On the Parameterized Complexity of Eulerian Strong Component Arc Deletion
In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Dire...
Saved in:
| Published in: | Algorithmica Vol. 87; no. 11; pp. 1669 - 1709 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis. |
|---|---|
| AbstractList | In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis. In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis. |
| Author | Jana, Satyabrata Blažej, Václav Ramanujan, M. S. Strulo, Peter |
| Author_xml | – sequence: 1 givenname: Václav surname: Blažej fullname: Blažej, Václav organization: University of Warwick – sequence: 2 givenname: Satyabrata surname: Jana fullname: Jana, Satyabrata email: satyamtma@gmail.com organization: University of Warwick – sequence: 3 givenname: M. S. surname: Ramanujan fullname: Ramanujan, M. S. organization: University of Warwick – sequence: 4 givenname: Peter surname: Strulo fullname: Strulo, Peter organization: University of Warwick |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40984865$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1L5EAQhhtx0XH0D3iQgBcvcbv6O0cZR1cQXNj13KRjRSNJ99idgPrrbZ1xBQ97Kqh63vp698i2Dx4JOQR6CpTqn4lSIXlJmSwpcK5KtUVmIDgrqRSwTWYUtCmFAr1L9lJ6pBSYrtQO2RW0MsIoOSNXN74YH7D4Xcd6wBFj94p3xSIMqx6fu_GlCG2xnPqcr33xZ4zB339U8yZ-LM5iU5xjj2MX_D750dZ9woNNnJPbi-Xfxa_y-ubyanF2XTZcs7HkDA2VGhreOoPK1YI3yjlAKZQwUJkGdM2EAy4AuXO60sq1HJBBo2Ul-ZycrPuuYniaMI126FKDfV97DFOynEme76MVy-jxN_QxTNHn7d4pppjWxmTqaENNbsA7u4rdUMcX-_mkDLA10MSQUsT2HwLUvjth107Y7IT9cMKqLOJrUcqwv8f4Nfs_qjfelohu |
| Cites_doi | 10.1007/BF02579200 10.1007/978-3-540-68279-0_8 10.1287/MOOR.8.4.538 10.1016/J.IPL.2011.11.014 10.1007/S00453-012-9667-X 10.1137/130947374 10.1007/978-1-4471-5559-1 10.1016/J.JCSS.2018.03.001 10.1016/J.TCS.2022.03.021 10.1007/978-3-642-17493-3_9 10.1016/J.DISOPT.2022.100740 10.1109/FOCS52979.2021.00026 10.1016/J.JCSS.2012.04.004 10.1007/978-3-319-21275-3 10.1287/MOOR.12.3.415 10.4153/CJM-1956-045-5 10.1007/S00453-016-0127-X 10.1006/jctb.1995.1006 10.1145/3564246.3585245 10.4230/LIPICS.IPEC.2024.4 10.4086/TOC.2010.V006A005 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM JQ2 7X8 |
| DOI | 10.1007/s00453-025-01336-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 1709 |
| ExternalDocumentID | 40984865 10_1007_s00453_025_01336_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: UK Research and Innovation grantid: EP/V044621/1; EP/V044621/1; EP/V044621/1; EP/V044621/1 funderid: http://dx.doi.org/10.13039/100014013 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFSG ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~EX AAYXX CITATION NPM JQ2 7X8 |
| ID | FETCH-LOGICAL-c372t-32e80571c3fb8e6ba43c6bb1e54648198c17a24b1341e3bb7976bf31e21c75953 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001545465300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Thu Oct 02 21:23:25 EDT 2025 Thu Oct 02 15:08:04 EDT 2025 Fri Sep 26 01:51:27 EDT 2025 Sat Nov 29 07:28:58 EST 2025 Sun Sep 21 01:10:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Eulerian graphs Parameterized complexity Treewidth |
| Language | English |
| License | The Author(s) 2025. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-32e80571c3fb8e6ba43c6bb1e54648198c17a24b1341e3bb7976bf31e21c75953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s00453-025-01336-6 |
| PMID | 40984865 |
| PQID | 3252627788 |
| PQPubID | 2043795 |
| PageCount | 41 |
| ParticipantIDs | proquest_miscellaneous_3253409092 proquest_journals_3252627788 pubmed_primary_40984865 crossref_primary_10_1007_s00453_025_01336_6 springer_journals_10_1007_s00453_025_01336_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationTitleAlternate | Algorithmica |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | LR Ford (1336_CR10) 1956; 8 1336_CR19 M Cygan (1336_CR6) 2015 1336_CR18 1336_CR4 RG Downey (1336_CR8) 2013 CA Barefoot (1336_CR1) 1987; 1 1336_CR2 M Cygan (1336_CR7) 2014; 68 D Marx (1336_CR21) 2010; 6 T Gima (1336_CR12) 2022; 918 N Robertson (1336_CR22) 1995; 63 K Jansen (1336_CR15) 2013; 79 P Goyal (1336_CR14) 2018; 97 A Göke (1336_CR13) 2022; 46 HL Bodlaender (1336_CR3) 2016; 45 R Crowston (1336_CR5) 2012; 112 1336_CR20 HW Lenstra Jr (1336_CR16) 1983; 8 R Kannan (1336_CR17) 1987; 12 A Frank (1336_CR11) 1987; 7 PG Drange (1336_CR9) 2016; 76 |
| References_xml | – volume: 7 start-page: 49 issue: 1 year: 1987 ident: 1336_CR11 publication-title: Combinatorica doi: 10.1007/BF02579200 – ident: 1336_CR18 doi: 10.1007/978-3-540-68279-0_8 – volume: 8 start-page: 538 issue: 4 year: 1983 ident: 1336_CR16 publication-title: Math. Oper. Res. doi: 10.1287/MOOR.8.4.538 – volume: 112 start-page: 249 issue: 6 year: 2012 ident: 1336_CR5 publication-title: Inf. Process. Lett. doi: 10.1016/J.IPL.2011.11.014 – volume: 68 start-page: 41 issue: 1 year: 2014 ident: 1336_CR7 publication-title: Algorithmica doi: 10.1007/S00453-012-9667-X – volume: 45 start-page: 317 issue: 2 year: 2016 ident: 1336_CR3 publication-title: SIAM J. Comput. doi: 10.1137/130947374 – volume-title: Fundamentals of parameterized complexity. Texts in computer science year: 2013 ident: 1336_CR8 doi: 10.1007/978-1-4471-5559-1 – volume: 97 start-page: 1 year: 2018 ident: 1336_CR14 publication-title: J. Comput. Syst. Sci. doi: 10.1016/J.JCSS.2018.03.001 – volume: 918 start-page: 60 year: 2022 ident: 1336_CR12 publication-title: Theor. Comput. Sci. doi: 10.1016/J.TCS.2022.03.021 – ident: 1336_CR4 doi: 10.1007/978-3-642-17493-3_9 – volume: 46 year: 2022 ident: 1336_CR13 publication-title: Discret. Optim. doi: 10.1016/J.DISOPT.2022.100740 – ident: 1336_CR19 doi: 10.1109/FOCS52979.2021.00026 – volume: 79 start-page: 39 issue: 1 year: 2013 ident: 1336_CR15 publication-title: J. Comput. Syst. Sci. doi: 10.1016/J.JCSS.2012.04.004 – volume-title: Parameterized algorithms year: 2015 ident: 1336_CR6 doi: 10.1007/978-3-319-21275-3 – volume: 12 start-page: 415 issue: 3 year: 1987 ident: 1336_CR17 publication-title: Math. Oper. Res. doi: 10.1287/MOOR.12.3.415 – volume: 8 start-page: 399 year: 1956 ident: 1336_CR10 publication-title: Can. J. Math. doi: 10.4153/CJM-1956-045-5 – volume: 1 start-page: 13 year: 1987 ident: 1336_CR1 publication-title: JCMCC – volume: 76 start-page: 1181 issue: 4 year: 2016 ident: 1336_CR9 publication-title: Algorithmica doi: 10.1007/S00453-016-0127-X – volume: 63 start-page: 65 issue: 1 year: 1995 ident: 1336_CR22 publication-title: J. Comb. Theory B doi: 10.1006/jctb.1995.1006 – ident: 1336_CR20 doi: 10.1145/3564246.3585245 – ident: 1336_CR2 doi: 10.4230/LIPICS.IPEC.2024.4 – volume: 6 start-page: 85 issue: 1 year: 2010 ident: 1336_CR21 publication-title: Theory Comput. doi: 10.4086/TOC.2010.V006A005 |
| SSID | ssj0012796 |
| Score | 2.4208481 |
| Snippet | In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1669 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Complexity Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Deletion Graph theory Lower bounds Mathematics of Computing Parameterization Parameters Theory of Computation |
| Title | On the Parameterized Complexity of Eulerian Strong Component Arc Deletion |
| URI | https://link.springer.com/article/10.1007/s00453-025-01336-6 https://www.ncbi.nlm.nih.gov/pubmed/40984865 https://www.proquest.com/docview/3252627788 https://www.proquest.com/docview/3253409092 |
| Volume | 87 |
| WOSCitedRecordID | wos001545465300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VyoELUJ5pKTISN4hEbMd2jlW7q_ayXZUW7S2yvQ5CQlm0DyT49cx4kyBEOcAx8ci25pH5nPHMAJy4Soyr3NgUnRtPpQ8uNRYfi8zhaeJ8TKkhsdmEHgzMaFQMm6SwWXvbvQ1Jxi91l-xG6INijnTZTAiVqhX4iO7OkDn-ubjsYgdcx65c1Hc-leigm1SZ_8_x3B29wJgv4qPR7fQ337fhLdhoYCb7ttSLT_Ah1Nuw2bZwYI1F78Cv3zVDCMiGli5pUd3mhzBmREeFMuf3bFKx3uKG1LRmF_Tb_CqOTmp0Vji9Zz8Cle-e1Lvwr9_7-_1n2nRXSL3QfJ4KHgyCtcyLypmgnJXCK-eykEslEScYn2nLpaOKb0E4pxG4oGSzwDOv8yIXe7Ba42oHwFRmTe6EU9oFaatgTSaUOa-qsSukz3UCpy2Ty9tlEY2yK5ccuVQil8rIpVIlcNjKoWwMalYKnnPFNR7YEzjuhtEUKL5h6zBZRBpBClbwBPaX8uuWw_dGGpUncNYK62ny1_fy-W3kX2Cdk7xjruIhrM6ni_AV1vzd_Ho2PYIVPTJHUVkfAXo44Cg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RqNReCpRHw9NIvZVIxHZs54h4CAQsiJe4RbbXQUgoW7G7ldpf3xlvkgpRDnBMPLKtmXHmc-YF8N1Vol_lxqZo3HgqfXCpsfhYZA5vEzt9Sg2JzSZ0r2fu7oqLJils2Ea7ty7J-KXukt0IfZDPkYLNhFCp-gAzEi0WBfJdXt12vgOuY1cu6jufSjTQTarM_-d4bo5eYMwX_tFodg5n37fhOfjSwEy2O9GLeZgK9VeYbVs4sOZEL8Dxec0QArILS0FaVLf5T-gzoqNCmaPfbFCxg_EjqWnNrui3-X0cHdRorHB6z_YDle8e1Itwc3hwvXeUNt0VUi80H6WCB4NgLfOiciYoZ6Xwyrks5FJJxAnGZ9py6ajiWxDOaQQuKNks8MzrvMjFEkzXuNo3YCqzJnfCKe2CtFWwJhPK7FRV3xXS5zqBHy2Ty5-TIhplVy45cqlELpWRS6VKYK2VQ9kcqGEpeM4V13hhT2CrG8ajQP4NW4fBONIIUrCCJ7A8kV-3HL430qg8ge1WWP8mf30vK28j34RPR9dnp-Xpce9kFT5zkn3MW1yD6dHTOKzDR_9r9DB82ogq-xe86eIk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB5aW4ov2l_qWtum4Fu7nJtkk-xj8TwqLdeDa8W3JckmIsiu6J6gf72Z3O62Yn0oPm4SkjAzYb7sZL4B2DWeVT5XOg3OjabcOpMqHT6LzITbxF6FqSGx2IScTtXxcTH7K4s_vnbvQ5LLnAZkaarb0XnlR0PiGyIRjD_iwzPGRCqewjOORYPwvj4_GuIIVMYKXViDPuXBWXdpM_-e465ruoc378VKowuarD9-8y9hrYOf5OvSXl7BE1e_hvW-tAPpTvobOPxZkwANyUzj4y3kc75xFcFxSKDZXpPGk4PFGZpvTeb4O_0k9jZ12EeY3pKxQ1rvpn4LvycHv_a_pV3VhdQySduUUacCiMss80Y5YTRnVhiTuZwLHvCDspnUlBtkgnPMGBkATdB45mhmZV7kbANW6rDaFhCRaZUbZoQ0jmvvtMqYUHveV6bgNpcJfO4FXp4vyTXKgUY5SqkMUiqjlEqRwE6vk7I7aJclozkVVIaLfAKfhu5wRDDuoWvXLOIYhoZX0AQ2l7oclgvtiiuRJ_ClV9yfyR_ey_b_Df8IL2bjSfnjcPr9HaxSVH1MZ9yBlfZi4d7Dc3vVnl5efIjWewuI1OsI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Parameterized+Complexity+of+Eulerian+Strong+Component+Arc+Deletion&rft.jtitle=Algorithmica&rft.au=Bla%C5%BEej%2C+V%C3%A1clav&rft.au=Jana%2C+Satyabrata&rft.au=Ramanujan%2C+M+S&rft.au=Strulo%2C+Peter&rft.date=2025-11-01&rft.issn=0178-4617&rft.volume=87&rft.issue=11&rft.spage=1669&rft_id=info:doi/10.1007%2Fs00453-025-01336-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |