On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Dire...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 87; no. 11; pp. 1669 - 1709
Main Authors: Blažej, Václav, Jana, Satyabrata, Ramanujan, M. S., Strulo, Peter
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2025
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.
AbstractList In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.
In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.
Author Jana, Satyabrata
Blažej, Václav
Ramanujan, M. S.
Strulo, Peter
Author_xml – sequence: 1
  givenname: Václav
  surname: Blažej
  fullname: Blažej, Václav
  organization: University of Warwick
– sequence: 2
  givenname: Satyabrata
  surname: Jana
  fullname: Jana, Satyabrata
  email: satyamtma@gmail.com
  organization: University of Warwick
– sequence: 3
  givenname: M. S.
  surname: Ramanujan
  fullname: Ramanujan, M. S.
  organization: University of Warwick
– sequence: 4
  givenname: Peter
  surname: Strulo
  fullname: Strulo, Peter
  organization: University of Warwick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40984865$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1L5EAQhhtx0XH0D3iQgBcvcbv6O0cZR1cQXNj13KRjRSNJ99idgPrrbZ1xBQ97Kqh63vp698i2Dx4JOQR6CpTqn4lSIXlJmSwpcK5KtUVmIDgrqRSwTWYUtCmFAr1L9lJ6pBSYrtQO2RW0MsIoOSNXN74YH7D4Xcd6wBFj94p3xSIMqx6fu_GlCG2xnPqcr33xZ4zB339U8yZ-LM5iU5xjj2MX_D750dZ9woNNnJPbi-Xfxa_y-ubyanF2XTZcs7HkDA2VGhreOoPK1YI3yjlAKZQwUJkGdM2EAy4AuXO60sq1HJBBo2Ul-ZycrPuuYniaMI126FKDfV97DFOynEme76MVy-jxN_QxTNHn7d4pppjWxmTqaENNbsA7u4rdUMcX-_mkDLA10MSQUsT2HwLUvjth107Y7IT9cMKqLOJrUcqwv8f4Nfs_qjfelohu
Cites_doi 10.1007/BF02579200
10.1007/978-3-540-68279-0_8
10.1287/MOOR.8.4.538
10.1016/J.IPL.2011.11.014
10.1007/S00453-012-9667-X
10.1137/130947374
10.1007/978-1-4471-5559-1
10.1016/J.JCSS.2018.03.001
10.1016/J.TCS.2022.03.021
10.1007/978-3-642-17493-3_9
10.1016/J.DISOPT.2022.100740
10.1109/FOCS52979.2021.00026
10.1016/J.JCSS.2012.04.004
10.1007/978-3-319-21275-3
10.1287/MOOR.12.3.415
10.4153/CJM-1956-045-5
10.1007/S00453-016-0127-X
10.1006/jctb.1995.1006
10.1145/3564246.3585245
10.4230/LIPICS.IPEC.2024.4
10.4086/TOC.2010.V006A005
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1007/s00453-025-01336-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1709
ExternalDocumentID 40984865
10_1007_s00453_025_01336_6
Genre Journal Article
GrantInformation_xml – fundername: UK Research and Innovation
  grantid: EP/V044621/1; EP/V044621/1; EP/V044621/1; EP/V044621/1
  funderid: http://dx.doi.org/10.13039/100014013
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFSG
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~EX
AAYXX
CITATION
NPM
JQ2
7X8
ID FETCH-LOGICAL-c372t-32e80571c3fb8e6ba43c6bb1e54648198c17a24b1341e3bb7976bf31e21c75953
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001545465300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 21:23:25 EDT 2025
Thu Oct 02 15:08:04 EDT 2025
Fri Sep 26 01:51:27 EDT 2025
Sat Nov 29 07:28:58 EST 2025
Sun Sep 21 01:10:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Eulerian graphs
Parameterized complexity
Treewidth
Language English
License The Author(s) 2025.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-32e80571c3fb8e6ba43c6bb1e54648198c17a24b1341e3bb7976bf31e21c75953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s00453-025-01336-6
PMID 40984865
PQID 3252627788
PQPubID 2043795
PageCount 41
ParticipantIDs proquest_miscellaneous_3253409092
proquest_journals_3252627788
pubmed_primary_40984865
crossref_primary_10_1007_s00453_025_01336_6
springer_journals_10_1007_s00453_025_01336_6
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationTitleAlternate Algorithmica
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LR Ford (1336_CR10) 1956; 8
1336_CR19
M Cygan (1336_CR6) 2015
1336_CR18
1336_CR4
RG Downey (1336_CR8) 2013
CA Barefoot (1336_CR1) 1987; 1
1336_CR2
M Cygan (1336_CR7) 2014; 68
D Marx (1336_CR21) 2010; 6
T Gima (1336_CR12) 2022; 918
N Robertson (1336_CR22) 1995; 63
K Jansen (1336_CR15) 2013; 79
P Goyal (1336_CR14) 2018; 97
A Göke (1336_CR13) 2022; 46
HL Bodlaender (1336_CR3) 2016; 45
R Crowston (1336_CR5) 2012; 112
1336_CR20
HW Lenstra Jr (1336_CR16) 1983; 8
R Kannan (1336_CR17) 1987; 12
A Frank (1336_CR11) 1987; 7
PG Drange (1336_CR9) 2016; 76
References_xml – volume: 7
  start-page: 49
  issue: 1
  year: 1987
  ident: 1336_CR11
  publication-title: Combinatorica
  doi: 10.1007/BF02579200
– ident: 1336_CR18
  doi: 10.1007/978-3-540-68279-0_8
– volume: 8
  start-page: 538
  issue: 4
  year: 1983
  ident: 1336_CR16
  publication-title: Math. Oper. Res.
  doi: 10.1287/MOOR.8.4.538
– volume: 112
  start-page: 249
  issue: 6
  year: 2012
  ident: 1336_CR5
  publication-title: Inf. Process. Lett.
  doi: 10.1016/J.IPL.2011.11.014
– volume: 68
  start-page: 41
  issue: 1
  year: 2014
  ident: 1336_CR7
  publication-title: Algorithmica
  doi: 10.1007/S00453-012-9667-X
– volume: 45
  start-page: 317
  issue: 2
  year: 2016
  ident: 1336_CR3
  publication-title: SIAM J. Comput.
  doi: 10.1137/130947374
– volume-title: Fundamentals of parameterized complexity. Texts in computer science
  year: 2013
  ident: 1336_CR8
  doi: 10.1007/978-1-4471-5559-1
– volume: 97
  start-page: 1
  year: 2018
  ident: 1336_CR14
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/J.JCSS.2018.03.001
– volume: 918
  start-page: 60
  year: 2022
  ident: 1336_CR12
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/J.TCS.2022.03.021
– ident: 1336_CR4
  doi: 10.1007/978-3-642-17493-3_9
– volume: 46
  year: 2022
  ident: 1336_CR13
  publication-title: Discret. Optim.
  doi: 10.1016/J.DISOPT.2022.100740
– ident: 1336_CR19
  doi: 10.1109/FOCS52979.2021.00026
– volume: 79
  start-page: 39
  issue: 1
  year: 2013
  ident: 1336_CR15
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/J.JCSS.2012.04.004
– volume-title: Parameterized algorithms
  year: 2015
  ident: 1336_CR6
  doi: 10.1007/978-3-319-21275-3
– volume: 12
  start-page: 415
  issue: 3
  year: 1987
  ident: 1336_CR17
  publication-title: Math. Oper. Res.
  doi: 10.1287/MOOR.12.3.415
– volume: 8
  start-page: 399
  year: 1956
  ident: 1336_CR10
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1956-045-5
– volume: 1
  start-page: 13
  year: 1987
  ident: 1336_CR1
  publication-title: JCMCC
– volume: 76
  start-page: 1181
  issue: 4
  year: 2016
  ident: 1336_CR9
  publication-title: Algorithmica
  doi: 10.1007/S00453-016-0127-X
– volume: 63
  start-page: 65
  issue: 1
  year: 1995
  ident: 1336_CR22
  publication-title: J. Comb. Theory B
  doi: 10.1006/jctb.1995.1006
– ident: 1336_CR20
  doi: 10.1145/3564246.3585245
– ident: 1336_CR2
  doi: 10.4230/LIPICS.IPEC.2024.4
– volume: 6
  start-page: 85
  issue: 1
  year: 2010
  ident: 1336_CR21
  publication-title: Theory Comput.
  doi: 10.4086/TOC.2010.V006A005
SSID ssj0012796
Score 2.4208481
Snippet In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1669
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Deletion
Graph theory
Lower bounds
Mathematics of Computing
Parameterization
Parameters
Theory of Computation
Title On the Parameterized Complexity of Eulerian Strong Component Arc Deletion
URI https://link.springer.com/article/10.1007/s00453-025-01336-6
https://www.ncbi.nlm.nih.gov/pubmed/40984865
https://www.proquest.com/docview/3252627788
https://www.proquest.com/docview/3253409092
Volume 87
WOSCitedRecordID wos001545465300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VyoELUJ5pKTISN4hEbMd2jlW7q_ayXZUW7S2yvQ5CQlm0DyT49cx4kyBEOcAx8ci25pH5nPHMAJy4Soyr3NgUnRtPpQ8uNRYfi8zhaeJ8TKkhsdmEHgzMaFQMm6SwWXvbvQ1Jxi91l-xG6INijnTZTAiVqhX4iO7OkDn-ubjsYgdcx65c1Hc-leigm1SZ_8_x3B29wJgv4qPR7fQ337fhLdhoYCb7ttSLT_Ah1Nuw2bZwYI1F78Cv3zVDCMiGli5pUd3mhzBmREeFMuf3bFKx3uKG1LRmF_Tb_CqOTmp0Vji9Zz8Cle-e1Lvwr9_7-_1n2nRXSL3QfJ4KHgyCtcyLypmgnJXCK-eykEslEScYn2nLpaOKb0E4pxG4oGSzwDOv8yIXe7Ba42oHwFRmTe6EU9oFaatgTSaUOa-qsSukz3UCpy2Ty9tlEY2yK5ccuVQil8rIpVIlcNjKoWwMalYKnnPFNR7YEzjuhtEUKL5h6zBZRBpBClbwBPaX8uuWw_dGGpUncNYK62ny1_fy-W3kX2Cdk7xjruIhrM6ni_AV1vzd_Ho2PYIVPTJHUVkfAXo44Cg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RqNReCpRHw9NIvZVIxHZs54h4CAQsiJe4RbbXQUgoW7G7ldpf3xlvkgpRDnBMPLKtmXHmc-YF8N1Vol_lxqZo3HgqfXCpsfhYZA5vEzt9Sg2JzSZ0r2fu7oqLJils2Ea7ty7J-KXukt0IfZDPkYLNhFCp-gAzEi0WBfJdXt12vgOuY1cu6jufSjTQTarM_-d4bo5eYMwX_tFodg5n37fhOfjSwEy2O9GLeZgK9VeYbVs4sOZEL8Dxec0QArILS0FaVLf5T-gzoqNCmaPfbFCxg_EjqWnNrui3-X0cHdRorHB6z_YDle8e1Itwc3hwvXeUNt0VUi80H6WCB4NgLfOiciYoZ6Xwyrks5FJJxAnGZ9py6ajiWxDOaQQuKNks8MzrvMjFEkzXuNo3YCqzJnfCKe2CtFWwJhPK7FRV3xXS5zqBHy2Ty5-TIhplVy45cqlELpWRS6VKYK2VQ9kcqGEpeM4V13hhT2CrG8ajQP4NW4fBONIIUrCCJ7A8kV-3HL430qg8ge1WWP8mf30vK28j34RPR9dnp-Xpce9kFT5zkn3MW1yD6dHTOKzDR_9r9DB82ogq-xe86eIk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB5aW4ov2l_qWtum4Fu7nJtkk-xj8TwqLdeDa8W3JckmIsiu6J6gf72Z3O62Yn0oPm4SkjAzYb7sZL4B2DWeVT5XOg3OjabcOpMqHT6LzITbxF6FqSGx2IScTtXxcTH7K4s_vnbvQ5LLnAZkaarb0XnlR0PiGyIRjD_iwzPGRCqewjOORYPwvj4_GuIIVMYKXViDPuXBWXdpM_-e465ruoc378VKowuarD9-8y9hrYOf5OvSXl7BE1e_hvW-tAPpTvobOPxZkwANyUzj4y3kc75xFcFxSKDZXpPGk4PFGZpvTeb4O_0k9jZ12EeY3pKxQ1rvpn4LvycHv_a_pV3VhdQySduUUacCiMss80Y5YTRnVhiTuZwLHvCDspnUlBtkgnPMGBkATdB45mhmZV7kbANW6rDaFhCRaZUbZoQ0jmvvtMqYUHveV6bgNpcJfO4FXp4vyTXKgUY5SqkMUiqjlEqRwE6vk7I7aJclozkVVIaLfAKfhu5wRDDuoWvXLOIYhoZX0AQ2l7oclgvtiiuRJ_ClV9yfyR_ey_b_Df8IL2bjSfnjcPr9HaxSVH1MZ9yBlfZi4d7Dc3vVnl5efIjWewuI1OsI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Parameterized+Complexity+of+Eulerian+Strong+Component+Arc+Deletion&rft.jtitle=Algorithmica&rft.au=Bla%C5%BEej%2C+V%C3%A1clav&rft.au=Jana%2C+Satyabrata&rft.au=Ramanujan%2C+M+S&rft.au=Strulo%2C+Peter&rft.date=2025-11-01&rft.issn=0178-4617&rft.volume=87&rft.issue=11&rft.spage=1669&rft_id=info:doi/10.1007%2Fs00453-025-01336-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon