Unsupervised non-parametric kernel learning algorithm

A foundational problem in kernel-based learning is how to design suitable kernels. Non-Parametric Kernel Learning (NPKL) is one of the most important kernel learning methods. However, most research on NPKL has tended to focus on the semi-supervised scenario. In this paper, we propose a novel unsuper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 44; s. 1 - 9
Hlavní autoři: Liu, Bing, Xia, Shi-Xiong, Zhou, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2013
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A foundational problem in kernel-based learning is how to design suitable kernels. Non-Parametric Kernel Learning (NPKL) is one of the most important kernel learning methods. However, most research on NPKL has tended to focus on the semi-supervised scenario. In this paper, we propose a novel unsupervised non-parametric kernel learning method, which can seamlessly combine the spectral embedding of unlabeled data and manifold Regularized Least-Squares (RLS) to learn non-parametric kernels efficiently. The proposed algorithm enjoys a closed-form solution in each iteration, which can be efficiently computed by the Lanczos sparse eigen-decomposition technique. Meanwhile, it can be extended to supervised kernel learning naturally. Experimental results show that our proposed unsupervised non-parametric kernel learning algorithm is significantly more effective and applicable to enhance the performance of Maximum Margin Clustering (MMC). Especially, it outperforms multiple kernel learning in both unsupervised and supervised settings.
AbstractList A foundational problem in kernel-based learning is how to design suitable kernels. Non-Parametric Kernel Learning (NPKL) is one of the most important kernel learning methods. However, most research on NPKL has tended to focus on the semi-supervised scenario. In this paper, we propose a novel unsupervised non-parametric kernel learning method, which can seamlessly combine the spectral embedding of unlabeled data and manifold Regularized Least-Squares (RLS) to learn non-parametric kernels efficiently. The proposed algorithm enjoys a closed-form solution in each iteration, which can be efficiently computed by the Lanczos sparse eigen-decomposition technique. Meanwhile, it can be extended to supervised kernel learning naturally. Experimental results show that our proposed unsupervised non-parametric kernel learning algorithm is significantly more effective and applicable to enhance the performance of Maximum Margin Clustering (MMC). Especially, it outperforms multiple kernel learning in both unsupervised and supervised settings.
Author Liu, Bing
Xia, Shi-Xiong
Zhou, Yong
Author_xml – sequence: 1
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
– sequence: 2
  givenname: Shi-Xiong
  surname: Xia
  fullname: Xia, Shi-Xiong
  email: xiasx@cumt.edu.cn
– sequence: 3
  givenname: Yong
  surname: Zhou
  fullname: Zhou, Yong
BookMark eNqFkDtPwzAYRS1UJNrCP2DIyJLgZxwzIKGKl1SJhc6W43wpbhOn2Gml_ntShYmBSle6yz13ODM08Z0HhG4Jzggm-f0m2_ouHmNGMaHZEIyLCzQlhaSp5FhN0BQrgVOJBblCsxg3GGNKSTFFYuXjfgfh4CJUyfCb7kwwLfTB2WQLwUOTNGCCd36dmGbdBdd_tdfosjZNhJvfnqPVy_Pn4i1dfry-L56WqWWS9ikzShnOi7xkhS05L2ltmAQqS0ohx6oiqpYCCDDgsrKKUWJUWQEohitFBZuju_F3F7rvPcRety5aaBrjodtHTXJJBOWU5-ennKqCCcHpMOXj1IYuxgC13gXXmnDUBOuTUL3Ro1B9EqqHDEIH7OEPZl1vetf5PhjXnIMfRxgGXQcHQUfrwFuoXADb66pz_x_8AB-flio
CitedBy_id crossref_primary_10_1007_s13042_016_0592_1
crossref_primary_10_1016_j_neucom_2016_10_083
crossref_primary_10_1007_s11045_016_0440_1
crossref_primary_10_1186_1687_6180_2014_115
crossref_primary_10_1016_j_knosys_2013_04_006
crossref_primary_10_1016_j_knosys_2015_03_027
Cites_doi 10.1145/1015330.1015424
10.1145/1553374.1553537
10.1145/1150402.1150426
10.1109/ICCV.2009.5459183
10.1016/j.knosys.2012.05.016
10.1109/TSMCB.2011.2168604
10.1016/j.knosys.2009.06.009
10.1145/1143844.1143908
10.1145/1273496.1273542
10.1145/1150402.1150429
10.1145/1553374.1553510
10.1109/TNN.2009.2036998
10.1109/TNN.2008.2010620
10.1109/CVPR.2009.5206721
10.1145/1143844.1143857
10.1109/CVPR.2009.5206747
10.1109/MLSP.2008.4685446
10.1145/1102351.1102484
10.1137/1.9781611972795.55
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
8BP
E3H
F2A
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2012.12.008
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Library and Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 9
ExternalDocumentID 10_1016_j_knosys_2012_12_008
S0950705112003541
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
8BP
E3H
F2A
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-3a99a4486b38cb44b2fa37e27b22e609d19f75e1e3e47dc9321a9bdee930d9253
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318326800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Mon Sep 29 04:40:15 EDT 2025
Sun Sep 28 07:26:22 EDT 2025
Tue Nov 18 21:00:10 EST 2025
Sat Nov 29 07:07:50 EST 2025
Fri Feb 23 02:28:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple kernel learning
Manifold regularized least-squares
Maximum margin clustering (MMC)
Non-parametric kernel learning
Sparse eigen-decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-3a99a4486b38cb44b2fa37e27b22e609d19f75e1e3e47dc9321a9bdee930d9253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1429835542
PQPubID 23477
PageCount 9
ParticipantIDs proquest_miscellaneous_1671524246
proquest_miscellaneous_1429835542
crossref_primary_10_1016_j_knosys_2012_12_008
crossref_citationtrail_10_1016_j_knosys_2012_12_008
elsevier_sciencedirect_doi_10_1016_j_knosys_2012_12_008
PublicationCentury 2000
PublicationDate May 2013
2013-05-00
20130501
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shawe-Taylor, Kandola (b0075) 2002; 14
Lanckriet, Cristianini, Bartlett, Ghaoui, Jordan (b0080) 2004; 5
T. Joachims, Training linear SVMs in linear time, in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 217–226.
Belkin, Niyogi, Sindhwani (b0130) 2006; 7
Xu, Jin, King, Lyu (b0180) 2009; 21
Zhang, Lu (b0120) 2009; 22
Cortes, Mohri, Rostamizadeh (b0030) 2009; 22
B. Zhao, J.T. Kwok, C. Zhang, Multiple kernel clustering, in: Proceedings of the 9th SIAM International Conference on Data Mining, 2009, pp. 638–649.
J. Sun, X. Wu, S. Yan, L.F. Cheong, T.S. Chua, J. Li, Hierarchical spatio-temporal context modeling for action recognition, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2004–2011.
Wang, Zhao, Zhang (b0135) 2010; 21
A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neighbor, in: Proceedings of International Conference on Machine Learning, 2006, pp. 97–104.
S.C.H. Hoi, R. Jin, M.R. Lyu, Learning nonparametric kernel matrices from pairwise constraints, in: Proceedings of International conference on Machine Learning, 2007, pp. 361–368.
C. Cortes, M. Mohri, A. Rostamizadeh, Two-stage learning kernel algorithms, in: Proceedings of the 27th International Conference on Machine Learning, 2010, pp. 239–246.
Nath, Dinesh, Raman, Bhattacharyya, Ben-Tal, Ramakrishnan (b0045) 2009; 22
A. Vedaldi, V. Gulshan, M. Varma, A. Zisserman, Multiple kernels for object detection, in: Proceedings of IEEE International Conference on Computer Vision, 2009, pp. 606–613.
Zhuang, Tsang, Hoi (b0115) 2011; 12
B. Kulis, M. Sustik, I. Dhillon, Learning low-rank kernel matrices, in: Proceedings of International Conference on Machine Learning, 2006, pp. 505–512.
R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 315–322.
Kulis, Sustik, Dhillon (b0090) 2009; 10
X. Zhu, J. Lafferty, Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 1052–1059.
Zhang, Tsang, Kwok (b0140) 2009; 20
Sonnenburg, Rätsch, Schäfer, Schölkopf (b0010) 2006; 7
Valizadegan, Jin (b0160) 2007; 19
Huang, Zhou, Ding, Zhang (b0170) 2012; 42
F. Bach, G. Lanckriet, M. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 41–48.
L. Duan, I.W. Tsang, D. Xu, S.J. Maybank, Domain transfer svm for video concept detection, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1375–1381.
J. Zhuang, I.W. Tsang, S.C.H. Hoi, SimpleNPKL: simple non-parametric kernel learning, in: Proceedings of International Conference on Machine Learning, 2009, pp. 1273–1280.
regularization for learning kernels, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009, pp. 109–116.
Kloft, Brefeld, Sonnenburg, Zien (b0050) 2011; 12
S.C.H. Hoi, M.R. Lyu, E.Y. Chang, Learning the unified kernel machines for classification,in: Proceedings of the 12th ACM SIGKDD conference on Knowledge Discovery and Data Mining, 2006, pp. 187–196.
Chapelle, Weston, Schölkopf (b0065) 2002; 15
X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the 20th International Conference on Machine Learning, 2003, pp. 912–919.
Xu, Neufeld, Larson, Schuurmans (b0155) 2004; 17
Bach, Rakotomamonjy, Canu (b0175) 2008; 9
Xuesong Yin, Huang (b0125) 2012; 35
Kloft, Brefeld, Sonnenburg, Laskov, Müller, Zien (b0040) 2009; 22
M. Varma, B.R. Babu, More generality in efficient multiple kernel learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 1065–1072.
W. Liu, B. Qian, J. Cui, J. Liu, Spectral kernel learning for semi-supervised classification, in: Proceedings of the 21st International Joint Conference on Artificial Intelligence, 2009, pp. 1150–1155.
C. Cortes, M. Mohri, A. Rostamizadeh
Nath (10.1016/j.knosys.2012.12.008_b0045) 2009; 22
Belkin (10.1016/j.knosys.2012.12.008_b0130) 2006; 7
10.1016/j.knosys.2012.12.008_b0035
Kloft (10.1016/j.knosys.2012.12.008_b0040) 2009; 22
10.1016/j.knosys.2012.12.008_b0055
Chapelle (10.1016/j.knosys.2012.12.008_b0065) 2002; 15
Lanckriet (10.1016/j.knosys.2012.12.008_b0080) 2004; 5
10.1016/j.knosys.2012.12.008_b0110
Huang (10.1016/j.knosys.2012.12.008_b0170) 2012; 42
10.1016/j.knosys.2012.12.008_b0015
Wang (10.1016/j.knosys.2012.12.008_b0135) 2010; 21
10.1016/j.knosys.2012.12.008_b0190
10.1016/j.knosys.2012.12.008_b0070
Zhang (10.1016/j.knosys.2012.12.008_b0120) 2009; 22
Zhuang (10.1016/j.knosys.2012.12.008_b0115) 2011; 12
10.1016/j.knosys.2012.12.008_b0095
10.1016/j.knosys.2012.12.008_b0150
Cortes (10.1016/j.knosys.2012.12.008_b0030) 2009; 22
Xu (10.1016/j.knosys.2012.12.008_b0180) 2009; 21
Shawe-Taylor (10.1016/j.knosys.2012.12.008_b0075) 2002; 14
10.1016/j.knosys.2012.12.008_b0145
Sonnenburg (10.1016/j.knosys.2012.12.008_b0010) 2006; 7
10.1016/j.knosys.2012.12.008_b0025
10.1016/j.knosys.2012.12.008_b0165
10.1016/j.knosys.2012.12.008_b0100
10.1016/j.knosys.2012.12.008_b0105
Valizadegan (10.1016/j.knosys.2012.12.008_b0160) 2007; 19
10.1016/j.knosys.2012.12.008_b0005
Kulis (10.1016/j.knosys.2012.12.008_b0090) 2009; 10
10.1016/j.knosys.2012.12.008_b0060
10.1016/j.knosys.2012.12.008_b0020
10.1016/j.knosys.2012.12.008_b0185
Bach (10.1016/j.knosys.2012.12.008_b0175) 2008; 9
10.1016/j.knosys.2012.12.008_b0085
Kloft (10.1016/j.knosys.2012.12.008_b0050) 2011; 12
Zhang (10.1016/j.knosys.2012.12.008_b0140) 2009; 20
Xuesong Yin (10.1016/j.knosys.2012.12.008_b0125) 2012; 35
Xu (10.1016/j.knosys.2012.12.008_b0155) 2004; 17
References_xml – reference: B. Zhao, J.T. Kwok, C. Zhang, Multiple kernel clustering, in: Proceedings of the 9th SIAM International Conference on Data Mining, 2009, pp. 638–649.
– reference: W. Liu, B. Qian, J. Cui, J. Liu, Spectral kernel learning for semi-supervised classification, in: Proceedings of the 21st International Joint Conference on Artificial Intelligence, 2009, pp. 1150–1155.
– reference: C. Cortes, M. Mohri, A. Rostamizadeh,
– volume: 10
  start-page: 341
  year: 2009
  end-page: 376
  ident: b0090
  article-title: Low-rank kernel learning with bregman matrix divergences
  publication-title: The Journal of Machine Learning Research
– volume: 22
  start-page: 844
  year: 2009
  end-page: 852
  ident: b0045
  article-title: On the algorithmics and applications of a mixed-norm based kernel learning formulation
  publication-title: Advances in Neural Information Processing Systems
– volume: 22
  start-page: 997
  year: 2009
  end-page: 1005
  ident: b0040
  article-title: Efficient and accurate lp-norm multiple kernel learning
  publication-title: Advances in Neural Information Processing Systems
– reference: regularization for learning kernels, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009, pp. 109–116.
– volume: 20
  start-page: 583
  year: 2009
  end-page: 596
  ident: b0140
  article-title: Maximum margin clustering made practical
  publication-title: IEEE Transactions on Neural Networks
– reference: L. Duan, I.W. Tsang, D. Xu, S.J. Maybank, Domain transfer svm for video concept detection, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1375–1381.
– volume: 22
  start-page: 396
  year: 2009
  end-page: 404
  ident: b0030
  article-title: Learning non-linear combinations of kernels
  publication-title: Advances in Neural Information Processing Systems
– reference: S.C.H. Hoi, M.R. Lyu, E.Y. Chang, Learning the unified kernel machines for classification,in: Proceedings of the 12th ACM SIGKDD conference on Knowledge Discovery and Data Mining, 2006, pp. 187–196.
– volume: 21
  start-page: 1825
  year: 2009
  end-page: 1832
  ident: b0180
  article-title: An extended level method for efficient multiple kernel learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  start-page: 367
  year: 2002
  end-page: 373
  ident: b0075
  article-title: On kernel target alignment
  publication-title: Advances in Neural Information Processing Systems
– reference: J. Zhuang, I.W. Tsang, S.C.H. Hoi, SimpleNPKL: simple non-parametric kernel learning, in: Proceedings of International Conference on Machine Learning, 2009, pp. 1273–1280.
– volume: 5
  start-page: 27
  year: 2004
  end-page: 72
  ident: b0080
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: The Journal of Machine Learning Research
– reference: J. Sun, X. Wu, S. Yan, L.F. Cheong, T.S. Chua, J. Li, Hierarchical spatio-temporal context modeling for action recognition, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2004–2011.
– volume: 35
  start-page: 304
  year: 2012
  end-page: 311
  ident: b0125
  article-title: Semi-supervised fuzzy clustering with metric learning and entropy regularization
  publication-title: Knowledge-Based Systems
– reference: R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 315–322.
– volume: 19
  start-page: 1417
  year: 2007
  end-page: 1425
  ident: b0160
  article-title: Generalized maximum margin clustering and unsupervised kernel learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 953
  year: 2011
  end-page: 997
  ident: b0050
  article-title: -norm multiple kernel learning
  publication-title: Journal of Machine Learning Research
– reference: S.C.H. Hoi, R. Jin, M.R. Lyu, Learning nonparametric kernel matrices from pairwise constraints, in: Proceedings of International conference on Machine Learning, 2007, pp. 361–368.
– reference: B. Kulis, M. Sustik, I. Dhillon, Learning low-rank kernel matrices, in: Proceedings of International Conference on Machine Learning, 2006, pp. 505–512.
– reference: A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neighbor, in: Proceedings of International Conference on Machine Learning, 2006, pp. 97–104.
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: b0170
  article-title: Extreme learning machine for regression and multiclass classification. Part B: Cybernetics
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 15
  start-page: 585
  year: 2002
  end-page: 592
  ident: b0065
  article-title: Cluster kernels for semi-supervised learning
  publication-title: Advances in Neural Information Processing Systems
– reference: T. Joachims, Training linear SVMs in linear time, in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, pp. 217–226.
– reference: A. Vedaldi, V. Gulshan, M. Varma, A. Zisserman, Multiple kernels for object detection, in: Proceedings of IEEE International Conference on Computer Vision, 2009, pp. 606–613.
– volume: 21
  start-page: 319
  year: 2010
  end-page: 332
  ident: b0135
  article-title: Linear time maximum margin clustering
  publication-title: IEEE Transactions on Neural Networks
– reference: C. Cortes, M. Mohri, A. Rostamizadeh, Two-stage learning kernel algorithms, in: Proceedings of the 27th International Conference on Machine Learning, 2010, pp. 239–246.
– volume: 22
  start-page: 477
  year: 2009
  end-page: 481
  ident: b0120
  article-title: Semi-supervised fuzzy clustering: a kernel-based approach
  publication-title: Knowledge-Based Systems
– volume: 17
  start-page: 1537
  year: 2004
  end-page: 1544
  ident: b0155
  article-title: Maximum margin clustering
  publication-title: Advances in Neural Information Processing Systems
– reference: M. Varma, B.R. Babu, More generality in efficient multiple kernel learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 1065–1072.
– volume: 12
  start-page: 1313
  year: 2011
  end-page: 1347
  ident: b0115
  article-title: A family of simple non-parametric kernel learning algorithms
  publication-title: Journal of Machine Learning Research
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: b0130
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: The Journal of Machine Learning Research
– reference: X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the 20th International Conference on Machine Learning, 2003, pp. 912–919.
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  ident: b0175
  publication-title: Journal of Machine Learning Research
– reference: F. Bach, G. Lanckriet, M. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 41–48.
– volume: 7
  start-page: 1531
  year: 2006
  end-page: 1565
  ident: b0010
  article-title: Large scale multiple kernel learning
  publication-title: The Journal of Machine Learning Research
– reference: X. Zhu, J. Lafferty, Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 1052–1059.
– ident: 10.1016/j.knosys.2012.12.008_b0005
  doi: 10.1145/1015330.1015424
– ident: 10.1016/j.knosys.2012.12.008_b0110
  doi: 10.1145/1553374.1553537
– volume: 21
  start-page: 1825
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0180
  article-title: An extended level method for efficient multiple kernel learning
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.knosys.2012.12.008_b0100
  doi: 10.1145/1150402.1150426
– ident: 10.1016/j.knosys.2012.12.008_b0025
  doi: 10.1109/ICCV.2009.5459183
– volume: 12
  start-page: 1313
  year: 2011
  ident: 10.1016/j.knosys.2012.12.008_b0115
  article-title: A family of simple non-parametric kernel learning algorithms
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 997
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0040
  article-title: Efficient and accurate lp-norm multiple kernel learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 304
  year: 2012
  ident: 10.1016/j.knosys.2012.12.008_b0125
  article-title: Semi-supervised fuzzy clustering with metric learning and entropy regularization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2012.05.016
– volume: 22
  start-page: 396
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0030
  article-title: Learning non-linear combinations of kernels
  publication-title: Advances in Neural Information Processing Systems
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2012.12.008_b0170
  article-title: Extreme learning machine for regression and multiclass classification. Part B: Cybernetics
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2011.2168604
– volume: 22
  start-page: 477
  issue: 6
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0120
  article-title: Semi-supervised fuzzy clustering: a kernel-based approach
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.06.009
– ident: 10.1016/j.knosys.2012.12.008_b0085
  doi: 10.1145/1143844.1143908
– ident: 10.1016/j.knosys.2012.12.008_b0095
  doi: 10.1145/1273496.1273542
– volume: 10
  start-page: 341
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0090
  article-title: Low-rank kernel learning with bregman matrix divergences
  publication-title: The Journal of Machine Learning Research
– volume: 7
  start-page: 1531
  year: 2006
  ident: 10.1016/j.knosys.2012.12.008_b0010
  article-title: Large scale multiple kernel learning
  publication-title: The Journal of Machine Learning Research
– ident: 10.1016/j.knosys.2012.12.008_b0165
  doi: 10.1145/1150402.1150429
– volume: 15
  start-page: 585
  year: 2002
  ident: 10.1016/j.knosys.2012.12.008_b0065
  article-title: Cluster kernels for semi-supervised learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 17
  start-page: 1537
  year: 2004
  ident: 10.1016/j.knosys.2012.12.008_b0155
  article-title: Maximum margin clustering
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 2491
  year: 2008
  ident: 10.1016/j.knosys.2012.12.008_b0175
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.knosys.2012.12.008_b0105
– ident: 10.1016/j.knosys.2012.12.008_b0185
  doi: 10.1145/1553374.1553510
– volume: 14
  start-page: 367
  year: 2002
  ident: 10.1016/j.knosys.2012.12.008_b0075
  article-title: On kernel target alignment
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.knosys.2012.12.008_b0190
– volume: 21
  start-page: 319
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2012.12.008_b0135
  article-title: Linear time maximum margin clustering
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2036998
– volume: 19
  start-page: 1417
  year: 2007
  ident: 10.1016/j.knosys.2012.12.008_b0160
  article-title: Generalized maximum margin clustering and unsupervised kernel learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 583
  issue: 4
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0140
  article-title: Maximum margin clustering made practical
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2010620
– ident: 10.1016/j.knosys.2012.12.008_b0060
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.knosys.2012.12.008_b0130
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: The Journal of Machine Learning Research
– ident: 10.1016/j.knosys.2012.12.008_b0020
  doi: 10.1109/CVPR.2009.5206721
– ident: 10.1016/j.knosys.2012.12.008_b0150
  doi: 10.1145/1143844.1143857
– ident: 10.1016/j.knosys.2012.12.008_b0015
  doi: 10.1109/CVPR.2009.5206747
– ident: 10.1016/j.knosys.2012.12.008_b0070
– volume: 5
  start-page: 27
  year: 2004
  ident: 10.1016/j.knosys.2012.12.008_b0080
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: The Journal of Machine Learning Research
– ident: 10.1016/j.knosys.2012.12.008_b0035
  doi: 10.1109/MLSP.2008.4685446
– volume: 22
  start-page: 844
  year: 2009
  ident: 10.1016/j.knosys.2012.12.008_b0045
  article-title: On the algorithmics and applications of a mixed-norm based kernel learning formulation
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.knosys.2012.12.008_b0145
  doi: 10.1145/1102351.1102484
– volume: 12
  start-page: 953
  year: 2011
  ident: 10.1016/j.knosys.2012.12.008_b0050
  article-title: Lp-norm multiple kernel learning
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.knosys.2012.12.008_b0055
  doi: 10.1137/1.9781611972795.55
SSID ssj0002218
Score 2.0533943
Snippet A foundational problem in kernel-based learning is how to design suitable kernels. Non-Parametric Kernel Learning (NPKL) is one of the most important kernel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Clustering
Data
Exact solutions
Kernels
Knowledge base
Learning
Least squares method
Machine learning
Manifold regularized least-squares
Mathematical analysis
Maximum margin clustering (MMC)
Multiple kernel learning
Non-parametric kernel learning
Sparse eigen-decomposition
Spectra
Title Unsupervised non-parametric kernel learning algorithm
URI https://dx.doi.org/10.1016/j.knosys.2012.12.008
https://www.proquest.com/docview/1429835542
https://www.proquest.com/docview/1671524246
Volume 44
WOSCitedRecordID wos000318326800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELe2dg972ffU7ktMmvZSeQLbYPuxmlLtI8omLZHYXiwDpkmbQhaSqX_-zmBT9tnuYVKEopMB45-5O5-P-yH0gkaxEEkpcMEpxwwMEM5ywrAREStFrnlhWEs2wScTkabyo6N3b1o6AV5V4vxcrv4r1CADsO2ns_8Ad39REMB_AB2OADscrwT8rGq2K6sBGruzX1fYVvc-s8RZ-cGpWVdm6akijg_08rheLzbzs6GP-t6H2bA1cYUr9tz73uPFtp0U3uaBKO0ybj_NFziF5-rlX-Z12_azl7nwQjRI5uvjhCHmoasK61QmYwOdFw2Mp_ytVu4CBCevTqsaumzz6Ugbgw3FhRXyO--TD-poNh6r6Sidvlx9xZYfzO6jO7KU62iX8FiCCt49fDtK3_VWl5A2ltt3138m2eby_XrjP7khPxnk1suY3kG33PIgOOxgvYuumeoeuu2pNwKnie-jeIhy8CPKQYdy4FEOepQfoNnRaPr6DXYMGDinnGww1VJqWEAnGRV5xlhGSk25ITwjxCShLCJZ8thEhhrGixx88UjLrDBG0rCQJKYP0Q50weyhgGsiy8iAgWIFY1xr0ORZBouDhGfcsHwfUT8gKnfl4S1LyVL5PMAT1Q2jssOo4AfDuI9wf9aqK49ySXvux1o5F69z3RTMlUvOfO6hUaAB7baWrky9bWDxSqSwbjP5S5uEg6PKCEseXeE6j9HNi1fhCdrZrLfmKbqRf9ssmvUzN_O-AzTxi0k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+non-parametric+kernel+learning+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Liu%2C+Bing&rft.au=Xia%2C+Shi-Xiong&rft.au=Zhou%2C+Yong&rft.date=2013-05-01&rft.issn=0950-7051&rft.volume=44&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.knosys.2012.12.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon