Multi-objective time-energy-impact optimization for robotic excavator trajectory planning

Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is proposed to optimize the working time, energy consumption, and operational impact of robotic excavators. Without fusing any performance indexe...

Full description

Saved in:
Bibliographic Details
Published in:Automation in construction Vol. 156; p. 105094
Main Authors: Feng, Hao, Jiang, Jinye, Ding, Nan, Shen, Fangping, Yin, Chenbo, Cao, Donghui, Li, Chunbiao, Liu, Tao, Xie, Jiaxue
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2023
Subjects:
ISSN:0926-5805, 1872-7891
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is proposed to optimize the working time, energy consumption, and operational impact of robotic excavators. Without fusing any performance indexes, a normalized multi-objective function and an improved particle swarm optimization algorithm are established to achieve a comprehensive optimization of multiple objectives, while considering joint angle, velocity, acceleration, and quadratic acceleration constraints. Typical deep pit excavation simulation and experimental results show that the multi-objective optimization method is feasible, can balance multi-objective constraints, and can avoid falling into extremely long working times or large impacts. This method offers a more efficient and effective solution for multi-objective trajectory planning and provides a method for planning excavation trajectories based on different operating scenarios and objectives. •Working time, energy consumption and operation impact are considered in trajectory planning.•A normalized multi-objective function is established to achieve a comprehensive optimization.•An improved particle swarm optimization algorithm is proposed to obtain the optimal solution.•Effectiveness of the trajectory planning method is validated by simulations and experiments.•The multi-objective optimization method can meet the actual construction requirements.
AbstractList Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is proposed to optimize the working time, energy consumption, and operational impact of robotic excavators. Without fusing any performance indexes, a normalized multi-objective function and an improved particle swarm optimization algorithm are established to achieve a comprehensive optimization of multiple objectives, while considering joint angle, velocity, acceleration, and quadratic acceleration constraints. Typical deep pit excavation simulation and experimental results show that the multi-objective optimization method is feasible, can balance multi-objective constraints, and can avoid falling into extremely long working times or large impacts. This method offers a more efficient and effective solution for multi-objective trajectory planning and provides a method for planning excavation trajectories based on different operating scenarios and objectives. •Working time, energy consumption and operation impact are considered in trajectory planning.•A normalized multi-objective function is established to achieve a comprehensive optimization.•An improved particle swarm optimization algorithm is proposed to obtain the optimal solution.•Effectiveness of the trajectory planning method is validated by simulations and experiments.•The multi-objective optimization method can meet the actual construction requirements.
ArticleNumber 105094
Author Jiang, Jinye
Feng, Hao
Cao, Donghui
Li, Chunbiao
Shen, Fangping
Ding, Nan
Liu, Tao
Xie, Jiaxue
Yin, Chenbo
Author_xml – sequence: 1
  givenname: Hao
  surname: Feng
  fullname: Feng, Hao
  email: fenghao@nuist.edu.cn
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 2
  givenname: Jinye
  surname: Jiang
  fullname: Jiang, Jinye
  organization: School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 3
  givenname: Nan
  surname: Ding
  fullname: Ding, Nan
  organization: Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Fangping
  surname: Shen
  fullname: Shen, Fangping
  organization: Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 5
  givenname: Chenbo
  surname: Yin
  fullname: Yin, Chenbo
  organization: United Institute of Excavator Key Technology, Nanjing Tech University, Nanjing 211816, China
– sequence: 6
  givenname: Donghui
  surname: Cao
  fullname: Cao, Donghui
  organization: SANY Group Co., Ltd., Suzhou 215300, China
– sequence: 7
  givenname: Chunbiao
  surname: Li
  fullname: Li, Chunbiao
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 8
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 9
  givenname: Jiaxue
  surname: Xie
  fullname: Xie, Jiaxue
  organization: Wuxi Cosmo Suspended Platform Co., Ltd., Wuxi 214128, China
BookMark eNqFkL1OwzAUhS1UJNrCGzDkBVxsp4kTBiRU8ScVscDAZN04N5Wj1I4ct6I8PS5hYoDpSkf6js79ZmRinUVCLjlbcMbzq3YBu6CdXQgm0hhlrFyekCkvpKCyKPmETFkpcpoVLDsjs2FoGWOS5eWUvD_vumCoq1rUwewxCWaLFC36zYGabQ86JK6PofmEYJxNGucT7yoXjE7wQ8MeQkyCh2OB84ek78BaYzfn5LSBbsCLnzsnb_d3r6tHun55eFrdrqlOpQhUYF2JAgtd8FpCrUUOFeZMoJCl4ACVXvJGSOQlZrzhKTQVA1YgNqArqfN0Tq7HXu3dMHhslDbhe2scZTrFmTpKUq0aJamjJDVKivDyF9x7swV_-A-7GTGMj-0NejVog1ZjbXzUoGpn_i74AkLWiVw
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106404
crossref_primary_10_1109_ACCESS_2024_3434525
crossref_primary_10_1002_rob_22479
crossref_primary_10_1016_j_aej_2025_02_083
crossref_primary_10_1111_mice_13428
crossref_primary_10_1007_s42235_025_00685_w
crossref_primary_10_1016_j_autcon_2024_105523
crossref_primary_10_1016_j_autcon_2023_105247
crossref_primary_10_1016_j_autcon_2025_106135
crossref_primary_10_20965_jrm_2025_p0984
crossref_primary_10_3390_buildings15142570
crossref_primary_10_3390_machines13020079
crossref_primary_10_1016_j_rcim_2023_102677
crossref_primary_10_1115_1_4069173
crossref_primary_10_1049_tje2_12406
crossref_primary_10_1061_JCEMD4_COENG_15417
crossref_primary_10_3390_act14080394
crossref_primary_10_3390_math12091298
Cites_doi 10.1016/j.mechmachtheory.2018.11.009
10.1016/j.autcon.2023.104855
10.1016/j.isatra.2021.12.003
10.1109/TIV.2021.3072679
10.1016/j.eswa.2021.115110
10.1109/TCST.2021.3094617
10.48084/etasr.4125
10.1016/j.eswa.2018.08.008
10.3390/act11080222
10.1007/s00158-018-2011-6
10.3390/en13123118
10.1016/j.isatra.2021.06.017
10.1109/LRA.2021.3058071
10.1016/j.autcon.2019.102897
10.1016/j.autcon.2022.104702
10.1016/j.autcon.2022.104176
10.1109/LRA.2022.3189834
10.1243/09544062JMES2032
10.1016/j.autcon.2021.103845
10.1016/j.autcon.2022.104337
10.1016/j.mechmachtheory.2020.104230
10.1016/j.asoc.2017.05.012
10.1109/ACCESS.2023.3267120
10.1016/j.ymssp.2017.12.014
10.1109/ACCESS.2022.3140781
10.1109/TMECH.2022.3201283
10.1016/j.asoc.2021.108192
10.1109/LRA.2022.3183536
10.1016/j.engappai.2023.106099
10.1016/j.autcon.2021.104089
10.1016/j.autcon.2022.104402
10.1016/j.swevo.2021.100843
10.1016/j.mechmachtheory.2019.03.019
10.1016/j.ymssp.2022.109777
10.1017/S0263574718001169
10.1109/LRA.2019.2925758
10.1016/j.autcon.2021.103996
10.1016/j.autcon.2023.104916
10.1016/j.autcon.2013.01.007
10.3390/machines10070538
10.1109/LRA.2022.3150511
10.1007/s00500-023-07923-5
10.1016/j.swevo.2021.100943
10.1016/j.autcon.2021.104046
10.1016/j.autcon.2021.104119
10.1504/IJAAC.2022.121124
10.1016/j.oceaneng.2020.108057
10.1109/LRA.2021.3097264
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.autcon.2023.105094
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2023_105094
S0926580523003540
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-2edb28e8c81d7adc26abe602e27921aabc41f27e19e51f13afb0a08eefacb7c63
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149876800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Sat Nov 29 07:18:17 EST 2025
Tue Nov 18 22:41:07 EST 2025
Fri Feb 23 02:35:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Excavator
Trajectory planning
Hydraulic system
Particle swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-2edb28e8c81d7adc26abe602e27921aabc41f27e19e51f13afb0a08eefacb7c63
ParticipantIDs crossref_citationtrail_10_1016_j_autcon_2023_105094
crossref_primary_10_1016_j_autcon_2023_105094
elsevier_sciencedirect_doi_10_1016_j_autcon_2023_105094
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Steenkamp, Engelbrecht (bb0265) 2021; 66
Sun, Sun, Wang, Li, Yang (bb0205) 2021; 13
Bi, Wang, Wang, Yao, Hall (bb0130) 2020; 13
Liu, Lin, Wei (bb0070) 2022; 11
Wang, Song, Sun (bb0150) 2021; 158
Chen, Xiao, Zhang, Zhu (bb0005) 2023; 146
He, Hu, Lin, Zhu (bb0085) 2022; 7
Yang, Zhang, Hong, Chen, Yang, Wang, Cao (bb0060) 2022; 141
Mahmood, Han, Seo (bb0010) 2022; 133
Zhang, Sun, Sun, Wang (bb0200) 2023
Bilal, Yin, Kumar, Ali, Zhang, Yao (bb0235) 2023; 27
Osa, Aizawa (bb0160) 2022; 10
Kim, Ha, Kang, Kim, Park, Park (bb0140) 2013; 35
Vu, Tran (bb0170) 2020
Zhao, Hu, Liu, Tian, Xia (bb0155) 2022; 10
Yang, Long, Song, Pan, Zhang (bb0165) 2021; 6
Lu, Zhu, Zhang (bb0180) 2022; 7
Fu, Zhang, Lv, Song, Li, Yue (bb0030) 2023; 151
Kashyap, Parhi (bb0120) 2021; 179
Assadzadeh, Arashpour, Brilakis, Ngo, Konstantinou (bb0020) 2022; 134
Mac, Copot, Tran, Keyser (bb0215) 2017; 59
Fang, Hu, Liu, Shao, Qi, Peng (bb0110) 2019; 137
Feng, Yin, Li, Ma, Yu, Cao, Zhou (bb0245) 2019; 106
Li, Wang, Zhang, Wang, Tu, You (bb0250) 2021; 62
Wang, Sun, Li, Song (bb0095) 2018; 58
Xu, Ding, Ji (bb0075) 2022; 128
Chettibi (bb0090) 2019; 37
Nazarahari, Khanmirza, Doostie (bb0210) 2019; 115
Egli, Gaschen, Kerscher, Jud, Hutter (bb0135) 2022; 7
Zhu, Ouyang, Xi (bb0220) 2023; 185
Martinsen, Lekkas, Gros (bb0115) 2021; 30
Albarakati, Lima, Theussl, Hoteit, Knio (bb0105) 2020; 218
Yao, Zhao, Tan, Wei, Wang (bb0055) 2023; 152
Yao, Deng, Wu, Zhao, Li, Jiang (bb0100) 2023; 120133
Kashyap, Parhi, Pandey (bb0225) 2022; 125
Huh, Bae, Lee, Kwak, Moon, Im, Hong (bb0050) 2023; 11
Zhang, Fu, Song, Qu (bb0125) 2022; 136
Vu, Tran, Nguyen (bb0190) 2018
Lu, Zhang (bb0175) 2021; 6
Feng, Yin, Cao (bb0045) 2023; 28
Chen, Wu, Chen, Cheng, Zhang (bb0255) 2022; 116
Ekrem, Aksoy (bb0230) 2023; 122
Feng, Yin, Weng, Ma, Zhou, Jia, Zhang (bb0240) 2018; 105
Vu, Tran, Nguyen (bb0195) 2021; 11
Dao, Na, Nguyen, Ahn (bb0025) 2021; 130
Fresia, Rundo, Padovani, Altare (bb0040) 2022; 140
Li, Cheng (bb0260) 2022; 16
Yoo, Park, You, Lim (bb0185) 2010; 224
Lee, Ham, Park, Kim (bb0015) 2022; 135
Jung, Raduenz, Krus, De Negri, Lee (bb0035) 2022; 135
Hoek, Ploeg, Nijmeijer (bb0080) 2021; 6
Dinçer, Çevik (bb0065) 2019; 132
Jud, Leemann, Kerscher, Hutter (bb0145) 2019; 4
Fang (10.1016/j.autcon.2023.105094_bb0110) 2019; 137
Hoek (10.1016/j.autcon.2023.105094_bb0080) 2021; 6
Osa (10.1016/j.autcon.2023.105094_bb0160) 2022; 10
Fresia (10.1016/j.autcon.2023.105094_bb0040) 2022; 140
Lu (10.1016/j.autcon.2023.105094_bb0175) 2021; 6
Feng (10.1016/j.autcon.2023.105094_bb0045) 2023; 28
Dinçer (10.1016/j.autcon.2023.105094_bb0065) 2019; 132
Lu (10.1016/j.autcon.2023.105094_bb0180) 2022; 7
Yao (10.1016/j.autcon.2023.105094_bb0055) 2023; 152
Steenkamp (10.1016/j.autcon.2023.105094_bb0265) 2021; 66
Huh (10.1016/j.autcon.2023.105094_bb0050) 2023; 11
Jud (10.1016/j.autcon.2023.105094_bb0145) 2019; 4
Nazarahari (10.1016/j.autcon.2023.105094_bb0210) 2019; 115
Mac (10.1016/j.autcon.2023.105094_bb0215) 2017; 59
Kim (10.1016/j.autcon.2023.105094_bb0140) 2013; 35
Kashyap (10.1016/j.autcon.2023.105094_bb0225) 2022; 125
Kashyap (10.1016/j.autcon.2023.105094_bb0120) 2021; 179
Xu (10.1016/j.autcon.2023.105094_bb0075) 2022; 128
Ekrem (10.1016/j.autcon.2023.105094_bb0230) 2023; 122
Liu (10.1016/j.autcon.2023.105094_bb0070) 2022; 11
Vu (10.1016/j.autcon.2023.105094_bb0195) 2021; 11
Assadzadeh (10.1016/j.autcon.2023.105094_bb0020) 2022; 134
Zhu (10.1016/j.autcon.2023.105094_bb0220) 2023; 185
Zhao (10.1016/j.autcon.2023.105094_bb0155) 2022; 10
Li (10.1016/j.autcon.2023.105094_bb0260) 2022; 16
Albarakati (10.1016/j.autcon.2023.105094_bb0105) 2020; 218
Vu (10.1016/j.autcon.2023.105094_bb0190) 2018
He (10.1016/j.autcon.2023.105094_bb0085) 2022; 7
Zhang (10.1016/j.autcon.2023.105094_bb0200) 2023
Mahmood (10.1016/j.autcon.2023.105094_bb0010) 2022; 133
Li (10.1016/j.autcon.2023.105094_bb0250) 2021; 62
Egli (10.1016/j.autcon.2023.105094_bb0135) 2022; 7
Yao (10.1016/j.autcon.2023.105094_bb0100) 2023; 120133
Wang (10.1016/j.autcon.2023.105094_bb0150) 2021; 158
Feng (10.1016/j.autcon.2023.105094_bb0240) 2018; 105
Jung (10.1016/j.autcon.2023.105094_bb0035) 2022; 135
Wang (10.1016/j.autcon.2023.105094_bb0095) 2018; 58
Martinsen (10.1016/j.autcon.2023.105094_bb0115) 2021; 30
Chen (10.1016/j.autcon.2023.105094_bb0005) 2023; 146
Zhang (10.1016/j.autcon.2023.105094_bb0125) 2022; 136
Lee (10.1016/j.autcon.2023.105094_bb0015) 2022; 135
Sun (10.1016/j.autcon.2023.105094_bb0205) 2021; 13
Fu (10.1016/j.autcon.2023.105094_bb0030) 2023; 151
Bi (10.1016/j.autcon.2023.105094_bb0130) 2020; 13
Vu (10.1016/j.autcon.2023.105094_bb0170) 2020
Yoo (10.1016/j.autcon.2023.105094_bb0185) 2010; 224
Yang (10.1016/j.autcon.2023.105094_bb0060) 2022; 141
Chettibi (10.1016/j.autcon.2023.105094_bb0090) 2019; 37
Chen (10.1016/j.autcon.2023.105094_bb0255) 2022; 116
Yang (10.1016/j.autcon.2023.105094_bb0165) 2021; 6
Feng (10.1016/j.autcon.2023.105094_bb0245) 2019; 106
Bilal (10.1016/j.autcon.2023.105094_bb0235) 2023; 27
Dao (10.1016/j.autcon.2023.105094_bb0025) 2021; 130
References_xml – volume: 136
  start-page: 104176
  year: 2022
  ident: bb0125
  article-title: Multi-objective excavation trajectory optimization for unmanned electric shovels based on pseudospectral method
  publication-title: Autom. Constr.
– volume: 59
  start-page: 68
  year: 2017
  end-page: 76
  ident: bb0215
  article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 2219
  year: 2018
  end-page: 2237
  ident: bb0095
  article-title: Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning
  publication-title: Struct. Multidiscip. Optim.
– volume: 218
  start-page: 108057
  year: 2020
  ident: bb0105
  article-title: Optimal 3D time-energy trajectory planning for AUVs using ocean general circulation models
  publication-title: Ocean Eng.
– volume: 179
  start-page: 115110
  year: 2021
  ident: bb0120
  article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain
  publication-title: Expert Syst. Appl.
– volume: 185
  start-page: 109777
  year: 2023
  ident: bb0220
  article-title: Neural network-based time optimal trajectory planning method for rotary cranes with obstacle avoidance
  publication-title: Mech. Syst. Signal Process.
– volume: 7
  start-page: 4472
  year: 2022
  end-page: 4479
  ident: bb0180
  article-title: Excavation reinforcement learning using geometric representation
  publication-title: IEEE Robot. Automat. Letters
– volume: 120133
  year: 2023
  ident: bb0100
  article-title: Optimal lane-changing trajectory planning for autonomous vehicles considering energy consumption
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 538
  year: 2022
  ident: bb0155
  article-title: Spline-based optimal trajectory generation for autonomous excavator
  publication-title: Machines
– volume: 4
  start-page: 3208
  year: 2019
  end-page: 3215
  ident: bb0145
  article-title: Autonomous free-form trenching using a walking excavator
  publication-title: IEEE Robot. Automat. Letters
– volume: 11
  start-page: 38047
  year: 2023
  end-page: 38060
  ident: bb0050
  article-title: Deep learning-based autonomous excavation: a bucket-trajectory planning algorithm
  publication-title: IEEE Access
– volume: 132
  start-page: 226
  year: 2019
  end-page: 248
  ident: bb0065
  article-title: Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials
  publication-title: Mech. Mach. Theory
– volume: 130
  start-page: 103845
  year: 2021
  ident: bb0025
  article-title: High accuracy contouring control of an excavator for surface flattening tasks based on extended state observer and task coordinate frame approach
  publication-title: Autom. Constr.
– volume: 137
  start-page: 127
  year: 2019
  end-page: 153
  ident: bb0110
  article-title: Smooth and time-optimal S-curve trajectory planning for automated robots and machines
  publication-title: Mech. Mach. Theory
– start-page: 1
  year: 2018
  end-page: 7
  ident: bb0190
  article-title: Adaptive neuro-fuzzy inference system based path planning for excavator arm
  publication-title: J. Robot.
– volume: 146
  start-page: 104702
  year: 2023
  ident: bb0005
  article-title: Automatic vision-based calculation of excavator earthmoving productivity using zero-shot learning activity recognition
  publication-title: Autom. Constr.
– volume: 133
  start-page: 103996
  year: 2022
  ident: bb0010
  article-title: Implementation experiments on convolutional neural network training using synthetic images for 3D pose estimation of an excavator on real images
  publication-title: Autom. Constr.
– volume: 134
  start-page: 104089
  year: 2022
  ident: bb0020
  article-title: Vision-based excavator pose estimation using synthetically generated datasets with domain randomization
  publication-title: Autom. Constr.
– volume: 13
  year: 2021
  ident: bb0205
  article-title: Time-jerk optimal trajectory planning of hydraulic robotic excavator
  publication-title: Adv. Mech. Eng.
– volume: 151
  start-page: 104855
  year: 2023
  ident: bb0030
  article-title: Digital twin-based excavation trajectory generation of Uncrewed excavators for autonomous mining
  publication-title: Autom. Constr.
– volume: 115
  start-page: 106
  year: 2019
  end-page: 120
  ident: bb0210
  article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
  publication-title: Expert Syst. Appl.
– volume: 116
  start-page: 108192
  year: 2022
  ident: bb0255
  article-title: Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 106
  start-page: 102897
  year: 2019
  ident: bb0245
  article-title: Flexible virtual fixtures for human-excavator cooperative system
  publication-title: Autom. Constr.
– volume: 141
  start-page: 104402
  year: 2022
  ident: bb0060
  article-title: Motion control for earth excavation robot based on force pre-load and cross-coupling compensation
  publication-title: Autom. Constr.
– volume: 105
  start-page: 153
  year: 2018
  end-page: 168
  ident: bb0240
  article-title: Robotic excavator trajectory control using an improved GA based PID controller
  publication-title: Mech. Syst. Signal Process.
– volume: 6
  start-page: 594
  year: 2021
  end-page: 604
  ident: bb0080
  article-title: Cooperative driving of automated vehicles using B-splines for trajectory planning
  publication-title: IEEE Transact. Intellig. Vehicles
– volume: 37
  start-page: 539
  year: 2019
  end-page: 559
  ident: bb0090
  article-title: Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions
  publication-title: Robotica
– volume: 11
  start-page: 222
  year: 2022
  ident: bb0070
  article-title: Adaptive transition gait planning of snake robot based on polynomial interpolation method
  publication-title: Actuators
– volume: 128
  start-page: 633
  year: 2022
  end-page: 645
  ident: bb0075
  article-title: An interpolation method based on adaptive smooth feedrate scheduling and parameter increment compensation for NURBS curve
  publication-title: ISA Trans.
– volume: 135
  start-page: 104119
  year: 2022
  ident: bb0015
  article-title: Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation
  publication-title: Autom. Constr.
– volume: 158
  start-page: 104230
  year: 2021
  ident: bb0150
  article-title: Surrogate based trajectory planning method for an unmanned electric shovel
  publication-title: Mech. Mach. Theory
– volume: 27
  start-page: 4029
  year: 2023
  end-page: 4039
  ident: bb0235
  article-title: Jerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approach
  publication-title: Soft. Comput.
– volume: 152
  start-page: 104916
  year: 2023
  ident: bb0055
  article-title: Real-time task-oriented continuous digging trajectory planning for excavator arms
  publication-title: Autom. Constr.
– volume: 62
  start-page: 100843
  year: 2021
  ident: bb0250
  article-title: Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization
  publication-title: Swarm Evolution. Comput.
– volume: 30
  start-page: 1159
  year: 2021
  end-page: 1170
  ident: bb0115
  article-title: Optimal model-based trajectory planning with static polygonal constraints
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 16
  start-page: 164
  year: 2022
  end-page: 182
  ident: bb0260
  article-title: Parameter settings in particle swarm optimisation algorithms: a survey
  publication-title: Int. J. Autom. Control.
– volume: 11
  start-page: 7088
  year: 2021
  end-page: 7093
  ident: bb0195
  article-title: Recurrent neural network-based path planning for an excavator arm under varying environment
  publication-title: Eng. Technol. Appl. Sci. Res.
– volume: 7
  start-page: 9778
  year: 2022
  end-page: 9785
  ident: bb0135
  article-title: Soil-adaptive excavation using reinforcement learning
  publication-title: IEEE Robot. Automat. Letters
– volume: 6
  start-page: 7373
  year: 2021
  end-page: 7380
  ident: bb0175
  article-title: Excavation learning for rigid objects in clutter
  publication-title: IEEE Robot. Automat. Letters
– volume: 13
  start-page: 3118
  year: 2020
  ident: bb0130
  article-title: Digging trajectory optimization for cable shovel robotic excavation based on a multi-objective genetic algorithm
  publication-title: Energies
– volume: 122
  start-page: 106099
  year: 2023
  ident: bb0230
  article-title: Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 7
  start-page: 7375
  year: 2022
  end-page: 7382
  ident: bb0085
  article-title: An online time-optimal trajectory planning method for constrained multi-axis trajectory with guaranteed feasibility
  publication-title: IEEE Robot. Automat. Letters
– volume: 125
  start-page: 591
  year: 2022
  end-page: 613
  ident: bb0225
  article-title: Multi-objective optimization technique for trajectory planning of multi-humanoid robots in cluttered terrain
  publication-title: ISA Trans.
– start-page: 1
  year: 2020
  end-page: 10
  ident: bb0170
  article-title: Path planning for excavator arm: fuzzy logic control approach
  publication-title: J. Robot.
– volume: 66
  start-page: 100943
  year: 2021
  ident: bb0265
  article-title: A scalability study of the multi-guide particle swarm optimization algorithm to many-objectives
  publication-title: Swarm Evolution. Comput.
– volume: 10
  start-page: 4523
  year: 2022
  end-page: 4535
  ident: bb0160
  article-title: Deep reinforcement learning with adversarial training for automated excavation using depth images
  publication-title: IEEE Access
– year: 2023
  ident: bb0200
  article-title: Time-energy consumption optimal path-constrained trajectory planning of excavator robotics
  publication-title: Authorea
– volume: 224
  start-page: 2109
  year: 2010
  end-page: 2119
  ident: bb0185
  article-title: A dynamics-based optimal trajectory generation for controlling an automated excavator
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
– volume: 6
  start-page: 1479
  year: 2021
  end-page: 1486
  ident: bb0165
  article-title: Optimization-based framework for excavation trajectory generation
  publication-title: IEEE Robot. Automat. Letters
– volume: 140
  start-page: 104337
  year: 2022
  ident: bb0040
  article-title: Combined speed control and centralized power supply for hybrid energy-efficient mobile hydraulics
  publication-title: Autom. Constr.
– volume: 35
  start-page: 568
  year: 2013
  end-page: 578
  ident: bb0140
  article-title: Dynamically optimal trajectories for earthmoving excavators
  publication-title: Autom. Constr.
– volume: 135
  start-page: 104046
  year: 2022
  ident: bb0035
  article-title: Boom energy recuperation system and control strategy for hydraulic hybrid excavators
  publication-title: Autom. Constr.
– volume: 28
  start-page: 473
  year: 2023
  end-page: 482
  ident: bb0045
  article-title: Trajectory tracking of an electro-hydraulic servo system with an new friction model-based compensation
  publication-title: IEEE/ASME Transact. Mechatron.
– volume: 132
  start-page: 226
  year: 2019
  ident: 10.1016/j.autcon.2023.105094_bb0065
  article-title: Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.11.009
– volume: 151
  start-page: 104855
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0030
  article-title: Digital twin-based excavation trajectory generation of Uncrewed excavators for autonomous mining
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104855
– volume: 128
  start-page: 633
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0075
  article-title: An interpolation method based on adaptive smooth feedrate scheduling and parameter increment compensation for NURBS curve
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.12.003
– volume: 6
  start-page: 594
  issue: 3
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0080
  article-title: Cooperative driving of automated vehicles using B-splines for trajectory planning
  publication-title: IEEE Transact. Intellig. Vehicles
  doi: 10.1109/TIV.2021.3072679
– volume: 179
  start-page: 115110
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0120
  article-title: Multi-objective trajectory planning of humanoid robot using hybrid controller for multi-target problem in complex terrain
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115110
– volume: 30
  start-page: 1159
  issue: 3
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0115
  article-title: Optimal model-based trajectory planning with static polygonal constraints
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2021.3094617
– volume: 11
  start-page: 7088
  issue: 3
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0195
  article-title: Recurrent neural network-based path planning for an excavator arm under varying environment
  publication-title: Eng. Technol. Appl. Sci. Res.
  doi: 10.48084/etasr.4125
– volume: 115
  start-page: 106
  year: 2019
  ident: 10.1016/j.autcon.2023.105094_bb0210
  article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.008
– volume: 11
  start-page: 222
  issue: 8
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0070
  article-title: Adaptive transition gait planning of snake robot based on polynomial interpolation method
  publication-title: Actuators
  doi: 10.3390/act11080222
– volume: 58
  start-page: 2219
  year: 2018
  ident: 10.1016/j.autcon.2023.105094_bb0095
  article-title: Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2011-6
– volume: 13
  start-page: 3118
  issue: 12
  year: 2020
  ident: 10.1016/j.autcon.2023.105094_bb0130
  article-title: Digging trajectory optimization for cable shovel robotic excavation based on a multi-objective genetic algorithm
  publication-title: Energies
  doi: 10.3390/en13123118
– volume: 125
  start-page: 591
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0225
  article-title: Multi-objective optimization technique for trajectory planning of multi-humanoid robots in cluttered terrain
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.06.017
– volume: 6
  start-page: 1479
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0165
  article-title: Optimization-based framework for excavation trajectory generation
  publication-title: IEEE Robot. Automat. Letters
  doi: 10.1109/LRA.2021.3058071
– volume: 106
  start-page: 102897
  year: 2019
  ident: 10.1016/j.autcon.2023.105094_bb0245
  article-title: Flexible virtual fixtures for human-excavator cooperative system
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102897
– volume: 146
  start-page: 104702
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0005
  article-title: Automatic vision-based calculation of excavator earthmoving productivity using zero-shot learning activity recognition
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104702
– volume: 136
  start-page: 104176
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0125
  article-title: Multi-objective excavation trajectory optimization for unmanned electric shovels based on pseudospectral method
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104176
– year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0200
  article-title: Time-energy consumption optimal path-constrained trajectory planning of excavator robotics
  publication-title: Authorea
– volume: 7
  start-page: 9778
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0135
  article-title: Soil-adaptive excavation using reinforcement learning
  publication-title: IEEE Robot. Automat. Letters
  doi: 10.1109/LRA.2022.3189834
– start-page: 1
  year: 2020
  ident: 10.1016/j.autcon.2023.105094_bb0170
  article-title: Path planning for excavator arm: fuzzy logic control approach
  publication-title: J. Robot.
– volume: 120133
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0100
  article-title: Optimal lane-changing trajectory planning for autonomous vehicles considering energy consumption
  publication-title: Expert Syst. Appl.
– volume: 224
  start-page: 2109
  issue: 10
  year: 2010
  ident: 10.1016/j.autcon.2023.105094_bb0185
  article-title: A dynamics-based optimal trajectory generation for controlling an automated excavator
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
  doi: 10.1243/09544062JMES2032
– volume: 130
  start-page: 103845
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0025
  article-title: High accuracy contouring control of an excavator for surface flattening tasks based on extended state observer and task coordinate frame approach
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103845
– volume: 140
  start-page: 104337
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0040
  article-title: Combined speed control and centralized power supply for hybrid energy-efficient mobile hydraulics
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104337
– volume: 158
  start-page: 104230
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0150
  article-title: Surrogate based trajectory planning method for an unmanned electric shovel
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.104230
– volume: 59
  start-page: 68
  year: 2017
  ident: 10.1016/j.autcon.2023.105094_bb0215
  article-title: A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.012
– volume: 11
  start-page: 38047
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0050
  article-title: Deep learning-based autonomous excavation: a bucket-trajectory planning algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3267120
– start-page: 1
  year: 2018
  ident: 10.1016/j.autcon.2023.105094_bb0190
  article-title: Adaptive neuro-fuzzy inference system based path planning for excavator arm
  publication-title: J. Robot.
– volume: 105
  start-page: 153
  year: 2018
  ident: 10.1016/j.autcon.2023.105094_bb0240
  article-title: Robotic excavator trajectory control using an improved GA based PID controller
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.014
– volume: 10
  start-page: 4523
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0160
  article-title: Deep reinforcement learning with adversarial training for automated excavation using depth images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3140781
– volume: 28
  start-page: 473
  issue: 1
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0045
  article-title: Trajectory tracking of an electro-hydraulic servo system with an new friction model-based compensation
  publication-title: IEEE/ASME Transact. Mechatron.
  doi: 10.1109/TMECH.2022.3201283
– volume: 116
  start-page: 108192
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0255
  article-title: Patrol robot path planning in nuclear power plant using an interval multi-objective particle swarm optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108192
– volume: 7
  start-page: 7375
  issue: 3
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0085
  article-title: An online time-optimal trajectory planning method for constrained multi-axis trajectory with guaranteed feasibility
  publication-title: IEEE Robot. Automat. Letters
  doi: 10.1109/LRA.2022.3183536
– volume: 122
  start-page: 106099
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0230
  article-title: Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106099
– volume: 134
  start-page: 104089
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0020
  article-title: Vision-based excavator pose estimation using synthetically generated datasets with domain randomization
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104089
– volume: 141
  start-page: 104402
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0060
  article-title: Motion control for earth excavation robot based on force pre-load and cross-coupling compensation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104402
– volume: 62
  start-page: 100843
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0250
  article-title: Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization
  publication-title: Swarm Evolution. Comput.
  doi: 10.1016/j.swevo.2021.100843
– volume: 137
  start-page: 127
  year: 2019
  ident: 10.1016/j.autcon.2023.105094_bb0110
  article-title: Smooth and time-optimal S-curve trajectory planning for automated robots and machines
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2019.03.019
– volume: 185
  start-page: 109777
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0220
  article-title: Neural network-based time optimal trajectory planning method for rotary cranes with obstacle avoidance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109777
– volume: 37
  start-page: 539
  issue: 3
  year: 2019
  ident: 10.1016/j.autcon.2023.105094_bb0090
  article-title: Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions
  publication-title: Robotica
  doi: 10.1017/S0263574718001169
– volume: 4
  start-page: 3208
  year: 2019
  ident: 10.1016/j.autcon.2023.105094_bb0145
  article-title: Autonomous free-form trenching using a walking excavator
  publication-title: IEEE Robot. Automat. Letters
  doi: 10.1109/LRA.2019.2925758
– volume: 133
  start-page: 103996
  issue: 1
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0010
  article-title: Implementation experiments on convolutional neural network training using synthetic images for 3D pose estimation of an excavator on real images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103996
– volume: 152
  start-page: 104916
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0055
  article-title: Real-time task-oriented continuous digging trajectory planning for excavator arms
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104916
– volume: 35
  start-page: 568
  year: 2013
  ident: 10.1016/j.autcon.2023.105094_bb0140
  article-title: Dynamically optimal trajectories for earthmoving excavators
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.01.007
– volume: 10
  start-page: 538
  issue: 7
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0155
  article-title: Spline-based optimal trajectory generation for autonomous excavator
  publication-title: Machines
  doi: 10.3390/machines10070538
– volume: 7
  start-page: 4472
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0180
  article-title: Excavation reinforcement learning using geometric representation
  publication-title: IEEE Robot. Automat. Letters
  doi: 10.1109/LRA.2022.3150511
– volume: 27
  start-page: 4029
  issue: 7
  year: 2023
  ident: 10.1016/j.autcon.2023.105094_bb0235
  article-title: Jerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approach
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-023-07923-5
– volume: 66
  start-page: 100943
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0265
  article-title: A scalability study of the multi-guide particle swarm optimization algorithm to many-objectives
  publication-title: Swarm Evolution. Comput.
  doi: 10.1016/j.swevo.2021.100943
– volume: 135
  start-page: 104046
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0035
  article-title: Boom energy recuperation system and control strategy for hydraulic hybrid excavators
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104046
– volume: 135
  start-page: 104119
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0015
  article-title: Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104119
– volume: 16
  start-page: 164
  issue: 2
  year: 2022
  ident: 10.1016/j.autcon.2023.105094_bb0260
  article-title: Parameter settings in particle swarm optimisation algorithms: a survey
  publication-title: Int. J. Autom. Control.
  doi: 10.1504/IJAAC.2022.121124
– volume: 218
  start-page: 108057
  year: 2020
  ident: 10.1016/j.autcon.2023.105094_bb0105
  article-title: Optimal 3D time-energy trajectory planning for AUVs using ocean general circulation models
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108057
– volume: 6
  start-page: 7373
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0175
  article-title: Excavation learning for rigid objects in clutter
  publication-title: IEEE Robot. Automat. Letters
  doi: 10.1109/LRA.2021.3097264
– volume: 13
  issue: 7
  year: 2021
  ident: 10.1016/j.autcon.2023.105094_bb0205
  article-title: Time-jerk optimal trajectory planning of hydraulic robotic excavator
  publication-title: Adv. Mech. Eng.
SSID ssj0007069
Score 2.4949968
Snippet Single-objective optimal trajectory cannot adapt to the complex requirements of excavator construction. A comprehensive optimal trajectory planning method is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105094
SubjectTerms Excavator
Hydraulic system
Particle swarm optimization algorithm
Trajectory planning
Title Multi-objective time-energy-impact optimization for robotic excavator trajectory planning
URI https://dx.doi.org/10.1016/j.autcon.2023.105094
Volume 156
WOSCitedRecordID wos001149876800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007069
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZtUmh7CG3a0rRJ0KG3oGLJD9nHpU1IQlgKTWBzMpIswS6tvWS3YfPvO3r4kQd5HHIxi5Els_N5NBrm-wahbxVLsqQQhsikiEnCuCZ5ZSTRYGu7xdLEOBHXEz4e55NJ8StklRaunQCv63y1KubPamq4B8a21NknmLubFG7AbzA6XMHscH2U4R2lljRy5l2Z6x5PtKP4kZYTCX7ibyBgujrDi0Y2VrlVr5S4tMdw2zpi5hL6V7bRtOtrNIxjR_-WjSc97rlC9l6Hto8tvRc5FE1XpTMNyenjaX3VAepn6Koy7nH6O1BGDmD8vF05pCZYPCjzCDlGlpE0j9Jr7jYdOkxq9WeSO325TyvMbCWPTQ3YBb73w69LZ9_Y0rpCw7aGbVb6WUo7S-lneYnWGU8LcIXro6P9yXG3gfMo8xKN4e1bxqUrC7z9NndHNIMo5fQd2gjHCzzysHiPXuh6E71u2eeLTfR2IED5AZ3fAAu-DRY8BAsGsOAAFtyBBfdgwS1YPqKzg_3TH4ckNNsgKuZsSZiuJMt1ruAAw0WlWCakziKmrcIkFUKqhBr4lGmhU2poLIyMRJRrbYSSXGXxJ7RWN7X-jDCNYZxIC11RK48Xy8gW2RiRU81MpdQWits_rFRBid42RPlT3meuLUS6p-ZeieWB8by1RRmiSR8llgCwe5_88sSVvqI3Pfq30Rp8cHoHvVKXy-niYjeg6z-9sZyZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+time-energy-impact+optimization+for+robotic+excavator+trajectory+planning&rft.jtitle=Automation+in+construction&rft.au=Feng%2C+Hao&rft.au=Jiang%2C+Jinye&rft.au=Ding%2C+Nan&rft.au=Shen%2C+Fangping&rft.date=2023-12-01&rft.issn=0926-5805&rft.volume=156&rft.spage=105094&rft_id=info:doi/10.1016%2Fj.autcon.2023.105094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2023_105094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon