A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis

•We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are deployed to detect the intrinsic characteristics of microarray data sets, so as to produce diverse coding matrices.•A new data complexity measur...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 90; pp. 346 - 362
Main Authors: Sun, MengXin, Liu, KunHong, Wu, QingQiang, Hong, QingQi, Wang, BeiZhan, Zhang, Haiying
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2019
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are deployed to detect the intrinsic characteristics of microarray data sets, so as to produce diverse coding matrices.•A new data complexity measure, named as C1, is designed to evaluate data distribution. It benefits the optimization process of our class partition.•The proposed ECOC algorithm performs more stably in most multiclass microarray data sets compared with other popular ECOC algorithms. Nowadays, a lot of new classification and clustering techniques have been proposed for microarray data analysis. However, the multiclass microarray data classification is still regarded as a tough task because of the small sample size problem and the class imbalance problem. In this paper, we propose a novel error correcting output code (ECOC) algorithm for the classification of multiclass microarray data based on the data complexity (DC) theory. In this algorithm, an ECOC coding matrix is generated based on a hierarchical partition of the class space with the aim of Minimizing Data Complexity (named as ECOC-MDC). As the partition process can be mapped as a binary tree, a compact ensemble with high discrimination power is produced. The performance of ECOC-MDC is compared with some state-of-art ECOC algorithms on six multiclass microarray data sets, and it is found that the proposed algorithm can obtain better results in most cases. The correlation between DC measures and the dichotomizers’ performances is checked, and the observations confirm that high complexity in data usually leads to high error rates of the connected dichotomizers. But the error correcting mechanism in the ECOC framework can effectively improve our algorithm's generalization ability. In short, ECOC-MDC can produce a compact ensemble system with high error correction capability through the application of diverse DC measures. Our Matlab code is available at: github.com/MLDMXM2017/ECOC-MDC.
AbstractList •We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are deployed to detect the intrinsic characteristics of microarray data sets, so as to produce diverse coding matrices.•A new data complexity measure, named as C1, is designed to evaluate data distribution. It benefits the optimization process of our class partition.•The proposed ECOC algorithm performs more stably in most multiclass microarray data sets compared with other popular ECOC algorithms. Nowadays, a lot of new classification and clustering techniques have been proposed for microarray data analysis. However, the multiclass microarray data classification is still regarded as a tough task because of the small sample size problem and the class imbalance problem. In this paper, we propose a novel error correcting output code (ECOC) algorithm for the classification of multiclass microarray data based on the data complexity (DC) theory. In this algorithm, an ECOC coding matrix is generated based on a hierarchical partition of the class space with the aim of Minimizing Data Complexity (named as ECOC-MDC). As the partition process can be mapped as a binary tree, a compact ensemble with high discrimination power is produced. The performance of ECOC-MDC is compared with some state-of-art ECOC algorithms on six multiclass microarray data sets, and it is found that the proposed algorithm can obtain better results in most cases. The correlation between DC measures and the dichotomizers’ performances is checked, and the observations confirm that high complexity in data usually leads to high error rates of the connected dichotomizers. But the error correcting mechanism in the ECOC framework can effectively improve our algorithm's generalization ability. In short, ECOC-MDC can produce a compact ensemble system with high error correction capability through the application of diverse DC measures. Our Matlab code is available at: github.com/MLDMXM2017/ECOC-MDC.
Author Sun, MengXin
Wu, QingQiang
Hong, QingQi
Wang, BeiZhan
Zhang, Haiying
Liu, KunHong
Author_xml – sequence: 1
  givenname: MengXin
  surname: Sun
  fullname: Sun, MengXin
  email: sunmenxin@stu.xmu.edu.cn
– sequence: 2
  givenname: KunHong
  surname: Liu
  fullname: Liu, KunHong
  email: lkhqz@xmu.edu.cn
– sequence: 3
  givenname: QingQiang
  surname: Wu
  fullname: Wu, QingQiang
  email: wuqq@xmu.edu.cn
– sequence: 4
  givenname: QingQi
  surname: Hong
  fullname: Hong, QingQi
  email: hongqingqi@xmu.edu.cn
– sequence: 5
  givenname: BeiZhan
  surname: Wang
  fullname: Wang, BeiZhan
  email: wangbeizhan@xmu.edu.cn
– sequence: 6
  givenname: Haiying
  surname: Zhang
  fullname: Zhang, Haiying
BookMark eNqFUMlOwzAQtVCRaIE_4OAfSPCSrRyQqqgsUqVe4GxNHLu4cuLKNhX5e9KGEwc4zWjeonlvgWa96xVCd5SklNDifp8eIEq3Sxmhy5TQlGTlBZrTquRJTjM2Q3NCOE04I_wKLULYE0LLEZgjvcK9OyqL1_W2xmB3zpv40WHtPO4-bTTSQgi4M9I78B4G3EIEfL4abSRE43rcQFAtHpcJdN3Bqi8TBww92CGYcIMuNdigbn_mNXp_Wr_VL8lm-_xarzaJ5CWLCS9g2RS6kLmkRcWk5m1WgOKMsQyySirWNJlmRZEzmbGKlCOV02ZktirnesmvUTb5ju-G4JUWB2868IOgRJy6EnsxdSVOXQlCxdjVKHv4JZMmnqNFD8b-J36cxGoMdjTKiyCN6qVqjVcyitaZvw2-Afcqi7A
CitedBy_id crossref_primary_10_1177_1748006X241254603
crossref_primary_10_32604_cmc_2022_027030
crossref_primary_10_1109_ACCESS_2021_3081366
crossref_primary_10_1016_j_swevo_2020_100709
crossref_primary_10_1109_ACCESS_2020_3042838
crossref_primary_10_1155_2021_4327896
crossref_primary_10_1177_09596518231226359
crossref_primary_10_1109_ACCESS_2019_2931746
crossref_primary_10_1155_2021_9977977
crossref_primary_10_1109_TCYB_2020_2987904
crossref_primary_10_1016_j_patcog_2022_109122
crossref_primary_10_1007_s10489_021_02870_w
crossref_primary_10_1016_j_asoc_2024_112278
crossref_primary_10_1016_j_ins_2020_04_021
crossref_primary_10_1016_j_patcog_2020_107642
crossref_primary_10_1145_3649596
crossref_primary_10_3389_fdata_2025_1624507
crossref_primary_10_1109_TKDE_2021_3130239
crossref_primary_10_1145_3347711
crossref_primary_10_1155_2022_1056490
crossref_primary_10_1109_TCSII_2019_2950269
crossref_primary_10_1007_s00500_020_05203_0
crossref_primary_10_1016_j_ins_2021_04_038
crossref_primary_10_1088_1755_1315_772_1_012029
crossref_primary_10_1016_j_crmeth_2023_100411
crossref_primary_10_1016_j_image_2023_116962
crossref_primary_10_3390_app11041579
crossref_primary_10_1007_s10489_021_02854_w
crossref_primary_10_1007_s42979_020_0074_0
crossref_primary_10_1093_bib_bbac029
crossref_primary_10_1155_2021_4513610
crossref_primary_10_1016_j_ins_2021_12_093
crossref_primary_10_1016_j_knosys_2020_105922
crossref_primary_10_1002_cnm_3372
crossref_primary_10_1016_j_patcog_2023_109813
Cites_doi 10.1186/1471-2105-11-523
10.1016/S1535-6108(02)00032-6
10.1038/nm0102-68
10.1080/03610918208812266
10.1016/j.patcog.2013.03.014
10.1109/TPAMI.2008.266
10.1007/s10994-014-5477-5
10.1016/S0002-9378(40)90428-8
10.1155/2013/239628
10.1016/j.patrec.2010.11.005
10.1109/TPAMI.2006.116
10.1109/34.990132
10.1093/bioinformatics/16.10.906
10.1186/1471-2105-7-228
10.1093/nar/gkv007
10.1016/j.asoc.2018.02.051
10.1007/11758525_91
10.1016/j.patcog.2009.01.021
10.1016/j.compbiomed.2013.03.010
10.1016/j.ins.2016.02.028
10.1016/j.inffus.2016.11.009
10.1016/j.knosys.2016.09.022
10.1038/35021093
10.1016/j.patcog.2013.06.019
10.1007/s10044-007-0061-2
10.1007/s100440200009
10.1016/j.neucom.2011.03.054
10.1016/j.patcog.2007.05.020
10.1155/2015/198363
10.1016/j.patcog.2011.08.001
10.1016/j.patrec.2012.09.010
10.1016/j.patrec.2007.05.007
10.1038/ng765
10.1016/j.neucom.2017.05.066
10.1109/TCYB.2014.2325603
10.1613/jair.105
10.1016/j.patcog.2011.06.006
10.1016/j.patcog.2016.03.012
10.1016/j.compbiomed.2008.02.007
10.1109/TSMCB.2012.2187280
10.1016/j.knosys.2017.09.006
10.1016/j.compeleceng.2018.01.029
10.1023/A:1013637720281
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2019.01.047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 362
ExternalDocumentID 10_1016_j_patcog_2019_01_047
S0031320319300378
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-36a9b6f6c5c1682cf3d46ae32224a48ce2bb4f26652c42807f6c31b82cde53f93
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463130400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 22:15:41 EST 2025
Sat Nov 29 03:52:23 EST 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Error correcting output codes (ECOC)
Data complexity
Multiclass
Microarray data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-36a9b6f6c5c1682cf3d46ae32224a48ce2bb4f26652c42807f6c31b82cde53f93
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_patcog_2019_01_047
crossref_citationtrail_10_1016_j_patcog_2019_01_047
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_01_047
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Su, Welsh, Sapinoso, Kern, Dimitrov, Lapp, Schultz, Powell, Moskaluk, Frierson, Hampton (bib0048) 2001; 61
Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (bib0003) 2000; 16
Ho, Basu (bib0040) 2002; 24
Simeone, Marrocco, Tortorella (bib0031) 2012; 45
Blagus, Lusa (bib0011) 2010; 11
Zhou, Hua, Lia, Wu (bib0015) 2017; 136
Zhou, Peng, Suen (bib0039) 2008; 41
Sánchez, Mollineda, Sotoca (bib0043) 2007; 10
Wang, Yao (bib0017) 2012; 42
Pujol, Radeva, Vitrià (bib0034) 2006; 28
Zhou, Wang, Fujita (bib0033) 2017; 36
Iman, Davenport (bib0056) 1980; 11
MoránFernández, BolónCanedo, AlonsoBetanzos (bib0044) 2017; 117
Escalera, Pujol, Radeva (bib0046) 2010; 11
Diaz Uriate, de Andres (bib0007) 2006; 7
Ho (bib0042) 2002; 5
Escalera, Pujol, Radeva (bib0054) 2010; 32
Tamayo (bib0049) 2002; 8
Gordon, Jensen, Hsiao, Gullans, Blumenstock, Ramaswamy, Richards, Sugarbaker, Bueno (bib0052) 2002; 62
Li, Meng, Lu, Yang, Yang (bib0016) 2008
Blagus, Lusa (bib0012) 2013; 14
BolónCanedo, AlonsoBetanzos (bib0002) 2012; 45
Escalera, Pujol, Radeva (bib0045) 2007; 28
Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib0001) 2015; 43
Tapia, Serra, Gonzalez (bib0024) 2005
Yeoh, Ross, Shurtleff, Williams, Patel, Mahfouz, Behm, Raimondi, Relling, Patel (bib0051) 2002; 1
Nazari, Moin, Rashidy Kanan (bib0022) 2018
Liu, Huang (bib0008) 2008; 38
Yang, Cai, Li, Lin (bib0013) 2006; 7
Cramme, Singer (bib0030) 2002; 47
De Souto, Lorena, Spolaôr, Costa (bib0026) 2010
Escalera, Pujol (bib0035) 2006
Armstrong, Staunton, Silverman, Pieters, den Boer, Minden, Sallan, Lander, Golub, Korsmeyer (bib0050) 2002; 30
Liu, Zeng, Ng (bib0025) 2016; 349
Zhou (bib0005) 2012
Escalera, Masip, Puertas, Radeva, Pujol (bib0023) 2011; 32
Tong, Liu, Xu, Ju (bib0009) 2013; 43
Liu, Li, Zhang, Du (bib0010) 2009; 42
Baro, Escalera, Vitria, Pujol, Radeva (bib0021) 2009; 10
Bautista, Escalera, Baró, Pujol (bib0029) 2014; 47
Perou, Sørlie, Eisen, Rijn, Jeffrey, Rees (bib0047) 2000; 406
Bagheri, Gao, Escalera (bib0037) 2013; 46
Hira, Gillies (bib0004) 2015; 2015
Adair, Pearl (bib0055) 1940; 39
Lorena, Costa, Spolaôr, de Souto (bib0027) 2012; 75
Liu, Tang, Cai, Wang, Chen (bib0019) 2017; 266
Maldonado, López (bib0014) 2018; 67
Yu, Hong, Yang, Ni, Dan, Qin (bib0020) 2013
Sáez, Krawczyk, Woźniak (bib0018) 2016; 57
ÖzöğürAkyüz, Windeatt, Smith (bib0053) 2015; 101
Zhang (bib0032) 2015; 45
Dietterich, Bakiri (bib0028) 1994; 2
Ho, Mansilla (bib0041) 2004; 1
Xu, Zhang (bib0006) 2006; 3992
Guo, Zhang, Zhu, Chen (bib0036) 2010; 31
Bagheri, Montazer, Kabir (bib0038) 2013; 34
Liu (10.1016/j.patcog.2019.01.047_bib0019) 2017; 266
Lorena (10.1016/j.patcog.2019.01.047_bib0027) 2012; 75
Ho (10.1016/j.patcog.2019.01.047_bib0041) 2004; 1
Su (10.1016/j.patcog.2019.01.047_bib0048) 2001; 61
Escalera (10.1016/j.patcog.2019.01.047_bib0054) 2010; 32
Escalera (10.1016/j.patcog.2019.01.047_bib0023) 2011; 32
Tong (10.1016/j.patcog.2019.01.047_bib0009) 2013; 43
Armstrong (10.1016/j.patcog.2019.01.047_bib0050) 2002; 30
Zhou (10.1016/j.patcog.2019.01.047_bib0039) 2008; 41
Ho (10.1016/j.patcog.2019.01.047_bib0042) 2002; 5
Liu (10.1016/j.patcog.2019.01.047_bib0010) 2009; 42
Liu (10.1016/j.patcog.2019.01.047_bib0025) 2016; 349
Escalera (10.1016/j.patcog.2019.01.047_bib0035) 2006
Yang (10.1016/j.patcog.2019.01.047_bib0013) 2006; 7
Zhou (10.1016/j.patcog.2019.01.047_bib0015) 2017; 136
ÖzöğürAkyüz (10.1016/j.patcog.2019.01.047_bib0053) 2015; 101
Gordon (10.1016/j.patcog.2019.01.047_bib0052) 2002; 62
Adair (10.1016/j.patcog.2019.01.047_bib0055) 1940; 39
Bagheri (10.1016/j.patcog.2019.01.047_bib0038) 2013; 34
Sáez (10.1016/j.patcog.2019.01.047_bib0018) 2016; 57
MoránFernández (10.1016/j.patcog.2019.01.047_bib0044) 2017; 117
Wang (10.1016/j.patcog.2019.01.047_bib0017) 2012; 42
Guo (10.1016/j.patcog.2019.01.047_bib0036) 2010; 31
Perou (10.1016/j.patcog.2019.01.047_bib0047) 2000; 406
Bagheri (10.1016/j.patcog.2019.01.047_bib0037) 2013; 46
BolónCanedo (10.1016/j.patcog.2019.01.047_bib0002) 2012; 45
Dietterich (10.1016/j.patcog.2019.01.047_bib0028) 1994; 2
Zhang (10.1016/j.patcog.2019.01.047_bib0032) 2015; 45
Cramme (10.1016/j.patcog.2019.01.047_bib0030) 2002; 47
Yu (10.1016/j.patcog.2019.01.047_bib0020) 2013
Ho (10.1016/j.patcog.2019.01.047_bib0040) 2002; 24
Furey (10.1016/j.patcog.2019.01.047_bib0003) 2000; 16
Liu (10.1016/j.patcog.2019.01.047_bib0008) 2008; 38
Yeoh (10.1016/j.patcog.2019.01.047_bib0051) 2002; 1
Escalera (10.1016/j.patcog.2019.01.047_bib0046) 2010; 11
Maldonado (10.1016/j.patcog.2019.01.047_bib0014) 2018; 67
Li (10.1016/j.patcog.2019.01.047_bib0016) 2008
Escalera (10.1016/j.patcog.2019.01.047_bib0045) 2007; 28
Tamayo (10.1016/j.patcog.2019.01.047_bib0049) 2002; 8
Zhou (10.1016/j.patcog.2019.01.047_bib0033) 2017; 36
Sánchez (10.1016/j.patcog.2019.01.047_bib0043) 2007; 10
Hira (10.1016/j.patcog.2019.01.047_bib0004) 2015; 2015
Blagus (10.1016/j.patcog.2019.01.047_bib0011) 2010; 11
Bautista (10.1016/j.patcog.2019.01.047_bib0029) 2014; 47
Diaz Uriate (10.1016/j.patcog.2019.01.047_bib0007) 2006; 7
Iman (10.1016/j.patcog.2019.01.047_bib0056) 1980; 11
Ritchie (10.1016/j.patcog.2019.01.047_bib0001) 2015; 43
Blagus (10.1016/j.patcog.2019.01.047_bib0012) 2013; 14
De Souto (10.1016/j.patcog.2019.01.047_bib0026) 2010
Baro (10.1016/j.patcog.2019.01.047_bib0021) 2009; 10
Nazari (10.1016/j.patcog.2019.01.047_bib0022) 2018
Zhou (10.1016/j.patcog.2019.01.047_bib0005) 2012
Tapia (10.1016/j.patcog.2019.01.047_bib0024) 2005
Xu (10.1016/j.patcog.2019.01.047_bib0006) 2006; 3992
Pujol (10.1016/j.patcog.2019.01.047_bib0034) 2006; 28
Simeone (10.1016/j.patcog.2019.01.047_bib0031) 2012; 45
References_xml – volume: 62
  start-page: 4963
  year: 2002
  end-page: 4967
  ident: bib0052
  article-title: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
  publication-title: Cancer Res.
– volume: 75
  start-page: 33
  year: 2012
  end-page: 42
  ident: bib0027
  article-title: Analysis of complexity indices for classification problems: cancer gene expression data
  publication-title: Neurocomputing
– volume: 67
  start-page: 94
  year: 2018
  end-page: 105
  ident: bib0014
  article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 67
  year: 2008
  end-page: 76
  ident: bib0039
  article-title: Data-driven decomposition for multi-class classification
  publication-title: Pattern Recognit.
– volume: 7
  year: 2006
  ident: bib0007
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib0004
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Adv. Bioinf.
– volume: 1
  start-page: 136
  year: 2004
  end-page: 139
  ident: bib0041
  article-title: On classifier domains of competence
  publication-title: 17th International Conference on (ICPR'04)
– volume: 42
  start-page: 1119
  year: 2012
  end-page: 1130
  ident: bib0017
  article-title: Multiclass imbalance problems: analysis and potential solutions
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2013
  ident: bib0020
  article-title: Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers
  publication-title: BioMed Res. Int.
– volume: 28
  start-page: 1759
  year: 2007
  end-page: 1768
  ident: bib0045
  article-title: Boosted landmarks of contextual descriptors and forest-ECOC: a novel framework to detect and classify objects in cluttered scenes
  publication-title: Pattern Recognit. Lett.
– volume: 10
  start-page: 113
  year: 2009
  end-page: 126
  ident: bib0021
  article-title: Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification
– volume: 42
  start-page: 1274
  year: 2009
  end-page: 1283
  ident: bib0010
  article-title: Ensemble component selection for improving ICA based microarray data prediction models
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 601
  year: 2008
  end-page: 610
  ident: bib0008
  article-title: Cancer classification using Rotation Forest
  publication-title: Comput. Biol. Med.
– start-page: 578
  year: 2006
  end-page: 581
  ident: bib0035
  article-title: ECOC-ONE: a novel coding and decoding strategy
  publication-title: International Conference on Pattern Recognition
– volume: 30
  start-page: 41
  year: 2002
  end-page: 47
  ident: bib0050
  article-title: Mll transloca-tions specify a distinct gene expression profi le that distinguishes a unique leukemia
  publication-title: Nat. Genet
– volume: 14
  year: 2013
  ident: bib0012
  article-title: SMOTE for high-dimensional class-imbalanced data
  publication-title: Bmc Bioinf.
– volume: 349
  start-page: 102
  year: 2016
  end-page: 118
  ident: bib0025
  article-title: A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data
  publication-title: Inf. Sci.
– volume: 57
  start-page: 164
  year: 2016
  end-page: 178
  ident: bib0018
  article-title: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 725
  year: 1940
  ident: bib0055
  article-title: The Friedman test in hydatidiform mole and chorionepithelioma: Lazarus-Barlow, P.: Brit. M. J. 1: 71, 1937
  publication-title: Am. J. Obstetr. Gynecol.
– volume: 61
  start-page: 7388
  year: 2001
  end-page: 7393
  ident: bib0048
  article-title: Molecular classification of human carcinomas by use of gene expression signatures
  publication-title: Cancer Res.
– volume: 34
  start-page: 176
  year: 2013
  end-page: 184
  ident: bib0038
  article-title: A subspace approach to error correcting output codes
  publication-title: Pattern Recognit. Lett.
– volume: 2
  start-page: 263
  year: 1994
  end-page: 286
  ident: bib0028
  article-title: Solving multiclass learning problems via ECOCs
  publication-title: J. Artif. Intell. Res.
– start-page: 1
  year: 2010
  end-page: 7
  ident: bib0026
  article-title: Complexity measures of supervised classifications tasks: a case study for cancer gene expression data
  publication-title: International Joint Conference on Neural Networks
– volume: 1
  start-page: 133
  year: 2002
  end-page: 143
  ident: bib0051
  article-title: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
  publication-title: Cancer Cell
– volume: 5
  start-page: 102
  year: 2002
  end-page: 112
  ident: bib0042
  article-title: A data complexity analysis of comparative advantages of decision forest constructors
  publication-title: Pattern Anal. Appl.
– volume: 43
  start-page: e47
  year: 2015
  ident: bib0001
  article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– year: 2018
  ident: bib0022
  article-title: Securing templates in a face recognition system using Error-Correcting Output Code and chaos theory
  publication-title: Comput. Electr. Eng.
– volume: 8
  start-page: 68
  year: 2002
  end-page: 74
  ident: bib0049
  article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
  publication-title: Nat. Med.
– volume: 266
  start-page: 641
  year: 2017
  end-page: 650
  ident: bib0019
  article-title: A hybrid method based on ensemble WELM for handling multi class imbalance in cancer microarray data
  publication-title: Neurocomputing
– volume: 47
  start-page: 201
  year: 2002
  end-page: 233
  ident: bib0030
  article-title: On the learnability and design of output codes for multiclass problems
  publication-title: Mach. Learn.
– volume: 117
  start-page: 27
  year: 2017
  end-page: 45
  ident: bib0044
  article-title: Centralized vs. distributed feature selection methods based on data complexity measures
  publication-title: Knowl. Based Syst.
– volume: 31
  start-page: 232
  year: 2010
  end-page: 236
  ident: bib0036
  article-title: Research on synthetic aperture radar image target recognition based on AdaBoost
  publication-title: ECOC J. Harbin Eng. Univ.
– volume: 16
  start-page: 906
  year: 2000
  end-page: 914
  ident: bib0003
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
– volume: 28
  start-page: 1007
  year: 2006
  ident: bib0034
  article-title: Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 289
  year: 2002
  end-page: 300
  ident: bib0040
  article-title: Complexity measures of supervised classification problems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 45
  start-page: 531
  year: 2012
  end-page: 539
  ident: bib0002
  article-title: An ensemble of filters and classifiers for microarray data classification
  publication-title: Pattern Recognit.
– volume: 11
  year: 2010
  ident: bib0011
  article-title: Class prediction for high-dimensional class-imbalanced data
  publication-title: Bmc Bioinf.
– volume: 136
  start-page: 187
  year: 2017
  end-page: 199
  ident: bib0015
  article-title: Online feature selection for high-dimensional class-imbalanced data
  publication-title: Knowl. Based Syst.
– volume: 36
  start-page: 80
  year: 2017
  end-page: 89
  ident: bib0033
  article-title: One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies
  publication-title: Inf. Fusion
– volume: 46
  start-page: 2830
  year: 2013
  end-page: 2839
  ident: bib0037
  article-title: A genetic-based subspace analysis method for improving Error-Correcting Output Coding
  publication-title: Pattern Recognit.
– volume: 7
  year: 2006
  ident: bib0013
  article-title: A stable gene selection in microarray data analysis
  publication-title: Bmc Bioinf.
– volume: 47
  start-page: 865
  year: 2014
  end-page: 884
  ident: bib0029
  article-title: On the design of an ECOC-compliant Genetic Algorithm
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 120
  year: 2010
  end-page: 134
  ident: bib0054
  article-title: On the decoding process in ternary error-correcting output codes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2012
  ident: bib0005
  article-title: Ensemble Methods: Foundations and Algorithms
– volume: 11
  start-page: 661
  year: 2010
  end-page: 664
  ident: bib0046
  article-title: Error-correcting output codes library
  publication-title: J. Mach. Learn. Res.
– start-page: 9
  year: 2008
  ident: bib0016
  article-title: Asymmetric bagging and feature selection for activities prediction of drug molecules
  publication-title: Bmc Bioinf.
– volume: 45
  start-page: 289
  year: 2015
  end-page: 301
  ident: bib0032
  article-title: Heuristic ternary error-correcting output codes via weight optimization and layered clustering-based approach
  publication-title: IEEE T Cybern.
– volume: 3992
  start-page: 670
  year: 2006
  end-page: 677
  ident: bib0006
  article-title: Boost feature subset selection: a new gene selection algorithm for microarray dataset
  publication-title: Lect. Notes Comput. Sci.
– volume: 32
  start-page: 458
  year: 2011
  end-page: 467
  ident: bib0023
  article-title: Online error correcting output codes
  publication-title: Pattern Recognit. Lett.
– start-page: 108
  year: 2005
  end-page: 117
  ident: bib0024
  article-title: Recursive ECOC for microarray data classification
  publication-title: Multiple Classifier Systems, 6th International Workshop
– volume: 11
  start-page: 335
  year: 1980
  end-page: 360
  ident: bib0056
  article-title: Rank correlation plots for use with correlated input variables
  publication-title: Commun. Stat.
– volume: 406
  start-page: 747
  year: 2000
  end-page: 752
  ident: bib0047
  article-title: Molecular portraits of human breast tumours
  publication-title: Nature
– volume: 43
  start-page: 729
  year: 2013
  end-page: 737
  ident: bib0009
  article-title: An ensemble of SVM classifiers based on gene pairs
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 189
  year: 2007
  end-page: 201
  ident: bib0043
  article-title: An analysis of how training data complexity affects the nearest neighbor classifiers
  publication-title: Pattern Anal. Appl.
– volume: 101
  start-page: 253
  year: 2015
  end-page: 269
  ident: bib0053
  article-title: Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off
  publication-title: Mach. Learn.
– volume: 45
  start-page: 863
  year: 2012
  end-page: 875
  ident: bib0031
  article-title: Design of reject rules for ECOC classification systems
  publication-title: Pattern Recognit.
– volume: 11
  year: 2010
  ident: 10.1016/j.patcog.2019.01.047_bib0011
  article-title: Class prediction for high-dimensional class-imbalanced data
  publication-title: Bmc Bioinf.
  doi: 10.1186/1471-2105-11-523
– volume: 14
  year: 2013
  ident: 10.1016/j.patcog.2019.01.047_bib0012
  article-title: SMOTE for high-dimensional class-imbalanced data
  publication-title: Bmc Bioinf.
– volume: 1
  start-page: 133
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0051
  article-title: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00032-6
– volume: 8
  start-page: 68
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0049
  article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
  publication-title: Nat. Med.
  doi: 10.1038/nm0102-68
– volume: 11
  start-page: 335
  year: 1980
  ident: 10.1016/j.patcog.2019.01.047_bib0056
  article-title: Rank correlation plots for use with correlated input variables
  publication-title: Commun. Stat.
  doi: 10.1080/03610918208812266
– volume: 46
  start-page: 2830
  year: 2013
  ident: 10.1016/j.patcog.2019.01.047_bib0037
  article-title: A genetic-based subspace analysis method for improving Error-Correcting Output Coding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.03.014
– volume: 32
  start-page: 120
  year: 2010
  ident: 10.1016/j.patcog.2019.01.047_bib0054
  article-title: On the decoding process in ternary error-correcting output codes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.266
– volume: 101
  start-page: 253
  year: 2015
  ident: 10.1016/j.patcog.2019.01.047_bib0053
  article-title: Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-014-5477-5
– volume: 39
  start-page: 725
  year: 1940
  ident: 10.1016/j.patcog.2019.01.047_bib0055
  article-title: The Friedman test in hydatidiform mole and chorionepithelioma: Lazarus-Barlow, P.: Brit. M. J. 1: 71, 1937
  publication-title: Am. J. Obstetr. Gynecol.
  doi: 10.1016/S0002-9378(40)90428-8
– volume: 10
  start-page: 113
  year: 2009
  ident: 10.1016/j.patcog.2019.01.047_bib0021
  article-title: Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification
– year: 2013
  ident: 10.1016/j.patcog.2019.01.047_bib0020
  article-title: Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers
  publication-title: BioMed Res. Int.
  doi: 10.1155/2013/239628
– volume: 32
  start-page: 458
  year: 2011
  ident: 10.1016/j.patcog.2019.01.047_bib0023
  article-title: Online error correcting output codes
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.11.005
– volume: 61
  start-page: 7388
  year: 2001
  ident: 10.1016/j.patcog.2019.01.047_bib0048
  article-title: Molecular classification of human carcinomas by use of gene expression signatures
  publication-title: Cancer Res.
– volume: 28
  start-page: 1007
  year: 2006
  ident: 10.1016/j.patcog.2019.01.047_bib0034
  article-title: Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.116
– volume: 24
  start-page: 289
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0040
  article-title: Complexity measures of supervised classification problems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990132
– volume: 16
  start-page: 906
  year: 2000
  ident: 10.1016/j.patcog.2019.01.047_bib0003
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 7
  year: 2006
  ident: 10.1016/j.patcog.2019.01.047_bib0013
  article-title: A stable gene selection in microarray data analysis
  publication-title: Bmc Bioinf.
  doi: 10.1186/1471-2105-7-228
– volume: 43
  start-page: e47
  year: 2015
  ident: 10.1016/j.patcog.2019.01.047_bib0001
  article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 67
  start-page: 94
  year: 2018
  ident: 10.1016/j.patcog.2019.01.047_bib0014
  article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.051
– volume: 3992
  start-page: 670
  year: 2006
  ident: 10.1016/j.patcog.2019.01.047_bib0006
  article-title: Boost feature subset selection: a new gene selection algorithm for microarray dataset
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11758525_91
– volume: 42
  start-page: 1274
  year: 2009
  ident: 10.1016/j.patcog.2019.01.047_bib0010
  article-title: Ensemble component selection for improving ICA based microarray data prediction models
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.01.021
– volume: 7
  year: 2006
  ident: 10.1016/j.patcog.2019.01.047_bib0007
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinf.
– volume: 43
  start-page: 729
  year: 2013
  ident: 10.1016/j.patcog.2019.01.047_bib0009
  article-title: An ensemble of SVM classifiers based on gene pairs
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.03.010
– start-page: 1
  year: 2010
  ident: 10.1016/j.patcog.2019.01.047_bib0026
  article-title: Complexity measures of supervised classifications tasks: a case study for cancer gene expression data
– volume: 349
  start-page: 102
  year: 2016
  ident: 10.1016/j.patcog.2019.01.047_bib0025
  article-title: A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.02.028
– volume: 36
  start-page: 80
  year: 2017
  ident: 10.1016/j.patcog.2019.01.047_bib0033
  article-title: One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.11.009
– volume: 117
  start-page: 27
  year: 2017
  ident: 10.1016/j.patcog.2019.01.047_bib0044
  article-title: Centralized vs. distributed feature selection methods based on data complexity measures
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.09.022
– volume: 406
  start-page: 747
  year: 2000
  ident: 10.1016/j.patcog.2019.01.047_bib0047
  article-title: Molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/35021093
– volume: 11
  start-page: 661
  year: 2010
  ident: 10.1016/j.patcog.2019.01.047_bib0046
  article-title: Error-correcting output codes library
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 865
  year: 2014
  ident: 10.1016/j.patcog.2019.01.047_bib0029
  article-title: On the design of an ECOC-compliant Genetic Algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.06.019
– volume: 31
  start-page: 232
  year: 2010
  ident: 10.1016/j.patcog.2019.01.047_bib0036
  article-title: Research on synthetic aperture radar image target recognition based on AdaBoost
  publication-title: ECOC J. Harbin Eng. Univ.
– volume: 10
  start-page: 189
  year: 2007
  ident: 10.1016/j.patcog.2019.01.047_bib0043
  article-title: An analysis of how training data complexity affects the nearest neighbor classifiers
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-007-0061-2
– volume: 5
  start-page: 102
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0042
  article-title: A data complexity analysis of comparative advantages of decision forest constructors
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s100440200009
– year: 2012
  ident: 10.1016/j.patcog.2019.01.047_bib0005
– volume: 75
  start-page: 33
  year: 2012
  ident: 10.1016/j.patcog.2019.01.047_bib0027
  article-title: Analysis of complexity indices for classification problems: cancer gene expression data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.054
– volume: 41
  start-page: 67
  year: 2008
  ident: 10.1016/j.patcog.2019.01.047_bib0039
  article-title: Data-driven decomposition for multi-class classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.05.020
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2019.01.047_bib0004
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Adv. Bioinf.
  doi: 10.1155/2015/198363
– volume: 45
  start-page: 863
  year: 2012
  ident: 10.1016/j.patcog.2019.01.047_bib0031
  article-title: Design of reject rules for ECOC classification systems
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.08.001
– volume: 34
  start-page: 176
  year: 2013
  ident: 10.1016/j.patcog.2019.01.047_bib0038
  article-title: A subspace approach to error correcting output codes
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.09.010
– start-page: 578
  year: 2006
  ident: 10.1016/j.patcog.2019.01.047_bib0035
  article-title: ECOC-ONE: a novel coding and decoding strategy
– volume: 28
  start-page: 1759
  year: 2007
  ident: 10.1016/j.patcog.2019.01.047_bib0045
  article-title: Boosted landmarks of contextual descriptors and forest-ECOC: a novel framework to detect and classify objects in cluttered scenes
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.05.007
– volume: 30
  start-page: 41
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0050
  article-title: Mll transloca-tions specify a distinct gene expression profi le that distinguishes a unique leukemia
  publication-title: Nat. Genet
  doi: 10.1038/ng765
– volume: 266
  start-page: 641
  year: 2017
  ident: 10.1016/j.patcog.2019.01.047_bib0019
  article-title: A hybrid method based on ensemble WELM for handling multi class imbalance in cancer microarray data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.066
– volume: 62
  start-page: 4963
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0052
  article-title: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
  publication-title: Cancer Res.
– volume: 45
  start-page: 289
  year: 2015
  ident: 10.1016/j.patcog.2019.01.047_bib0032
  article-title: Heuristic ternary error-correcting output codes via weight optimization and layered clustering-based approach
  publication-title: IEEE T Cybern.
  doi: 10.1109/TCYB.2014.2325603
– volume: 2
  start-page: 263
  year: 1994
  ident: 10.1016/j.patcog.2019.01.047_bib0028
  article-title: Solving multiclass learning problems via ECOCs
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.105
– volume: 45
  start-page: 531
  year: 2012
  ident: 10.1016/j.patcog.2019.01.047_bib0002
  article-title: An ensemble of filters and classifiers for microarray data classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.06.006
– volume: 1
  start-page: 136
  year: 2004
  ident: 10.1016/j.patcog.2019.01.047_bib0041
  article-title: On classifier domains of competence
– volume: 57
  start-page: 164
  year: 2016
  ident: 10.1016/j.patcog.2019.01.047_bib0018
  article-title: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.012
– volume: 38
  start-page: 601
  year: 2008
  ident: 10.1016/j.patcog.2019.01.047_bib0008
  article-title: Cancer classification using Rotation Forest
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2008.02.007
– start-page: 9
  year: 2008
  ident: 10.1016/j.patcog.2019.01.047_bib0016
  article-title: Asymmetric bagging and feature selection for activities prediction of drug molecules
  publication-title: Bmc Bioinf.
– volume: 42
  start-page: 1119
  year: 2012
  ident: 10.1016/j.patcog.2019.01.047_bib0017
  article-title: Multiclass imbalance problems: analysis and potential solutions
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2012.2187280
– volume: 136
  start-page: 187
  year: 2017
  ident: 10.1016/j.patcog.2019.01.047_bib0015
  article-title: Online feature selection for high-dimensional class-imbalanced data
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.09.006
– year: 2018
  ident: 10.1016/j.patcog.2019.01.047_bib0022
  article-title: Securing templates in a face recognition system using Error-Correcting Output Code and chaos theory
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.01.029
– volume: 47
  start-page: 201
  year: 2002
  ident: 10.1016/j.patcog.2019.01.047_bib0030
  article-title: On the learnability and design of output codes for multiclass problems
  publication-title: Mach. Learn.
  doi: 10.1023/A:1013637720281
– start-page: 108
  year: 2005
  ident: 10.1016/j.patcog.2019.01.047_bib0024
  article-title: Recursive ECOC for microarray data classification
SSID ssj0017142
Score 2.4554121
Snippet •We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 346
SubjectTerms Data complexity
Error correcting output codes (ECOC)
Microarray data
Multiclass
Title A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis
URI https://dx.doi.org/10.1016/j.patcog.2019.01.047
Volume 90
WOSCitedRecordID wos000463130400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3miXl3zgFgUlsfM6VlVR4bDsikXqLbIdp3TVTarSVuUf8LOZsZ2ky6KFPdBDFNmO22S-zkzsb2YIeVdFQSyCUOEaQOmD9pO-LFPhSxlLEaiQSR2YYhPp6Wk2m-Vng8HPNhZmt0zrOtvv89V_FTW0gbAxdPYO4u4mhQY4B6HDEcQOx38S_Mirm51eepPx57EnlvMGXv-_XRk6oWEPKvSXvSsk4on1WvzwkCTqmVakDVlAoHErcSPBdiLvXO_RYRcuicmhU3tmcnRiXIwjI_Vb-1-2lius6_ls0bN_FlujYLb1tHGWE-2CaTwHW3oOmO2ap440bDsOVykwMKplU7Wal4U-iwJ2qHltoVCnOplbirRWmFkdfUPB27WGy_crMFTNHKl5uUm7atN2Xs-n_Zud69iHLbHtsrCzFDhLEYQFzHKPHEVpnGdDcjT6OJl96nak0pDbzPPuPtowTMMVvPlr_uzmHLguF4_JQ_fOQUcWK0_IQNdPyaO2ngd16v0ZqUbUQIcidGgHHQrQoT10aA8diuig16FDDXQonNjODjq0hc5z8vXD5GI89V0dDl-xNNr4LBG5TKpExSpMskhVrOSJ0LhHxwXPlI6k5BV4enGkOGZXgqEslDCy1DGrcvaCDOum1seEVqXIcpnmWoQVzyImFc9ijKdLMvhwfkJY-9gK5ZLUY62UZXGb0E6I3121skla_jI-bSVSOEfTOpAFwOzWK1_e8ZtekQf9v-E1GW7WW_2G3Fe7zeL7-q3D2C_dkKRl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+ECOC+algorithm+for+multiclass+microarray+data+classification+based+on+data+complexity+analysis&rft.jtitle=Pattern+recognition&rft.au=Sun%2C+MengXin&rft.au=Liu%2C+KunHong&rft.au=Wu%2C+QingQiang&rft.au=Hong%2C+QingQi&rft.date=2019-06-01&rft.issn=0031-3203&rft.volume=90&rft.spage=346&rft.epage=362&rft_id=info:doi/10.1016%2Fj.patcog.2019.01.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_01_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon