication-title: Inform. Sci. – volume: 47 start-page: 403 year: 2010 end-page: 419 ident: b0040 article-title: Fuzzy bilevel programming with multiple objectives and cooperative multiple followers publication-title: J. Global Optim. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: b0100 article-title: Fuzzy sets publication-title: Inform. Control – volume: 176 start-page: 77 year: 2007 end-page: 86 ident: b0145 article-title: Fuzzy stochastic goal programming problems publication-title: Eur. J. Oper. Res. – volume: 177 start-page: 468 year: 1979 end-page: 486 ident: b0180 article-title: The use of reference objectives in multiobjective optimization publication-title: Multiple Crit. Decis. Mak. Theory Appl. – volume: 59 start-page: 107 year: 2012 end-page: 116 ident: b0055 article-title: On a stochastic bilevel programming problem publication-title: Networks – volume: 9 start-page: 713 year: 2001 end-page: 720 ident: b0140 article-title: Fuzzy random chance-constrained programming publication-title: IEEE Trans. Fuzzy Syst. – volume: 154 start-page: 386 year: 2005 end-page: 412 ident: b0155 article-title: Random intervals as a model for imprecise information publication-title: Fuzzy Sets Syst. – volume: 188 start-page: 45 issue: 1 year: 2012 ident: 10.1016/j.knosys.2014.05.010_b0075 article-title: Stackelberg solutions for fuzzy random two-level linear programming through probability maximization with possibility publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2011.07.006 – volume: 6 start-page: 1 issue: 2 year: 2005 ident: 10.1016/j.knosys.2014.05.010_b0020 article-title: The definition of optimal solution and an extended Kuhn-Tucker approach for fuzzy linear bilevel programming publication-title: IEEE Intell. Inform. Bull. – volume: 215 start-page: 351 year: 2007 ident: 10.1016/j.knosys.2014.05.010_b0030 article-title: Fuzzy linear bilevel optimization: solution concepts, approaches and applications publication-title: Stud. Fuzziness Soft Comput. doi: 10.1007/978-3-540-71258-9_17 – volume: 18 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.knosys.2014.05.010_b0035 article-title: A λ-cut and goal-programming-based algorithm for fuzzy-linear multiple-objective bilevel optimization publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2030329 – volume: 40 start-page: 1400 year: 2013 ident: 10.1016/j.knosys.2014.05.010_b0200 article-title: Interactive fuzzy random cooperative two-level linear programming through level sets based probability maximization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.08.048 – volume: 238 start-page: 163 issue: 20 year: 2013 ident: 10.1016/j.knosys.2014.05.010_b0060 article-title: Interactive fuzzy random two-level linear programming based on level sets and fractile criterion optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.03.003 – volume: 109 start-page: 3 issue: 1 year: 2000 ident: 10.1016/j.knosys.2014.05.010_b0015 article-title: Interactive fuzzy programming for multilevel linear programming problems with fuzzy parameters publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00130-4 – volume: 20 start-page: 178 issue: 2 year: 2007 ident: 10.1016/j.knosys.2014.05.010_b0025 article-title: Model and approach of fuzzy bilevel decision making for logistics planning problem publication-title: J. Enterprise Inform. Manage. doi: 10.1108/17410390710725760 – volume: 154 start-page: 386 issue: 3 year: 2005 ident: 10.1016/j.knosys.2014.05.010_b0155 article-title: Random intervals as a model for imprecise information publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2005.03.001 – volume: 156 start-page: 1892 issue: 17 year: 2007 ident: 10.1016/j.knosys.2014.05.010_b0150 article-title: A general concept for solving linear multicritaria programming problems with crip, fuzzy or stochastic values publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2007.04.005 – volume: 176 start-page: 77 issue: 1 year: 2007 ident: 10.1016/j.knosys.2014.05.010_b0145 article-title: Fuzzy stochastic goal programming problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.09.023 – volume: 40 start-page: 2487 issue: 7 year: 2013 ident: 10.1016/j.knosys.2014.05.010_b0065 article-title: Interactive fuzzy programming for fuzzy random two-level linear programming problems through probability maximization with possibility publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.10.052 – volume: 103 start-page: 161 issue: 1 year: 1999 ident: 10.1016/j.knosys.2014.05.010_b0090 article-title: Stackelberg solutions to multiobjective two-Level linear programming problems publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1021729618112 – year: 1980 ident: 10.1016/j.knosys.2014.05.010_b0105 – volume: 17 start-page: 253 issue: 3 year: 1979 ident: 10.1016/j.knosys.2014.05.010_b0115 article-title: Fuzzy random variables – II. Algorithms and examples for the discrete case publication-title: Inform. Sci. doi: 10.1016/0020-0255(79)90020-3 – volume: 52 start-page: 333 issue: 3 year: 2003 ident: 10.1016/j.knosys.2014.05.010_b0010 article-title: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints publication-title: Optimization doi: 10.1080/0233193031000149894 – volume: 15 start-page: 1 issue: 1 year: 1978 ident: 10.1016/j.knosys.2014.05.010_b0110 article-title: Fuzzy random variables – I. Definitions and theorems publication-title: Inform. Sci. doi: 10.1016/0020-0255(78)90019-1 – year: 1987 ident: 10.1016/j.knosys.2014.05.010_b0125 – volume: 77 start-page: 291 issue: 3 year: 1996 ident: 10.1016/j.knosys.2014.05.010_b0135 article-title: Fuzziness and randomness in an optimization framework publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(95)00043-7 – volume: 8 start-page: 338 issue: 1 year: 1965 ident: 10.1016/j.knosys.2014.05.010_b0100 article-title: Fuzzy sets publication-title: Inform. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 9 start-page: 713 issue: 5 year: 2001 ident: 10.1016/j.knosys.2014.05.010_b0140 article-title: Fuzzy random chance-constrained programming publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.963757 – volume: 47 start-page: 403 issue: 3 year: 2010 ident: 10.1016/j.knosys.2014.05.010_b0040 article-title: Fuzzy bilevel programming with multiple objectives and cooperative multiple followers publication-title: J. Global Optim. doi: 10.1007/s10898-008-9365-z – volume: 94 start-page: 594 issue: 3 year: 1996 ident: 10.1016/j.knosys.2014.05.010_b0095 article-title: Multiobjective programming in optimization of interval objective functions – a generalized approach publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(95)00055-0 – volume: 1 start-page: 3 issue: 1 year: 1978 ident: 10.1016/j.knosys.2014.05.010_b0160 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(78)90029-5 – volume: 38 start-page: 10384 issue: 8 year: 2011 ident: 10.1016/j.knosys.2014.05.010_b0165 article-title: A fuzzy interactive method for a class of bilevel multiobjective programming problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.069 – volume: 59 start-page: 107 issue: 1 year: 2012 ident: 10.1016/j.knosys.2014.05.010_b0055 article-title: On a stochastic bilevel programming problem publication-title: Networks doi: 10.1002/net.20482 – volume: 123 start-page: 419 year: 2010 ident: 10.1016/j.knosys.2014.05.010_b0175 article-title: Multiobjective bilevel optimization publication-title: Math. Programm. doi: 10.1007/s10107-008-0259-0 – volume: 12 start-page: 271 issue: 3 year: 2012 ident: 10.1016/j.knosys.2014.05.010_b0085 article-title: Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization publication-title: Oper. Res. – volume: 114 start-page: 409 issue: 2 year: 1986 ident: 10.1016/j.knosys.2014.05.010_b0120 article-title: Fuzzy random variables publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(86)90093-4 – volume: 5467 start-page: 110 year: 2009 ident: 10.1016/j.knosys.2014.05.010_b0170 article-title: Solving bilevel multi-objective optimization problems using evolutionary publication-title: Evolut. Multi-Crit. Optim. doi: 10.1007/978-3-642-01020-0_13 – volume: 26 start-page: 569 issue: 4 year: 1978 ident: 10.1016/j.knosys.2014.05.010_b0195 article-title: Existence of efficient solutions for vector maximization problems publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00933152 – year: 1998 ident: 10.1016/j.knosys.2014.05.010_b0005 – volume: 177 start-page: 468 year: 1979 ident: 10.1016/j.knosys.2014.05.010_b0180 article-title: The use of reference objectives in multiobjective optimization publication-title: Multiple Crit. Decis. Mak. Theory Appl. doi: 10.1007/978-3-642-48782-8_32 – volume: 11 start-page: 281 issue: 3 year: 2003 ident: 10.1016/j.knosys.2014.05.010_b0045 article-title: Stackelberg solutions to multiobjective two-level linear programming problems with random variable coefficients publication-title: Central Eur. J. Oper. Res. – volume: 41 start-page: 508 issue: 7 year: 2010 ident: 10.1016/j.knosys.2014.05.010_b0050 article-title: Interactive fuzzy Programming based on fractile criterion optimization model for two-level stochastic linear programming problems publication-title: Cybernet. Syst. doi: 10.1080/01969722.2010.511547 – volume: 3 start-page: 183 issue: 3 year: 2012 ident: 10.1016/j.knosys.2014.05.010_b0070 article-title: Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity publication-title: Int. J. Machine Learn. Cybernet. doi: 10.1007/s13042-011-0055-7 – volume: 20 start-page: 101 issue: 1 year: 2012 ident: 10.1016/j.knosys.2014.05.010_b0080 article-title: Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization publication-title: Central Eur. J. Oper. Res. doi: 10.1007/s10100-010-0156-5 – volume: 57 start-page: 295 issue: 3 year: 1993 ident: 10.1016/j.knosys.2014.05.010_b0130 article-title: Linear programming with fuzzy random variable coefficients publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90025-D – volume: 39 start-page: 33 year: 2011 ident: 10.1016/j.knosys.2014.05.010_b0185 article-title: On linear bilevel problems with multiple objectives at the lower level publication-title: Omega doi: 10.1016/j.omega.2010.02.002 – volume: 30 start-page: 1004 issue: 8 year: 1984 ident: 10.1016/j.knosys.2014.05.010_b0190 article-title: Two-level linear programming publication-title: Manage. Sci. doi: 10.1287/mnsc.30.8.1004 |
| SSID | ssj0002218 |
| Score | 2.1425235 |
| Snippet | In this paper, we consider a kind of bilevel linear programming problem where the coefficients of both objective functions are fuzzy random variables. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 206 |
| SubjectTerms | Bilevel linear programming Fuzzy Fuzzy logic Fuzzy random variables Fuzzy set theory Interval number Intervals Level sets Linear programming Mathematical analysis Mathematical models Multiobjective Optimistic Stackelberg solutions Random variables |
| Title | Optimistic Stackelberg solutions to bilevel linear programming with fuzzy random variable coefficients |
| URI | https://dx.doi.org/10.1016/j.knosys.2014.05.010 https://www.proquest.com/docview/1671504112 |
| Volume | 67 |
| WOSCitedRecordID | wos000340221600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4FLKS_RQpGRuK2CYseJ4-MKFfGQChJFWk6W4ziipZusug-1_fUdv7IRK1RA4hJFUR6O58vMeDLzDUKvm8KyltMqYaxSCSNGJMLG4I1SphINtdyTrtkEPz4up1PxJeSqLlw7Ad625eWlmP9XUcMxELYtnf0Lcfc3hQOwD0KHLYgdtn8k-M-gBGaOftl6kvCROharcf9Q621WoAvW5nxsfUzLde2TtGZ9YLZZXV9fjcGM1d1svIbltCuw0p1xhBOR_ik6tZ9iXC6xNrEO7NCbJHqv2SanP7pgJl0A3yuZ76t5NJ4h9kBYn1wVAmJbRTEhspgmPA08ssbr1ZKDI89SMVS8vg9H1JxpMTDC1Bd0bul3H2o4e_Oz7eBdbGYe88Sr6cae9VmGX-1I7EBgEQmeLGN30Q7luShHaGfy4Wj6sTfZlLpAcD_yWGPpEgG3n_U7H-YXa-5clJM9tBvWFnjiMfEQ3THtI_Qg9u3AQY0_Rs0GIngAEdxDBC87HCCCPUTwACLYQgQ7iGAPERwhgocQeYK-vTs6efs-Cf02Ep1xukwyTWqTVeBgq5oU2ugmV9SQKid1VhvGqSptr_LMld_nqYKJU1xXFeGK5saY7CkatV1rniGsdEaFqgXP6oKVlChBuC7hPNEwTTXdR1mcQakDGb3tiXIuY9bhmfTzLu28yzSXMO_7KOmvmnsyllvO51E4MjiU3lGUgKdbrnwVZSlBHvYnmmpNt1pIUnBYQzFYphz8892fo_ubr-kFGi0vVuYQ3dPr5eni4mUA5w2OHq2x |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimistic+Stackelberg+solutions+to+bilevel+linear+programming+with+fuzzy+random+variable+coefficients&rft.jtitle=Knowledge-based+systems&rft.au=Ren%2C+Aihong&rft.au=Wang%2C+Yuping&rft.date=2014-09-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=67&rft.spage=206&rft.epage=217&rft_id=info:doi/10.1016%2Fj.knosys.2014.05.010&rft.externalDocID=S0950705114001944 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |