Multi-objective time-energy-impact optimization for robotic excavator trajectory planning
Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is proposed to optimize the working time, energy consumption, and operational impact of robotic excavators. Without fusing any performance indexe...
Uložené v:
| Vydané v: | Automation in construction Ročník 156; s. 105094 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2023
|
| Predmet: | |
| ISSN: | 0926-5805, 1872-7891 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is proposed to optimize the working time, energy consumption, and operational impact of robotic excavators. Without fusing any performance indexes, a normalized multi-objective function and an improved particle swarm optimization algorithm are established to achieve a comprehensive optimization of multiple objectives, while considering joint angle, velocity, acceleration, and quadratic acceleration constraints. Typical deep pit excavation simulation and experimental results show that the multi-objective optimization method is feasible, can balance multi-objective constraints, and can avoid falling into extremely long working times or large impacts. This method offers a more efficient and effective solution for multi-objective trajectory planning and provides a method for planning excavation trajectories based on different operating scenarios and objectives.
•Working time, energy consumption and operation impact are considered in trajectory planning.•A normalized multi-objective function is established to achieve a comprehensive optimization.•An improved particle swarm optimization algorithm is proposed to obtain the optimal solution.•Effectiveness of the trajectory planning method is validated by simulations and experiments.•The multi-objective optimization method can meet the actual construction requirements. |
|---|---|
| AbstractList | Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is proposed to optimize the working time, energy consumption, and operational impact of robotic excavators. Without fusing any performance indexes, a normalized multi-objective function and an improved particle swarm optimization algorithm are established to achieve a comprehensive optimization of multiple objectives, while considering joint angle, velocity, acceleration, and quadratic acceleration constraints. Typical deep pit excavation simulation and experimental results show that the multi-objective optimization method is feasible, can balance multi-objective constraints, and can avoid falling into extremely long working times or large impacts. This method offers a more efficient and effective solution for multi-objective trajectory planning and provides a method for planning excavation trajectories based on different operating scenarios and objectives.
•Working time, energy consumption and operation impact are considered in trajectory planning.•A normalized multi-objective function is established to achieve a comprehensive optimization.•An improved particle swarm optimization algorithm is proposed to obtain the optimal solution.•Effectiveness of the trajectory planning method is validated by simulations and experiments.•The multi-objective optimization method can meet the actual construction requirements. |
| ArticleNumber | 105094 |
| Author | Jiang, Jinye Feng, Hao Cao, Donghui Li, Chunbiao Shen, Fangping Ding, Nan Liu, Tao Xie, Jiaxue Yin, Chenbo |
| Author_xml | – sequence: 1 givenname: Hao surname: Feng fullname: Feng, Hao email: fenghao@nuist.edu.cn organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 2 givenname: Jinye surname: Jiang fullname: Jiang, Jinye organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 3 givenname: Nan surname: Ding fullname: Ding, Nan organization: Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 4 givenname: Fangping surname: Shen fullname: Shen, Fangping organization: Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 5 givenname: Chenbo surname: Yin fullname: Yin, Chenbo organization: United Institute of Excavator Key Technology, Nanjing Tech University, Nanjing 211816, China – sequence: 6 givenname: Donghui surname: Cao fullname: Cao, Donghui organization: SANY Group Co., Ltd., Suzhou 215300, China – sequence: 7 givenname: Chunbiao surname: Li fullname: Li, Chunbiao organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 8 givenname: Tao surname: Liu fullname: Liu, Tao organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 9 givenname: Jiaxue surname: Xie fullname: Xie, Jiaxue organization: Wuxi Cosmo Suspended Platform Co., Ltd., Wuxi 214128, China |
| BookMark | eNqFkL1OwzAUhS1UJNrCGzDkBVxsp4kTBiRU8ScVscDAZN04N5Wj1I4ct6I8PS5hYoDpSkf6js79ZmRinUVCLjlbcMbzq3YBu6CdXQgm0hhlrFyekCkvpKCyKPmETFkpcpoVLDsjs2FoGWOS5eWUvD_vumCoq1rUwewxCWaLFC36zYGabQ86JK6PofmEYJxNGucT7yoXjE7wQ8MeQkyCh2OB84ek78BaYzfn5LSBbsCLnzsnb_d3r6tHun55eFrdrqlOpQhUYF2JAgtd8FpCrUUOFeZMoJCl4ACVXvJGSOQlZrzhKTQVA1YgNqArqfN0Tq7HXu3dMHhslDbhe2scZTrFmTpKUq0aJamjJDVKivDyF9x7swV_-A-7GTGMj-0NejVog1ZjbXzUoGpn_i74AkLWiVw |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2025_106404 crossref_primary_10_1109_ACCESS_2024_3434525 crossref_primary_10_1002_rob_22479 crossref_primary_10_1016_j_aej_2025_02_083 crossref_primary_10_1111_mice_13428 crossref_primary_10_1007_s42235_025_00685_w crossref_primary_10_1016_j_autcon_2024_105523 crossref_primary_10_1016_j_autcon_2023_105247 crossref_primary_10_1016_j_autcon_2025_106135 crossref_primary_10_20965_jrm_2025_p0984 crossref_primary_10_3390_buildings15142570 crossref_primary_10_3390_machines13020079 crossref_primary_10_1016_j_rcim_2023_102677 crossref_primary_10_1115_1_4069173 crossref_primary_10_1049_tje2_12406 crossref_primary_10_1061_JCEMD4_COENG_15417 crossref_primary_10_3390_act14080394 crossref_primary_10_3390_math12091298 |
| Cites_doi | 10.1016/j.mechmachtheory.2018.11.009 10.1016/j.autcon.2023.104855 10.1016/j.isatra.2021.12.003 10.1109/TIV.2021.3072679 10.1016/j.eswa.2021.115110 10.1109/TCST.2021.3094617 10.48084/etasr.4125 10.1016/j.eswa.2018.08.008 10.3390/act11080222 10.1007/s00158-018-2011-6 10.3390/en13123118 10.1016/j.isatra.2021.06.017 10.1109/LRA.2021.3058071 10.1016/j.autcon.2019.102897 10.1016/j.autcon.2022.104702 10.1016/j.autcon.2022.104176 10.1109/LRA.2022.3189834 10.1243/09544062JMES2032 10.1016/j.autcon.2021.103845 10.1016/j.autcon.2022.104337 10.1016/j.mechmachtheory.2020.104230 10.1016/j.asoc.2017.05.012 10.1109/ACCESS.2023.3267120 10.1016/j.ymssp.2017.12.014 10.1109/ACCESS.2022.3140781 10.1109/TMECH.2022.3201283 10.1016/j.asoc.2021.108192 10.1109/LRA.2022.3183536 10.1016/j.engappai.2023.106099 10.1016/j.autcon.2021.104089 10.1016/j.autcon.2022.104402 10.1016/j.swevo.2021.100843 10.1016/j.mechmachtheory.2019.03.019 10.1016/j.ymssp.2022.109777 10.1017/S0263574718001169 10.1109/LRA.2019.2925758 10.1016/j.autcon.2021.103996 10.1016/j.autcon.2023.104916 10.1016/j.autcon.2013.01.007 10.3390/machines10070538 10.1109/LRA.2022.3150511 10.1007/s00500-023-07923-5 10.1016/j.swevo.2021.100943 10.1016/j.autcon.2021.104046 10.1016/j.autcon.2021.104119 10.1504/IJAAC.2022.121124 10.1016/j.oceaneng.2020.108057 10.1109/LRA.2021.3097264 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.autcon.2023.105094 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1872-7891 |
| ExternalDocumentID | 10_1016_j_autcon_2023_105094 S0926580523003540 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c372t-2edb28e8c81d7adc26abe602e27921aabc41f27e19e51f13afb0a08eefacb7c63 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149876800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-5805 |
| IngestDate | Sat Nov 29 07:18:17 EST 2025 Tue Nov 18 22:41:07 EST 2025 Fri Feb 23 02:35:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Excavator Trajectory planning Hydraulic system Particle swarm optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-2edb28e8c81d7adc26abe602e27921aabc41f27e19e51f13afb0a08eefacb7c63 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_autcon_2023_105094 crossref_primary_10_1016_j_autcon_2023_105094 elsevier_sciencedirect_doi_10_1016_j_autcon_2023_105094 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Automation in construction |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Steenkamp, Engelbrecht (bb0265) 2021; 66 Sun, Sun, Wang, Li, Yang (bb0205) 2021; 13 Bi, Wang, Wang, Yao, Hall (bb0130) 2020; 13 Liu, Lin, Wei (bb0070) 2022; 11 Wang, Song, Sun (bb0150) 2021; 158 Chen, Xiao, Zhang, Zhu (bb0005) 2023; 146 He, Hu, Lin, Zhu (bb0085) 2022; 7 Yang, Zhang, Hong, Chen, Yang, Wang, Cao (bb0060) 2022; 141 Mahmood, Han, Seo (bb0010) 2022; 133 Zhang, Sun, Sun, Wang (bb0200) 2023 Bilal, Yin, Kumar, Ali, Zhang, Yao (bb0235) 2023; 27 Osa, Aizawa (bb0160) 2022; 10 Kim, Ha, Kang, Kim, Park, Park (bb0140) 2013; 35 Vu, Tran (bb0170) 2020 Zhao, Hu, Liu, Tian, Xia (bb0155) 2022; 10 Yang, Long, Song, Pan, Zhang (bb0165) 2021; 6 Lu, Zhu, Zhang (bb0180) 2022; 7 Fu, Zhang, Lv, Song, Li, Yue (bb0030) 2023; 151 Kashyap, Parhi (bb0120) 2021; 179 Assadzadeh, Arashpour, Brilakis, Ngo, Konstantinou (bb0020) 2022; 134 Mac, Copot, Tran, Keyser (bb0215) 2017; 59 Fang, Hu, Liu, Shao, Qi, Peng (bb0110) 2019; 137 Feng, Yin, Li, Ma, Yu, Cao, Zhou (bb0245) 2019; 106 Li, Wang, Zhang, Wang, Tu, You (bb0250) 2021; 62 Wang, Sun, Li, Song (bb0095) 2018; 58 Xu, Ding, Ji (bb0075) 2022; 128 Chettibi (bb0090) 2019; 37 Nazarahari, Khanmirza, Doostie (bb0210) 2019; 115 Egli, Gaschen, Kerscher, Jud, Hutter (bb0135) 2022; 7 Zhu, Ouyang, Xi (bb0220) 2023; 185 Martinsen, Lekkas, Gros (bb0115) 2021; 30 Albarakati, Lima, Theussl, Hoteit, Knio (bb0105) 2020; 218 Yao, Zhao, Tan, Wei, Wang (bb0055) 2023; 152 Yao, Deng, Wu, Zhao, Li, Jiang (bb0100) 2023; 120133 Kashyap, Parhi, Pandey (bb0225) 2022; 125 Huh, Bae, Lee, Kwak, Moon, Im, Hong (bb0050) 2023; 11 Zhang, Fu, Song, Qu (bb0125) 2022; 136 Vu, Tran, Nguyen (bb0190) 2018 Lu, Zhang (bb0175) 2021; 6 Feng, Yin, Cao (bb0045) 2023; 28 Chen, Wu, Chen, Cheng, Zhang (bb0255) 2022; 116 Ekrem, Aksoy (bb0230) 2023; 122 Feng, Yin, Weng, Ma, Zhou, Jia, Zhang (bb0240) 2018; 105 Vu, Tran, Nguyen (bb0195) 2021; 11 Dao, Na, Nguyen, Ahn (bb0025) 2021; 130 Fresia, Rundo, Padovani, Altare (bb0040) 2022; 140 Li, Cheng (bb0260) 2022; 16 Yoo, Park, You, Lim (bb0185) 2010; 224 Lee, Ham, Park, Kim (bb0015) 2022; 135 Jung, Raduenz, Krus, De Negri, Lee (bb0035) 2022; 135 Hoek, Ploeg, Nijmeijer (bb0080) 2021; 6 Dinçer, Çevik (bb0065) 2019; 132 Jud, Leemann, Kerscher, Hutter (bb0145) 2019; 4 Fang (10.1016/j.autcon.2023.105094_bb0110) 2019; 137 Hoek (10.1016/j.autcon.2023.105094_bb0080) 2021; 6 Osa (10.1016/j.autcon.2023.105094_bb0160) 2022; 10 Fresia (10.1016/j.autcon.2023.105094_bb0040) 2022; 140 Lu (10.1016/j.autcon.2023.105094_bb0175) 2021; 6 Feng (10.1016/j.autcon.2023.105094_bb0045) 2023; 28 Dinçer (10.1016/j.autcon.2023.105094_bb0065) 2019; 132 Lu (10.1016/j.autcon.2023.105094_bb0180) 2022; 7 Yao (10.1016/j.autcon.2023.105094_bb0055) 2023; 152 Steenkamp (10.1016/j.autcon.2023.105094_bb0265) 2021; 66 Huh (10.1016/j.autcon.2023.105094_bb0050) 2023; 11 Jud (10.1016/j.autcon.2023.105094_bb0145) 2019; 4 Nazarahari (10.1016/j.autcon.2023.105094_bb0210) 2019; 115 Mac (10.1016/j.autcon.2023.105094_bb0215) 2017; 59 Kim (10.1016/j.autcon.2023.105094_bb0140) 2013; 35 Kashyap (10.1016/j.autcon.2023.105094_bb0225) 2022; 125 Kashyap (10.1016/j.autcon.2023.105094_bb0120) 2021; 179 Xu (10.1016/j.autcon.2023.105094_bb0075) 2022; 128 Ekrem (10.1016/j.autcon.2023.105094_bb0230) 2023; 122 Liu (10.1016/j.autcon.2023.105094_bb0070) 2022; 11 Vu (10.1016/j.autcon.2023.105094_bb0195) 2021; 11 Assadzadeh (10.1016/j.autcon.2023.105094_bb0020) 2022; 134 Zhu (10.1016/j.autcon.2023.105094_bb0220) 2023; 185 Zhao (10.1016/j.autcon.2023.105094_bb0155) 2022; 10 Li (10.1016/j.autcon.2023.105094_bb0260) 2022; 16 Albarakati (10.1016/j.autcon.2023.105094_bb0105) 2020; 218 Vu (10.1016/j.autcon.2023.105094_bb0190) 2018 He (10.1016/j.autcon.2023.105094_bb0085) 2022; 7 Zhang (10.1016/j.autcon.2023.105094_bb0200) 2023 Mahmood (10.1016/j.autcon.2023.105094_bb0010) 2022; 133 Li (10.1016/j.autcon.2023.105094_bb0250) 2021; 62 Egli (10.1016/j.autcon.2023.105094_bb0135) 2022; 7 Yao (10.1016/j.autcon.2023.105094_bb0100) 2023; 120133 Wang (10.1016/j.autcon.2023.105094_bb0150) 2021; 158 Feng (10.1016/j.autcon.2023.105094_bb0240) 2018; 105 Jung (10.1016/j.autcon.2023.105094_bb0035) 2022; 135 Wang (10.1016/j.autcon.2023.105094_bb0095) 2018; 58 Martinsen (10.1016/j.autcon.2023.105094_bb0115) 2021; 30 Chen (10.1016/j.autcon.2023.105094_bb0005) 2023; 146 Zhang (10.1016/j.autcon.2023.105094_bb0125) 2022; 136 Lee (10.1016/j.autcon.2023.105094_bb0015) 2022; 135 Sun (10.1016/j.autcon.2023.105094_bb0205) 2021; 13 Fu (10.1016/j.autcon.2023.105094_bb0030) 2023; 151 Bi (10.1016/j.autcon.2023.105094_bb0130) 2020; 13 Vu (10.1016/j.autcon.2023.105094_bb0170) 2020 Yoo (10.1016/j.autcon.2023.105094_bb0185) 2010; 224 Yang (10.1016/j.autcon.2023.105094_bb0060) 2022; 141 Chettibi (10.1016/j.autcon.2023.105094_bb0090) 2019; 37 Chen (10.1016/j.autcon.2023.105094_bb0255) 2022; 116 Yang (10.1016/j.autcon.2023.105094_bb0165) 2021; 6 Feng (10.1016/j.autcon.2023.105094_bb0245) 2019; 106 Bilal (10.1016/j.autcon.2023.105094_bb0235) 2023; 27 Dao (10.1016/j.autcon.2023.105094_bb0025) 2021; 130 |
| References_xml | – volume: 136 start-page: 104176 year: 2022 ident: bb0125 article-title: Multi-objective excavation trajectory optimization for unmanned electric shovels based on pseudospectral method publication-title: Autom. Constr. – volume: 59 start-page: 68 year: 2017 end-page: 76 ident: bb0215 article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization publication-title: Appl. Soft Comput. – volume: 58 start-page: 2219 year: 2018 end-page: 2237 ident: bb0095 article-title: Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning publication-title: Struct. Multidiscip. Optim. – volume: 218 start-page: 108057 year: 2020 ident: bb0105 article-title: Optimal 3D time-energy trajectory planning for AUVs using ocean general circulation models publication-title: Ocean Eng. – volume: 179 start-page: 115110 year: 2021 ident: bb0120 article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain publication-title: Expert Syst. Appl. – volume: 185 start-page: 109777 year: 2023 ident: bb0220 article-title: Neural network-based time optimal trajectory planning method for rotary cranes with obstacle avoidance publication-title: Mech. Syst. Signal Process. – volume: 7 start-page: 4472 year: 2022 end-page: 4479 ident: bb0180 article-title: Excavation reinforcement learning using geometric representation publication-title: IEEE Robot. Automat. Letters – volume: 120133 year: 2023 ident: bb0100 article-title: Optimal lane-changing trajectory planning for autonomous vehicles considering energy consumption publication-title: Expert Syst. Appl. – volume: 10 start-page: 538 year: 2022 ident: bb0155 article-title: Spline-based optimal trajectory generation for autonomous excavator publication-title: Machines – volume: 4 start-page: 3208 year: 2019 end-page: 3215 ident: bb0145 article-title: Autonomous free-form trenching using a walking excavator publication-title: IEEE Robot. Automat. Letters – volume: 11 start-page: 38047 year: 2023 end-page: 38060 ident: bb0050 article-title: Deep learning-based autonomous excavation: a bucket-trajectory planning algorithm publication-title: IEEE Access – volume: 132 start-page: 226 year: 2019 end-page: 248 ident: bb0065 article-title: Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials publication-title: Mech. Mach. Theory – volume: 130 start-page: 103845 year: 2021 ident: bb0025 article-title: High accuracy contouring control of an excavator for surface flattening tasks based on extended state observer and task coordinate frame approach publication-title: Autom. Constr. – volume: 137 start-page: 127 year: 2019 end-page: 153 ident: bb0110 article-title: Smooth and time-optimal S-curve trajectory planning for automated robots and machines publication-title: Mech. Mach. Theory – start-page: 1 year: 2018 end-page: 7 ident: bb0190 article-title: Adaptive neuro-fuzzy inference system based path planning for excavator arm publication-title: J. Robot. – volume: 146 start-page: 104702 year: 2023 ident: bb0005 article-title: Automatic vision-based calculation of excavator earthmoving productivity using zero-shot learning activity recognition publication-title: Autom. Constr. – volume: 133 start-page: 103996 year: 2022 ident: bb0010 article-title: Implementation experiments on convolutional neural network training using synthetic images for 3D pose estimation of an excavator on real images publication-title: Autom. Constr. – volume: 134 start-page: 104089 year: 2022 ident: bb0020 article-title: Vision-based excavator pose estimation using synthetically generated datasets with domain randomization publication-title: Autom. Constr. – volume: 13 year: 2021 ident: bb0205 article-title: Time-jerk optimal trajectory planning of hydraulic robotic excavator publication-title: Adv. Mech. Eng. – volume: 151 start-page: 104855 year: 2023 ident: bb0030 article-title: Digital twin-based excavation trajectory generation of Uncrewed excavators for autonomous mining publication-title: Autom. Constr. – volume: 115 start-page: 106 year: 2019 end-page: 120 ident: bb0210 article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm publication-title: Expert Syst. Appl. – volume: 116 start-page: 108192 year: 2022 ident: bb0255 article-title: Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm publication-title: Appl. Soft Comput. – volume: 106 start-page: 102897 year: 2019 ident: bb0245 article-title: Flexible virtual fixtures for human-excavator cooperative system publication-title: Autom. Constr. – volume: 141 start-page: 104402 year: 2022 ident: bb0060 article-title: Motion control for earth excavation robot based on force pre-load and cross-coupling compensation publication-title: Autom. Constr. – volume: 105 start-page: 153 year: 2018 end-page: 168 ident: bb0240 article-title: Robotic excavator trajectory control using an improved GA based PID controller publication-title: Mech. Syst. Signal Process. – volume: 6 start-page: 594 year: 2021 end-page: 604 ident: bb0080 article-title: Cooperative driving of automated vehicles using B-splines for trajectory planning publication-title: IEEE Transact. Intellig. Vehicles – volume: 37 start-page: 539 year: 2019 end-page: 559 ident: bb0090 article-title: Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions publication-title: Robotica – volume: 11 start-page: 222 year: 2022 ident: bb0070 article-title: Adaptive transition gait planning of snake robot based on polynomial interpolation method publication-title: Actuators – volume: 128 start-page: 633 year: 2022 end-page: 645 ident: bb0075 article-title: An interpolation method based on adaptive smooth feedrate scheduling and parameter increment compensation for NURBS curve publication-title: ISA Trans. – volume: 135 start-page: 104119 year: 2022 ident: bb0015 article-title: Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation publication-title: Autom. Constr. – volume: 158 start-page: 104230 year: 2021 ident: bb0150 article-title: Surrogate based trajectory planning method for an unmanned electric shovel publication-title: Mech. Mach. Theory – volume: 27 start-page: 4029 year: 2023 end-page: 4039 ident: bb0235 article-title: Jerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approach publication-title: Soft. Comput. – volume: 152 start-page: 104916 year: 2023 ident: bb0055 article-title: Real-time task-oriented continuous digging trajectory planning for excavator arms publication-title: Autom. Constr. – volume: 62 start-page: 100843 year: 2021 ident: bb0250 article-title: Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization publication-title: Swarm Evolution. Comput. – volume: 30 start-page: 1159 year: 2021 end-page: 1170 ident: bb0115 article-title: Optimal model-based trajectory planning with static polygonal constraints publication-title: IEEE Trans. Control Syst. Technol. – volume: 16 start-page: 164 year: 2022 end-page: 182 ident: bb0260 article-title: Parameter settings in particle swarm optimisation algorithms: a survey publication-title: Int. J. Autom. Control. – volume: 11 start-page: 7088 year: 2021 end-page: 7093 ident: bb0195 article-title: Recurrent neural network-based path planning for an excavator arm under varying environment publication-title: Eng. Technol. Appl. Sci. Res. – volume: 7 start-page: 9778 year: 2022 end-page: 9785 ident: bb0135 article-title: Soil-adaptive excavation using reinforcement learning publication-title: IEEE Robot. Automat. Letters – volume: 6 start-page: 7373 year: 2021 end-page: 7380 ident: bb0175 article-title: Excavation learning for rigid objects in clutter publication-title: IEEE Robot. Automat. Letters – volume: 13 start-page: 3118 year: 2020 ident: bb0130 article-title: Digging trajectory optimization for cable shovel robotic excavation based on a multi-objective genetic algorithm publication-title: Energies – volume: 122 start-page: 106099 year: 2023 ident: bb0230 article-title: Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 7 start-page: 7375 year: 2022 end-page: 7382 ident: bb0085 article-title: An online time-optimal trajectory planning method for constrained multi-axis trajectory with guaranteed feasibility publication-title: IEEE Robot. Automat. Letters – volume: 125 start-page: 591 year: 2022 end-page: 613 ident: bb0225 article-title: Multi-objective optimization technique for trajectory planning of multi-humanoid robots in cluttered terrain publication-title: ISA Trans. – start-page: 1 year: 2020 end-page: 10 ident: bb0170 article-title: Path planning for excavator arm: fuzzy logic control approach publication-title: J. Robot. – volume: 66 start-page: 100943 year: 2021 ident: bb0265 article-title: A scalability study of the multi-guide particle swarm optimization algorithm to many-objectives publication-title: Swarm Evolution. Comput. – volume: 10 start-page: 4523 year: 2022 end-page: 4535 ident: bb0160 article-title: Deep reinforcement learning with adversarial training for automated excavation using depth images publication-title: IEEE Access – year: 2023 ident: bb0200 article-title: Time-energy consumption optimal path-constrained trajectory planning of excavator robotics publication-title: Authorea – volume: 224 start-page: 2109 year: 2010 end-page: 2119 ident: bb0185 article-title: A dynamics-based optimal trajectory generation for controlling an automated excavator publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. – volume: 6 start-page: 1479 year: 2021 end-page: 1486 ident: bb0165 article-title: Optimization-based framework for excavation trajectory generation publication-title: IEEE Robot. Automat. Letters – volume: 140 start-page: 104337 year: 2022 ident: bb0040 article-title: Combined speed control and centralized power supply for hybrid energy-efficient mobile hydraulics publication-title: Autom. Constr. – volume: 35 start-page: 568 year: 2013 end-page: 578 ident: bb0140 article-title: Dynamically optimal trajectories for earthmoving excavators publication-title: Autom. Constr. – volume: 135 start-page: 104046 year: 2022 ident: bb0035 article-title: Boom energy recuperation system and control strategy for hydraulic hybrid excavators publication-title: Autom. Constr. – volume: 28 start-page: 473 year: 2023 end-page: 482 ident: bb0045 article-title: Trajectory tracking of an electro-hydraulic servo system with an new friction model-based compensation publication-title: IEEE/ASME Transact. Mechatron. – volume: 132 start-page: 226 year: 2019 ident: 10.1016/j.autcon.2023.105094_bb0065 article-title: Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.11.009 – volume: 151 start-page: 104855 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0030 article-title: Digital twin-based excavation trajectory generation of Uncrewed excavators for autonomous mining publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104855 – volume: 128 start-page: 633 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0075 article-title: An interpolation method based on adaptive smooth feedrate scheduling and parameter increment compensation for NURBS curve publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.12.003 – volume: 6 start-page: 594 issue: 3 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0080 article-title: Cooperative driving of automated vehicles using B-splines for trajectory planning publication-title: IEEE Transact. Intellig. Vehicles doi: 10.1109/TIV.2021.3072679 – volume: 179 start-page: 115110 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0120 article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115110 – volume: 30 start-page: 1159 issue: 3 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0115 article-title: Optimal model-based trajectory planning with static polygonal constraints publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2021.3094617 – volume: 11 start-page: 7088 issue: 3 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0195 article-title: Recurrent neural network-based path planning for an excavator arm under varying environment publication-title: Eng. Technol. Appl. Sci. Res. doi: 10.48084/etasr.4125 – volume: 115 start-page: 106 year: 2019 ident: 10.1016/j.autcon.2023.105094_bb0210 article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.008 – volume: 11 start-page: 222 issue: 8 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0070 article-title: Adaptive transition gait planning of snake robot based on polynomial interpolation method publication-title: Actuators doi: 10.3390/act11080222 – volume: 58 start-page: 2219 year: 2018 ident: 10.1016/j.autcon.2023.105094_bb0095 article-title: Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2011-6 – volume: 13 start-page: 3118 issue: 12 year: 2020 ident: 10.1016/j.autcon.2023.105094_bb0130 article-title: Digging trajectory optimization for cable shovel robotic excavation based on a multi-objective genetic algorithm publication-title: Energies doi: 10.3390/en13123118 – volume: 125 start-page: 591 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0225 article-title: Multi-objective optimization technique for trajectory planning of multi-humanoid robots in cluttered terrain publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.06.017 – volume: 6 start-page: 1479 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0165 article-title: Optimization-based framework for excavation trajectory generation publication-title: IEEE Robot. Automat. Letters doi: 10.1109/LRA.2021.3058071 – volume: 106 start-page: 102897 year: 2019 ident: 10.1016/j.autcon.2023.105094_bb0245 article-title: Flexible virtual fixtures for human-excavator cooperative system publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102897 – volume: 146 start-page: 104702 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0005 article-title: Automatic vision-based calculation of excavator earthmoving productivity using zero-shot learning activity recognition publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104702 – volume: 136 start-page: 104176 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0125 article-title: Multi-objective excavation trajectory optimization for unmanned electric shovels based on pseudospectral method publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104176 – year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0200 article-title: Time-energy consumption optimal path-constrained trajectory planning of excavator robotics publication-title: Authorea – volume: 7 start-page: 9778 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0135 article-title: Soil-adaptive excavation using reinforcement learning publication-title: IEEE Robot. Automat. Letters doi: 10.1109/LRA.2022.3189834 – start-page: 1 year: 2020 ident: 10.1016/j.autcon.2023.105094_bb0170 article-title: Path planning for excavator arm: fuzzy logic control approach publication-title: J. Robot. – volume: 120133 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0100 article-title: Optimal lane-changing trajectory planning for autonomous vehicles considering energy consumption publication-title: Expert Syst. Appl. – volume: 224 start-page: 2109 issue: 10 year: 2010 ident: 10.1016/j.autcon.2023.105094_bb0185 article-title: A dynamics-based optimal trajectory generation for controlling an automated excavator publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. doi: 10.1243/09544062JMES2032 – volume: 130 start-page: 103845 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0025 article-title: High accuracy contouring control of an excavator for surface flattening tasks based on extended state observer and task coordinate frame approach publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103845 – volume: 140 start-page: 104337 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0040 article-title: Combined speed control and centralized power supply for hybrid energy-efficient mobile hydraulics publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104337 – volume: 158 start-page: 104230 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0150 article-title: Surrogate based trajectory planning method for an unmanned electric shovel publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.104230 – volume: 59 start-page: 68 year: 2017 ident: 10.1016/j.autcon.2023.105094_bb0215 article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.012 – volume: 11 start-page: 38047 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0050 article-title: Deep learning-based autonomous excavation: a bucket-trajectory planning algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3267120 – start-page: 1 year: 2018 ident: 10.1016/j.autcon.2023.105094_bb0190 article-title: Adaptive neuro-fuzzy inference system based path planning for excavator arm publication-title: J. Robot. – volume: 105 start-page: 153 year: 2018 ident: 10.1016/j.autcon.2023.105094_bb0240 article-title: Robotic excavator trajectory control using an improved GA based PID controller publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.12.014 – volume: 10 start-page: 4523 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0160 article-title: Deep reinforcement learning with adversarial training for automated excavation using depth images publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3140781 – volume: 28 start-page: 473 issue: 1 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0045 article-title: Trajectory tracking of an electro-hydraulic servo system with an new friction model-based compensation publication-title: IEEE/ASME Transact. Mechatron. doi: 10.1109/TMECH.2022.3201283 – volume: 116 start-page: 108192 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0255 article-title: Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108192 – volume: 7 start-page: 7375 issue: 3 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0085 article-title: An online time-optimal trajectory planning method for constrained multi-axis trajectory with guaranteed feasibility publication-title: IEEE Robot. Automat. Letters doi: 10.1109/LRA.2022.3183536 – volume: 122 start-page: 106099 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0230 article-title: Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106099 – volume: 134 start-page: 104089 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0020 article-title: Vision-based excavator pose estimation using synthetically generated datasets with domain randomization publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104089 – volume: 141 start-page: 104402 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0060 article-title: Motion control for earth excavation robot based on force pre-load and cross-coupling compensation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104402 – volume: 62 start-page: 100843 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0250 article-title: Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization publication-title: Swarm Evolution. Comput. doi: 10.1016/j.swevo.2021.100843 – volume: 137 start-page: 127 year: 2019 ident: 10.1016/j.autcon.2023.105094_bb0110 article-title: Smooth and time-optimal S-curve trajectory planning for automated robots and machines publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2019.03.019 – volume: 185 start-page: 109777 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0220 article-title: Neural network-based time optimal trajectory planning method for rotary cranes with obstacle avoidance publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109777 – volume: 37 start-page: 539 issue: 3 year: 2019 ident: 10.1016/j.autcon.2023.105094_bb0090 article-title: Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions publication-title: Robotica doi: 10.1017/S0263574718001169 – volume: 4 start-page: 3208 year: 2019 ident: 10.1016/j.autcon.2023.105094_bb0145 article-title: Autonomous free-form trenching using a walking excavator publication-title: IEEE Robot. Automat. Letters doi: 10.1109/LRA.2019.2925758 – volume: 133 start-page: 103996 issue: 1 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0010 article-title: Implementation experiments on convolutional neural network training using synthetic images for 3D pose estimation of an excavator on real images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103996 – volume: 152 start-page: 104916 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0055 article-title: Real-time task-oriented continuous digging trajectory planning for excavator arms publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104916 – volume: 35 start-page: 568 year: 2013 ident: 10.1016/j.autcon.2023.105094_bb0140 article-title: Dynamically optimal trajectories for earthmoving excavators publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.01.007 – volume: 10 start-page: 538 issue: 7 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0155 article-title: Spline-based optimal trajectory generation for autonomous excavator publication-title: Machines doi: 10.3390/machines10070538 – volume: 7 start-page: 4472 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0180 article-title: Excavation reinforcement learning using geometric representation publication-title: IEEE Robot. Automat. Letters doi: 10.1109/LRA.2022.3150511 – volume: 27 start-page: 4029 issue: 7 year: 2023 ident: 10.1016/j.autcon.2023.105094_bb0235 article-title: Jerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approach publication-title: Soft. Comput. doi: 10.1007/s00500-023-07923-5 – volume: 66 start-page: 100943 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0265 article-title: A scalability study of the multi-guide particle swarm optimization algorithm to many-objectives publication-title: Swarm Evolution. Comput. doi: 10.1016/j.swevo.2021.100943 – volume: 135 start-page: 104046 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0035 article-title: Boom energy recuperation system and control strategy for hydraulic hybrid excavators publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104046 – volume: 135 start-page: 104119 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0015 article-title: Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104119 – volume: 16 start-page: 164 issue: 2 year: 2022 ident: 10.1016/j.autcon.2023.105094_bb0260 article-title: Parameter settings in particle swarm optimisation algorithms: a survey publication-title: Int. J. Autom. Control. doi: 10.1504/IJAAC.2022.121124 – volume: 218 start-page: 108057 year: 2020 ident: 10.1016/j.autcon.2023.105094_bb0105 article-title: Optimal 3D time-energy trajectory planning for AUVs using ocean general circulation models publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108057 – volume: 6 start-page: 7373 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0175 article-title: Excavation learning for rigid objects in clutter publication-title: IEEE Robot. Automat. Letters doi: 10.1109/LRA.2021.3097264 – volume: 13 issue: 7 year: 2021 ident: 10.1016/j.autcon.2023.105094_bb0205 article-title: Time-jerk optimal trajectory planning of hydraulic robotic excavator publication-title: Adv. Mech. Eng. |
| SSID | ssj0007069 |
| Score | 2.494923 |
| Snippet | Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105094 |
| SubjectTerms | Excavator Hydraulic system Particle swarm optimization algorithm Trajectory planning |
| Title | Multi-objective time-energy-impact optimization for robotic excavator trajectory planning |
| URI | https://dx.doi.org/10.1016/j.autcon.2023.105094 |
| Volume | 156 |
| WOSCitedRecordID | wos001149876800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7891 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007069 issn: 0926-5805 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRQIOFRQQhRb5wA0ZJY5jO8cVtGortEKiSMspsh1H2hUkq-5Sbf8940cefajQA5cosvyIMp_H49HMNwi9N4LKSuuaGFUZwpjmRNqUwb4SVS2ENlT7qiVfxHQqZ7Pia_QqrXw5AdE0crMplv9V1NAGwnaps_cQdz8pNMA7CB2eIHZ4_pPgfUotafUiqDJfPZ5Yn-JHupxI0BO_YgKmjzM8b3XrmFvtxqgLdw13pSMW3qF_6QpN-7pGYzt28nvdhqTHDz6QfeChHWzLoEWOVdtH6cyjc_p03lz2gPocq6pMB5x-iykjR9B_2a0cXRM0G4V5RB8j5SSXSX5F3eZjhZk6_hl2qy4PboWFi-RxrgG3wMeh-1Xq7GtHWh9o2MWwLcowS-lmKcMsD9E2FXkBqnB7cnI4O-0PcJHwQNEYv77LuPRhgTe_5naLZmSlnD1DO_F6gScBFs_RA9vsosdd9vlqFz0dEVC-QD-ugQXfBAsegwUDWHAEC-7Bggew4A4sL9H3o8OzT8ckFtsgJhN0TaitNJVWGrjACNi3lCtteUKtY5hMldKGpTUVNi1sntZppmqdqERaWyujheHZK7TVtI19jTC3FQworOW2ZoZxWZtK56zKYAklFNtDWffDShOZ6F1BlJ_lXeLaQ6QftQxMLH_pLzpZlNGaDFZiCQC7c-Sbe670Fj0Z0L-PtmDD2QP0yFys56vzdxFdfwDBq58e |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+time-energy-impact+optimization+for+robotic+excavator+trajectory+planning&rft.jtitle=Automation+in+construction&rft.au=Feng%2C+Hao&rft.au=Jiang%2C+Jinye&rft.au=Ding%2C+Nan&rft.au=Shen%2C+Fangping&rft.date=2023-12-01&rft.issn=0926-5805&rft.volume=156&rft.spage=105094&rft_id=info:doi/10.1016%2Fj.autcon.2023.105094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2023_105094 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |