A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis
•We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are deployed to detect the intrinsic characteristics of microarray data sets, so as to produce diverse coding matrices.•A new data complexity measur...
Saved in:
| Published in: | Pattern recognition Vol. 90; pp. 346 - 362 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2019
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are deployed to detect the intrinsic characteristics of microarray data sets, so as to produce diverse coding matrices.•A new data complexity measure, named as C1, is designed to evaluate data distribution. It benefits the optimization process of our class partition.•The proposed ECOC algorithm performs more stably in most multiclass microarray data sets compared with other popular ECOC algorithms.
Nowadays, a lot of new classification and clustering techniques have been proposed for microarray data analysis. However, the multiclass microarray data classification is still regarded as a tough task because of the small sample size problem and the class imbalance problem. In this paper, we propose a novel error correcting output code (ECOC) algorithm for the classification of multiclass microarray data based on the data complexity (DC) theory. In this algorithm, an ECOC coding matrix is generated based on a hierarchical partition of the class space with the aim of Minimizing Data Complexity (named as ECOC-MDC). As the partition process can be mapped as a binary tree, a compact ensemble with high discrimination power is produced. The performance of ECOC-MDC is compared with some state-of-art ECOC algorithms on six multiclass microarray data sets, and it is found that the proposed algorithm can obtain better results in most cases. The correlation between DC measures and the dichotomizers’ performances is checked, and the observations confirm that high complexity in data usually leads to high error rates of the connected dichotomizers. But the error correcting mechanism in the ECOC framework can effectively improve our algorithm's generalization ability. In short, ECOC-MDC can produce a compact ensemble system with high error correction capability through the application of diverse DC measures. Our Matlab code is available at: github.com/MLDMXM2017/ECOC-MDC. |
|---|---|
| AbstractList | •We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are deployed to detect the intrinsic characteristics of microarray data sets, so as to produce diverse coding matrices.•A new data complexity measure, named as C1, is designed to evaluate data distribution. It benefits the optimization process of our class partition.•The proposed ECOC algorithm performs more stably in most multiclass microarray data sets compared with other popular ECOC algorithms.
Nowadays, a lot of new classification and clustering techniques have been proposed for microarray data analysis. However, the multiclass microarray data classification is still regarded as a tough task because of the small sample size problem and the class imbalance problem. In this paper, we propose a novel error correcting output code (ECOC) algorithm for the classification of multiclass microarray data based on the data complexity (DC) theory. In this algorithm, an ECOC coding matrix is generated based on a hierarchical partition of the class space with the aim of Minimizing Data Complexity (named as ECOC-MDC). As the partition process can be mapped as a binary tree, a compact ensemble with high discrimination power is produced. The performance of ECOC-MDC is compared with some state-of-art ECOC algorithms on six multiclass microarray data sets, and it is found that the proposed algorithm can obtain better results in most cases. The correlation between DC measures and the dichotomizers’ performances is checked, and the observations confirm that high complexity in data usually leads to high error rates of the connected dichotomizers. But the error correcting mechanism in the ECOC framework can effectively improve our algorithm's generalization ability. In short, ECOC-MDC can produce a compact ensemble system with high error correction capability through the application of diverse DC measures. Our Matlab code is available at: github.com/MLDMXM2017/ECOC-MDC. |
| Author | Sun, MengXin Wu, QingQiang Hong, QingQi Wang, BeiZhan Zhang, Haiying Liu, KunHong |
| Author_xml | – sequence: 1 givenname: MengXin surname: Sun fullname: Sun, MengXin email: sunmenxin@stu.xmu.edu.cn – sequence: 2 givenname: KunHong surname: Liu fullname: Liu, KunHong email: lkhqz@xmu.edu.cn – sequence: 3 givenname: QingQiang surname: Wu fullname: Wu, QingQiang email: wuqq@xmu.edu.cn – sequence: 4 givenname: QingQi surname: Hong fullname: Hong, QingQi email: hongqingqi@xmu.edu.cn – sequence: 5 givenname: BeiZhan surname: Wang fullname: Wang, BeiZhan email: wangbeizhan@xmu.edu.cn – sequence: 6 givenname: Haiying surname: Zhang fullname: Zhang, Haiying |
| BookMark | eNqFUMlOwzAQtVCRaIE_4OAfSPCSrRyQqqgsUqVe4GxNHLu4cuLKNhX5e9KGEwc4zWjeonlvgWa96xVCd5SklNDifp8eIEq3Sxmhy5TQlGTlBZrTquRJTjM2Q3NCOE04I_wKLULYE0LLEZgjvcK9OyqL1_W2xmB3zpv40WHtPO4-bTTSQgi4M9I78B4G3EIEfL4abSRE43rcQFAtHpcJdN3Bqi8TBww92CGYcIMuNdigbn_mNXp_Wr_VL8lm-_xarzaJ5CWLCS9g2RS6kLmkRcWk5m1WgOKMsQyySirWNJlmRZEzmbGKlCOV02ZktirnesmvUTb5ju-G4JUWB2868IOgRJy6EnsxdSVOXQlCxdjVKHv4JZMmnqNFD8b-J36cxGoMdjTKiyCN6qVqjVcyitaZvw2-Afcqi7A |
| CitedBy_id | crossref_primary_10_1177_1748006X241254603 crossref_primary_10_32604_cmc_2022_027030 crossref_primary_10_1109_ACCESS_2021_3081366 crossref_primary_10_1016_j_swevo_2020_100709 crossref_primary_10_1109_ACCESS_2020_3042838 crossref_primary_10_1155_2021_4327896 crossref_primary_10_1177_09596518231226359 crossref_primary_10_1109_ACCESS_2019_2931746 crossref_primary_10_1155_2021_9977977 crossref_primary_10_1109_TCYB_2020_2987904 crossref_primary_10_1016_j_patcog_2022_109122 crossref_primary_10_1007_s10489_021_02870_w crossref_primary_10_1016_j_asoc_2024_112278 crossref_primary_10_1016_j_ins_2020_04_021 crossref_primary_10_1016_j_patcog_2020_107642 crossref_primary_10_1145_3649596 crossref_primary_10_3389_fdata_2025_1624507 crossref_primary_10_1109_TKDE_2021_3130239 crossref_primary_10_1145_3347711 crossref_primary_10_1155_2022_1056490 crossref_primary_10_1109_TCSII_2019_2950269 crossref_primary_10_1007_s00500_020_05203_0 crossref_primary_10_1016_j_ins_2021_04_038 crossref_primary_10_1088_1755_1315_772_1_012029 crossref_primary_10_1016_j_crmeth_2023_100411 crossref_primary_10_1016_j_image_2023_116962 crossref_primary_10_3390_app11041579 crossref_primary_10_1007_s10489_021_02854_w crossref_primary_10_1007_s42979_020_0074_0 crossref_primary_10_1093_bib_bbac029 crossref_primary_10_1155_2021_4513610 crossref_primary_10_1016_j_ins_2021_12_093 crossref_primary_10_1016_j_knosys_2020_105922 crossref_primary_10_1002_cnm_3372 crossref_primary_10_1016_j_patcog_2023_109813 |
| Cites_doi | 10.1186/1471-2105-11-523 10.1016/S1535-6108(02)00032-6 10.1038/nm0102-68 10.1080/03610918208812266 10.1016/j.patcog.2013.03.014 10.1109/TPAMI.2008.266 10.1007/s10994-014-5477-5 10.1016/S0002-9378(40)90428-8 10.1155/2013/239628 10.1016/j.patrec.2010.11.005 10.1109/TPAMI.2006.116 10.1109/34.990132 10.1093/bioinformatics/16.10.906 10.1186/1471-2105-7-228 10.1093/nar/gkv007 10.1016/j.asoc.2018.02.051 10.1007/11758525_91 10.1016/j.patcog.2009.01.021 10.1016/j.compbiomed.2013.03.010 10.1016/j.ins.2016.02.028 10.1016/j.inffus.2016.11.009 10.1016/j.knosys.2016.09.022 10.1038/35021093 10.1016/j.patcog.2013.06.019 10.1007/s10044-007-0061-2 10.1007/s100440200009 10.1016/j.neucom.2011.03.054 10.1016/j.patcog.2007.05.020 10.1155/2015/198363 10.1016/j.patcog.2011.08.001 10.1016/j.patrec.2012.09.010 10.1016/j.patrec.2007.05.007 10.1038/ng765 10.1016/j.neucom.2017.05.066 10.1109/TCYB.2014.2325603 10.1613/jair.105 10.1016/j.patcog.2011.06.006 10.1016/j.patcog.2016.03.012 10.1016/j.compbiomed.2008.02.007 10.1109/TSMCB.2012.2187280 10.1016/j.knosys.2017.09.006 10.1016/j.compeleceng.2018.01.029 10.1023/A:1013637720281 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2019.01.047 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 362 |
| ExternalDocumentID | 10_1016_j_patcog_2019_01_047 S0031320319300378 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c372t-36a9b6f6c5c1682cf3d46ae32224a48ce2bb4f26652c42807f6c31b82cde53f93 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463130400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 22:15:41 EST 2025 Sat Nov 29 03:52:23 EST 2025 Fri Feb 23 02:25:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Error correcting output codes (ECOC) Data complexity Multiclass Microarray data |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-36a9b6f6c5c1682cf3d46ae32224a48ce2bb4f26652c42807f6c31b82cde53f93 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2019_01_047 crossref_citationtrail_10_1016_j_patcog_2019_01_047 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_01_047 |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 2019-06-00 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Su, Welsh, Sapinoso, Kern, Dimitrov, Lapp, Schultz, Powell, Moskaluk, Frierson, Hampton (bib0048) 2001; 61 Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (bib0003) 2000; 16 Ho, Basu (bib0040) 2002; 24 Simeone, Marrocco, Tortorella (bib0031) 2012; 45 Blagus, Lusa (bib0011) 2010; 11 Zhou, Hua, Lia, Wu (bib0015) 2017; 136 Zhou, Peng, Suen (bib0039) 2008; 41 Sánchez, Mollineda, Sotoca (bib0043) 2007; 10 Wang, Yao (bib0017) 2012; 42 Pujol, Radeva, Vitrià (bib0034) 2006; 28 Zhou, Wang, Fujita (bib0033) 2017; 36 Iman, Davenport (bib0056) 1980; 11 MoránFernández, BolónCanedo, AlonsoBetanzos (bib0044) 2017; 117 Escalera, Pujol, Radeva (bib0046) 2010; 11 Diaz Uriate, de Andres (bib0007) 2006; 7 Ho (bib0042) 2002; 5 Escalera, Pujol, Radeva (bib0054) 2010; 32 Tamayo (bib0049) 2002; 8 Gordon, Jensen, Hsiao, Gullans, Blumenstock, Ramaswamy, Richards, Sugarbaker, Bueno (bib0052) 2002; 62 Li, Meng, Lu, Yang, Yang (bib0016) 2008 Blagus, Lusa (bib0012) 2013; 14 BolónCanedo, AlonsoBetanzos (bib0002) 2012; 45 Escalera, Pujol, Radeva (bib0045) 2007; 28 Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib0001) 2015; 43 Tapia, Serra, Gonzalez (bib0024) 2005 Yeoh, Ross, Shurtleff, Williams, Patel, Mahfouz, Behm, Raimondi, Relling, Patel (bib0051) 2002; 1 Nazari, Moin, Rashidy Kanan (bib0022) 2018 Liu, Huang (bib0008) 2008; 38 Yang, Cai, Li, Lin (bib0013) 2006; 7 Cramme, Singer (bib0030) 2002; 47 De Souto, Lorena, Spolaôr, Costa (bib0026) 2010 Escalera, Pujol (bib0035) 2006 Armstrong, Staunton, Silverman, Pieters, den Boer, Minden, Sallan, Lander, Golub, Korsmeyer (bib0050) 2002; 30 Liu, Zeng, Ng (bib0025) 2016; 349 Zhou (bib0005) 2012 Escalera, Masip, Puertas, Radeva, Pujol (bib0023) 2011; 32 Tong, Liu, Xu, Ju (bib0009) 2013; 43 Liu, Li, Zhang, Du (bib0010) 2009; 42 Baro, Escalera, Vitria, Pujol, Radeva (bib0021) 2009; 10 Bautista, Escalera, Baró, Pujol (bib0029) 2014; 47 Perou, Sørlie, Eisen, Rijn, Jeffrey, Rees (bib0047) 2000; 406 Bagheri, Gao, Escalera (bib0037) 2013; 46 Hira, Gillies (bib0004) 2015; 2015 Adair, Pearl (bib0055) 1940; 39 Lorena, Costa, Spolaôr, de Souto (bib0027) 2012; 75 Liu, Tang, Cai, Wang, Chen (bib0019) 2017; 266 Maldonado, López (bib0014) 2018; 67 Yu, Hong, Yang, Ni, Dan, Qin (bib0020) 2013 Sáez, Krawczyk, Woźniak (bib0018) 2016; 57 ÖzöğürAkyüz, Windeatt, Smith (bib0053) 2015; 101 Zhang (bib0032) 2015; 45 Dietterich, Bakiri (bib0028) 1994; 2 Ho, Mansilla (bib0041) 2004; 1 Xu, Zhang (bib0006) 2006; 3992 Guo, Zhang, Zhu, Chen (bib0036) 2010; 31 Bagheri, Montazer, Kabir (bib0038) 2013; 34 Liu (10.1016/j.patcog.2019.01.047_bib0019) 2017; 266 Lorena (10.1016/j.patcog.2019.01.047_bib0027) 2012; 75 Ho (10.1016/j.patcog.2019.01.047_bib0041) 2004; 1 Su (10.1016/j.patcog.2019.01.047_bib0048) 2001; 61 Escalera (10.1016/j.patcog.2019.01.047_bib0054) 2010; 32 Escalera (10.1016/j.patcog.2019.01.047_bib0023) 2011; 32 Tong (10.1016/j.patcog.2019.01.047_bib0009) 2013; 43 Armstrong (10.1016/j.patcog.2019.01.047_bib0050) 2002; 30 Zhou (10.1016/j.patcog.2019.01.047_bib0039) 2008; 41 Ho (10.1016/j.patcog.2019.01.047_bib0042) 2002; 5 Liu (10.1016/j.patcog.2019.01.047_bib0010) 2009; 42 Liu (10.1016/j.patcog.2019.01.047_bib0025) 2016; 349 Escalera (10.1016/j.patcog.2019.01.047_bib0035) 2006 Yang (10.1016/j.patcog.2019.01.047_bib0013) 2006; 7 Zhou (10.1016/j.patcog.2019.01.047_bib0015) 2017; 136 ÖzöğürAkyüz (10.1016/j.patcog.2019.01.047_bib0053) 2015; 101 Gordon (10.1016/j.patcog.2019.01.047_bib0052) 2002; 62 Adair (10.1016/j.patcog.2019.01.047_bib0055) 1940; 39 Bagheri (10.1016/j.patcog.2019.01.047_bib0038) 2013; 34 Sáez (10.1016/j.patcog.2019.01.047_bib0018) 2016; 57 MoránFernández (10.1016/j.patcog.2019.01.047_bib0044) 2017; 117 Wang (10.1016/j.patcog.2019.01.047_bib0017) 2012; 42 Guo (10.1016/j.patcog.2019.01.047_bib0036) 2010; 31 Perou (10.1016/j.patcog.2019.01.047_bib0047) 2000; 406 Bagheri (10.1016/j.patcog.2019.01.047_bib0037) 2013; 46 BolónCanedo (10.1016/j.patcog.2019.01.047_bib0002) 2012; 45 Dietterich (10.1016/j.patcog.2019.01.047_bib0028) 1994; 2 Zhang (10.1016/j.patcog.2019.01.047_bib0032) 2015; 45 Cramme (10.1016/j.patcog.2019.01.047_bib0030) 2002; 47 Yu (10.1016/j.patcog.2019.01.047_bib0020) 2013 Ho (10.1016/j.patcog.2019.01.047_bib0040) 2002; 24 Furey (10.1016/j.patcog.2019.01.047_bib0003) 2000; 16 Liu (10.1016/j.patcog.2019.01.047_bib0008) 2008; 38 Yeoh (10.1016/j.patcog.2019.01.047_bib0051) 2002; 1 Escalera (10.1016/j.patcog.2019.01.047_bib0046) 2010; 11 Maldonado (10.1016/j.patcog.2019.01.047_bib0014) 2018; 67 Li (10.1016/j.patcog.2019.01.047_bib0016) 2008 Escalera (10.1016/j.patcog.2019.01.047_bib0045) 2007; 28 Tamayo (10.1016/j.patcog.2019.01.047_bib0049) 2002; 8 Zhou (10.1016/j.patcog.2019.01.047_bib0033) 2017; 36 Sánchez (10.1016/j.patcog.2019.01.047_bib0043) 2007; 10 Hira (10.1016/j.patcog.2019.01.047_bib0004) 2015; 2015 Blagus (10.1016/j.patcog.2019.01.047_bib0011) 2010; 11 Bautista (10.1016/j.patcog.2019.01.047_bib0029) 2014; 47 Diaz Uriate (10.1016/j.patcog.2019.01.047_bib0007) 2006; 7 Iman (10.1016/j.patcog.2019.01.047_bib0056) 1980; 11 Ritchie (10.1016/j.patcog.2019.01.047_bib0001) 2015; 43 Blagus (10.1016/j.patcog.2019.01.047_bib0012) 2013; 14 De Souto (10.1016/j.patcog.2019.01.047_bib0026) 2010 Baro (10.1016/j.patcog.2019.01.047_bib0021) 2009; 10 Nazari (10.1016/j.patcog.2019.01.047_bib0022) 2018 Zhou (10.1016/j.patcog.2019.01.047_bib0005) 2012 Tapia (10.1016/j.patcog.2019.01.047_bib0024) 2005 Xu (10.1016/j.patcog.2019.01.047_bib0006) 2006; 3992 Pujol (10.1016/j.patcog.2019.01.047_bib0034) 2006; 28 Simeone (10.1016/j.patcog.2019.01.047_bib0031) 2012; 45 |
| References_xml | – volume: 62 start-page: 4963 year: 2002 end-page: 4967 ident: bib0052 article-title: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma publication-title: Cancer Res. – volume: 75 start-page: 33 year: 2012 end-page: 42 ident: bib0027 article-title: Analysis of complexity indices for classification problems: cancer gene expression data publication-title: Neurocomputing – volume: 67 start-page: 94 year: 2018 end-page: 105 ident: bib0014 article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification publication-title: Appl. Soft Comput. – volume: 41 start-page: 67 year: 2008 end-page: 76 ident: bib0039 article-title: Data-driven decomposition for multi-class classification publication-title: Pattern Recognit. – volume: 7 year: 2006 ident: bib0007 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinf. – volume: 2015 start-page: 1 year: 2015 end-page: 13 ident: bib0004 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Adv. Bioinf. – volume: 1 start-page: 136 year: 2004 end-page: 139 ident: bib0041 article-title: On classifier domains of competence publication-title: 17th International Conference on (ICPR'04) – volume: 42 start-page: 1119 year: 2012 end-page: 1130 ident: bib0017 article-title: Multiclass imbalance problems: analysis and potential solutions publication-title: IEEE Trans. Syst. Man Cybern. – year: 2013 ident: bib0020 article-title: Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers publication-title: BioMed Res. Int. – volume: 28 start-page: 1759 year: 2007 end-page: 1768 ident: bib0045 article-title: Boosted landmarks of contextual descriptors and forest-ECOC: a novel framework to detect and classify objects in cluttered scenes publication-title: Pattern Recognit. Lett. – volume: 10 start-page: 113 year: 2009 end-page: 126 ident: bib0021 article-title: Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification – volume: 42 start-page: 1274 year: 2009 end-page: 1283 ident: bib0010 article-title: Ensemble component selection for improving ICA based microarray data prediction models publication-title: Pattern Recognit. – volume: 38 start-page: 601 year: 2008 end-page: 610 ident: bib0008 article-title: Cancer classification using Rotation Forest publication-title: Comput. Biol. Med. – start-page: 578 year: 2006 end-page: 581 ident: bib0035 article-title: ECOC-ONE: a novel coding and decoding strategy publication-title: International Conference on Pattern Recognition – volume: 30 start-page: 41 year: 2002 end-page: 47 ident: bib0050 article-title: Mll transloca-tions specify a distinct gene expression profi le that distinguishes a unique leukemia publication-title: Nat. Genet – volume: 14 year: 2013 ident: bib0012 article-title: SMOTE for high-dimensional class-imbalanced data publication-title: Bmc Bioinf. – volume: 349 start-page: 102 year: 2016 end-page: 118 ident: bib0025 article-title: A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data publication-title: Inf. Sci. – volume: 57 start-page: 164 year: 2016 end-page: 178 ident: bib0018 article-title: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets publication-title: Pattern Recognit. – volume: 39 start-page: 725 year: 1940 ident: bib0055 article-title: The Friedman test in hydatidiform mole and chorionepithelioma: Lazarus-Barlow, P.: Brit. M. J. 1: 71, 1937 publication-title: Am. J. Obstetr. Gynecol. – volume: 61 start-page: 7388 year: 2001 end-page: 7393 ident: bib0048 article-title: Molecular classification of human carcinomas by use of gene expression signatures publication-title: Cancer Res. – volume: 34 start-page: 176 year: 2013 end-page: 184 ident: bib0038 article-title: A subspace approach to error correcting output codes publication-title: Pattern Recognit. Lett. – volume: 2 start-page: 263 year: 1994 end-page: 286 ident: bib0028 article-title: Solving multiclass learning problems via ECOCs publication-title: J. Artif. Intell. Res. – start-page: 1 year: 2010 end-page: 7 ident: bib0026 article-title: Complexity measures of supervised classifications tasks: a case study for cancer gene expression data publication-title: International Joint Conference on Neural Networks – volume: 1 start-page: 133 year: 2002 end-page: 143 ident: bib0051 article-title: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling publication-title: Cancer Cell – volume: 5 start-page: 102 year: 2002 end-page: 112 ident: bib0042 article-title: A data complexity analysis of comparative advantages of decision forest constructors publication-title: Pattern Anal. Appl. – volume: 43 start-page: e47 year: 2015 ident: bib0001 article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. – year: 2018 ident: bib0022 article-title: Securing templates in a face recognition system using Error-Correcting Output Code and chaos theory publication-title: Comput. Electr. Eng. – volume: 8 start-page: 68 year: 2002 end-page: 74 ident: bib0049 article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning publication-title: Nat. Med. – volume: 266 start-page: 641 year: 2017 end-page: 650 ident: bib0019 article-title: A hybrid method based on ensemble WELM for handling multi class imbalance in cancer microarray data publication-title: Neurocomputing – volume: 47 start-page: 201 year: 2002 end-page: 233 ident: bib0030 article-title: On the learnability and design of output codes for multiclass problems publication-title: Mach. Learn. – volume: 117 start-page: 27 year: 2017 end-page: 45 ident: bib0044 article-title: Centralized vs. distributed feature selection methods based on data complexity measures publication-title: Knowl. Based Syst. – volume: 31 start-page: 232 year: 2010 end-page: 236 ident: bib0036 article-title: Research on synthetic aperture radar image target recognition based on AdaBoost publication-title: ECOC J. Harbin Eng. Univ. – volume: 16 start-page: 906 year: 2000 end-page: 914 ident: bib0003 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics – volume: 28 start-page: 1007 year: 2006 ident: bib0034 article-title: Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 289 year: 2002 end-page: 300 ident: bib0040 article-title: Complexity measures of supervised classification problems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 45 start-page: 531 year: 2012 end-page: 539 ident: bib0002 article-title: An ensemble of filters and classifiers for microarray data classification publication-title: Pattern Recognit. – volume: 11 year: 2010 ident: bib0011 article-title: Class prediction for high-dimensional class-imbalanced data publication-title: Bmc Bioinf. – volume: 136 start-page: 187 year: 2017 end-page: 199 ident: bib0015 article-title: Online feature selection for high-dimensional class-imbalanced data publication-title: Knowl. Based Syst. – volume: 36 start-page: 80 year: 2017 end-page: 89 ident: bib0033 article-title: One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies publication-title: Inf. Fusion – volume: 46 start-page: 2830 year: 2013 end-page: 2839 ident: bib0037 article-title: A genetic-based subspace analysis method for improving Error-Correcting Output Coding publication-title: Pattern Recognit. – volume: 7 year: 2006 ident: bib0013 article-title: A stable gene selection in microarray data analysis publication-title: Bmc Bioinf. – volume: 47 start-page: 865 year: 2014 end-page: 884 ident: bib0029 article-title: On the design of an ECOC-compliant Genetic Algorithm publication-title: Pattern Recognit. – volume: 32 start-page: 120 year: 2010 end-page: 134 ident: bib0054 article-title: On the decoding process in ternary error-correcting output codes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2012 ident: bib0005 article-title: Ensemble Methods: Foundations and Algorithms – volume: 11 start-page: 661 year: 2010 end-page: 664 ident: bib0046 article-title: Error-correcting output codes library publication-title: J. Mach. Learn. Res. – start-page: 9 year: 2008 ident: bib0016 article-title: Asymmetric bagging and feature selection for activities prediction of drug molecules publication-title: Bmc Bioinf. – volume: 45 start-page: 289 year: 2015 end-page: 301 ident: bib0032 article-title: Heuristic ternary error-correcting output codes via weight optimization and layered clustering-based approach publication-title: IEEE T Cybern. – volume: 3992 start-page: 670 year: 2006 end-page: 677 ident: bib0006 article-title: Boost feature subset selection: a new gene selection algorithm for microarray dataset publication-title: Lect. Notes Comput. Sci. – volume: 32 start-page: 458 year: 2011 end-page: 467 ident: bib0023 article-title: Online error correcting output codes publication-title: Pattern Recognit. Lett. – start-page: 108 year: 2005 end-page: 117 ident: bib0024 article-title: Recursive ECOC for microarray data classification publication-title: Multiple Classifier Systems, 6th International Workshop – volume: 11 start-page: 335 year: 1980 end-page: 360 ident: bib0056 article-title: Rank correlation plots for use with correlated input variables publication-title: Commun. Stat. – volume: 406 start-page: 747 year: 2000 end-page: 752 ident: bib0047 article-title: Molecular portraits of human breast tumours publication-title: Nature – volume: 43 start-page: 729 year: 2013 end-page: 737 ident: bib0009 article-title: An ensemble of SVM classifiers based on gene pairs publication-title: Comput. Biol. Med. – volume: 10 start-page: 189 year: 2007 end-page: 201 ident: bib0043 article-title: An analysis of how training data complexity affects the nearest neighbor classifiers publication-title: Pattern Anal. Appl. – volume: 101 start-page: 253 year: 2015 end-page: 269 ident: bib0053 article-title: Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off publication-title: Mach. Learn. – volume: 45 start-page: 863 year: 2012 end-page: 875 ident: bib0031 article-title: Design of reject rules for ECOC classification systems publication-title: Pattern Recognit. – volume: 11 year: 2010 ident: 10.1016/j.patcog.2019.01.047_bib0011 article-title: Class prediction for high-dimensional class-imbalanced data publication-title: Bmc Bioinf. doi: 10.1186/1471-2105-11-523 – volume: 14 year: 2013 ident: 10.1016/j.patcog.2019.01.047_bib0012 article-title: SMOTE for high-dimensional class-imbalanced data publication-title: Bmc Bioinf. – volume: 1 start-page: 133 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0051 article-title: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00032-6 – volume: 8 start-page: 68 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0049 article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning publication-title: Nat. Med. doi: 10.1038/nm0102-68 – volume: 11 start-page: 335 year: 1980 ident: 10.1016/j.patcog.2019.01.047_bib0056 article-title: Rank correlation plots for use with correlated input variables publication-title: Commun. Stat. doi: 10.1080/03610918208812266 – volume: 46 start-page: 2830 year: 2013 ident: 10.1016/j.patcog.2019.01.047_bib0037 article-title: A genetic-based subspace analysis method for improving Error-Correcting Output Coding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.03.014 – volume: 32 start-page: 120 year: 2010 ident: 10.1016/j.patcog.2019.01.047_bib0054 article-title: On the decoding process in ternary error-correcting output codes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.266 – volume: 101 start-page: 253 year: 2015 ident: 10.1016/j.patcog.2019.01.047_bib0053 article-title: Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off publication-title: Mach. Learn. doi: 10.1007/s10994-014-5477-5 – volume: 39 start-page: 725 year: 1940 ident: 10.1016/j.patcog.2019.01.047_bib0055 article-title: The Friedman test in hydatidiform mole and chorionepithelioma: Lazarus-Barlow, P.: Brit. M. J. 1: 71, 1937 publication-title: Am. J. Obstetr. Gynecol. doi: 10.1016/S0002-9378(40)90428-8 – volume: 10 start-page: 113 year: 2009 ident: 10.1016/j.patcog.2019.01.047_bib0021 article-title: Traffic sign recognition using evolutionary adaboost detection and forest-ECOC classification – year: 2013 ident: 10.1016/j.patcog.2019.01.047_bib0020 article-title: Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers publication-title: BioMed Res. Int. doi: 10.1155/2013/239628 – volume: 32 start-page: 458 year: 2011 ident: 10.1016/j.patcog.2019.01.047_bib0023 article-title: Online error correcting output codes publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.11.005 – volume: 61 start-page: 7388 year: 2001 ident: 10.1016/j.patcog.2019.01.047_bib0048 article-title: Molecular classification of human carcinomas by use of gene expression signatures publication-title: Cancer Res. – volume: 28 start-page: 1007 year: 2006 ident: 10.1016/j.patcog.2019.01.047_bib0034 article-title: Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.116 – volume: 24 start-page: 289 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0040 article-title: Complexity measures of supervised classification problems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990132 – volume: 16 start-page: 906 year: 2000 ident: 10.1016/j.patcog.2019.01.047_bib0003 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 7 year: 2006 ident: 10.1016/j.patcog.2019.01.047_bib0013 article-title: A stable gene selection in microarray data analysis publication-title: Bmc Bioinf. doi: 10.1186/1471-2105-7-228 – volume: 43 start-page: e47 year: 2015 ident: 10.1016/j.patcog.2019.01.047_bib0001 article-title: Limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 67 start-page: 94 year: 2018 ident: 10.1016/j.patcog.2019.01.047_bib0014 article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.051 – volume: 3992 start-page: 670 year: 2006 ident: 10.1016/j.patcog.2019.01.047_bib0006 article-title: Boost feature subset selection: a new gene selection algorithm for microarray dataset publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11758525_91 – volume: 42 start-page: 1274 year: 2009 ident: 10.1016/j.patcog.2019.01.047_bib0010 article-title: Ensemble component selection for improving ICA based microarray data prediction models publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.01.021 – volume: 7 year: 2006 ident: 10.1016/j.patcog.2019.01.047_bib0007 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinf. – volume: 43 start-page: 729 year: 2013 ident: 10.1016/j.patcog.2019.01.047_bib0009 article-title: An ensemble of SVM classifiers based on gene pairs publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.03.010 – start-page: 1 year: 2010 ident: 10.1016/j.patcog.2019.01.047_bib0026 article-title: Complexity measures of supervised classifications tasks: a case study for cancer gene expression data – volume: 349 start-page: 102 year: 2016 ident: 10.1016/j.patcog.2019.01.047_bib0025 article-title: A hierarchical ensemble of ECOC for cancer classification based on multi-class microarray data publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.02.028 – volume: 36 start-page: 80 year: 2017 ident: 10.1016/j.patcog.2019.01.047_bib0033 article-title: One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.11.009 – volume: 117 start-page: 27 year: 2017 ident: 10.1016/j.patcog.2019.01.047_bib0044 article-title: Centralized vs. distributed feature selection methods based on data complexity measures publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.09.022 – volume: 406 start-page: 747 year: 2000 ident: 10.1016/j.patcog.2019.01.047_bib0047 article-title: Molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/35021093 – volume: 11 start-page: 661 year: 2010 ident: 10.1016/j.patcog.2019.01.047_bib0046 article-title: Error-correcting output codes library publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 865 year: 2014 ident: 10.1016/j.patcog.2019.01.047_bib0029 article-title: On the design of an ECOC-compliant Genetic Algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.06.019 – volume: 31 start-page: 232 year: 2010 ident: 10.1016/j.patcog.2019.01.047_bib0036 article-title: Research on synthetic aperture radar image target recognition based on AdaBoost publication-title: ECOC J. Harbin Eng. Univ. – volume: 10 start-page: 189 year: 2007 ident: 10.1016/j.patcog.2019.01.047_bib0043 article-title: An analysis of how training data complexity affects the nearest neighbor classifiers publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-007-0061-2 – volume: 5 start-page: 102 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0042 article-title: A data complexity analysis of comparative advantages of decision forest constructors publication-title: Pattern Anal. Appl. doi: 10.1007/s100440200009 – year: 2012 ident: 10.1016/j.patcog.2019.01.047_bib0005 – volume: 75 start-page: 33 year: 2012 ident: 10.1016/j.patcog.2019.01.047_bib0027 article-title: Analysis of complexity indices for classification problems: cancer gene expression data publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.054 – volume: 41 start-page: 67 year: 2008 ident: 10.1016/j.patcog.2019.01.047_bib0039 article-title: Data-driven decomposition for multi-class classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.05.020 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.patcog.2019.01.047_bib0004 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Adv. Bioinf. doi: 10.1155/2015/198363 – volume: 45 start-page: 863 year: 2012 ident: 10.1016/j.patcog.2019.01.047_bib0031 article-title: Design of reject rules for ECOC classification systems publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.08.001 – volume: 34 start-page: 176 year: 2013 ident: 10.1016/j.patcog.2019.01.047_bib0038 article-title: A subspace approach to error correcting output codes publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.09.010 – start-page: 578 year: 2006 ident: 10.1016/j.patcog.2019.01.047_bib0035 article-title: ECOC-ONE: a novel coding and decoding strategy – volume: 28 start-page: 1759 year: 2007 ident: 10.1016/j.patcog.2019.01.047_bib0045 article-title: Boosted landmarks of contextual descriptors and forest-ECOC: a novel framework to detect and classify objects in cluttered scenes publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.05.007 – volume: 30 start-page: 41 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0050 article-title: Mll transloca-tions specify a distinct gene expression profi le that distinguishes a unique leukemia publication-title: Nat. Genet doi: 10.1038/ng765 – volume: 266 start-page: 641 year: 2017 ident: 10.1016/j.patcog.2019.01.047_bib0019 article-title: A hybrid method based on ensemble WELM for handling multi class imbalance in cancer microarray data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.066 – volume: 62 start-page: 4963 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0052 article-title: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma publication-title: Cancer Res. – volume: 45 start-page: 289 year: 2015 ident: 10.1016/j.patcog.2019.01.047_bib0032 article-title: Heuristic ternary error-correcting output codes via weight optimization and layered clustering-based approach publication-title: IEEE T Cybern. doi: 10.1109/TCYB.2014.2325603 – volume: 2 start-page: 263 year: 1994 ident: 10.1016/j.patcog.2019.01.047_bib0028 article-title: Solving multiclass learning problems via ECOCs publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.105 – volume: 45 start-page: 531 year: 2012 ident: 10.1016/j.patcog.2019.01.047_bib0002 article-title: An ensemble of filters and classifiers for microarray data classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.06.006 – volume: 1 start-page: 136 year: 2004 ident: 10.1016/j.patcog.2019.01.047_bib0041 article-title: On classifier domains of competence – volume: 57 start-page: 164 year: 2016 ident: 10.1016/j.patcog.2019.01.047_bib0018 article-title: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.012 – volume: 38 start-page: 601 year: 2008 ident: 10.1016/j.patcog.2019.01.047_bib0008 article-title: Cancer classification using Rotation Forest publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2008.02.007 – start-page: 9 year: 2008 ident: 10.1016/j.patcog.2019.01.047_bib0016 article-title: Asymmetric bagging and feature selection for activities prediction of drug molecules publication-title: Bmc Bioinf. – volume: 42 start-page: 1119 year: 2012 ident: 10.1016/j.patcog.2019.01.047_bib0017 article-title: Multiclass imbalance problems: analysis and potential solutions publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2012.2187280 – volume: 136 start-page: 187 year: 2017 ident: 10.1016/j.patcog.2019.01.047_bib0015 article-title: Online feature selection for high-dimensional class-imbalanced data publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.09.006 – year: 2018 ident: 10.1016/j.patcog.2019.01.047_bib0022 article-title: Securing templates in a face recognition system using Error-Correcting Output Code and chaos theory publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.01.029 – volume: 47 start-page: 201 year: 2002 ident: 10.1016/j.patcog.2019.01.047_bib0030 article-title: On the learnability and design of output codes for multiclass problems publication-title: Mach. Learn. doi: 10.1023/A:1013637720281 – start-page: 108 year: 2005 ident: 10.1016/j.patcog.2019.01.047_bib0024 article-title: Recursive ECOC for microarray data classification |
| SSID | ssj0017142 |
| Score | 2.4554121 |
| Snippet | •We proposed a novel ECOC algorithm for multiclass microarray data classification based on the data complexity theory.•Various data complexity measures are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 346 |
| SubjectTerms | Data complexity Error correcting output codes (ECOC) Microarray data Multiclass |
| Title | A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis |
| URI | https://dx.doi.org/10.1016/j.patcog.2019.01.047 |
| Volume | 90 |
| WOSCitedRecordID | wos000463130400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3miXl3zgFgUlsfM6VlVR4bDsikXqLbIdp3TVTarSVuUf8LOZsZ2ky6KFPdBDFNmO22S-zkzsb2YIeVdFQSyCUOEaQOmD9pO-LFPhSxlLEaiQSR2YYhPp6Wk2m-Vng8HPNhZmt0zrOtvv89V_FTW0gbAxdPYO4u4mhQY4B6HDEcQOx38S_Mirm51eepPx57EnlvMGXv-_XRk6oWEPKvSXvSsk4on1WvzwkCTqmVakDVlAoHErcSPBdiLvXO_RYRcuicmhU3tmcnRiXIwjI_Vb-1-2lius6_ls0bN_FlujYLb1tHGWE-2CaTwHW3oOmO2ap440bDsOVykwMKplU7Wal4U-iwJ2qHltoVCnOplbirRWmFkdfUPB27WGy_crMFTNHKl5uUm7atN2Xs-n_Zud69iHLbHtsrCzFDhLEYQFzHKPHEVpnGdDcjT6OJl96nak0pDbzPPuPtowTMMVvPlr_uzmHLguF4_JQ_fOQUcWK0_IQNdPyaO2ngd16v0ZqUbUQIcidGgHHQrQoT10aA8diuig16FDDXQonNjODjq0hc5z8vXD5GI89V0dDl-xNNr4LBG5TKpExSpMskhVrOSJ0LhHxwXPlI6k5BV4enGkOGZXgqEslDCy1DGrcvaCDOum1seEVqXIcpnmWoQVzyImFc9ijKdLMvhwfkJY-9gK5ZLUY62UZXGb0E6I3121skla_jI-bSVSOEfTOpAFwOzWK1_e8ZtekQf9v-E1GW7WW_2G3Fe7zeL7-q3D2C_dkKRl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+ECOC+algorithm+for+multiclass+microarray+data+classification+based+on+data+complexity+analysis&rft.jtitle=Pattern+recognition&rft.au=Sun%2C+MengXin&rft.au=Liu%2C+KunHong&rft.au=Wu%2C+QingQiang&rft.au=Hong%2C+QingQi&rft.date=2019-06-01&rft.issn=0031-3203&rft.volume=90&rft.spage=346&rft.epage=362&rft_id=info:doi/10.1016%2Fj.patcog.2019.01.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_01_047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |