Characterization of focal EEG signals: A review

Epilepsy is a common neurological condition that can occur in anyone at any age. Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types contain brain activity information that can be used to identify areas affected by seizures. Generally, F EEG signals are recorded from the epilept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 91; S. 290 - 299
Hauptverfasser: Acharya, U. Rajendra, Hagiwara, Yuki, Deshpande, Sunny Nitin, Suren, S., Koh, Joel En Wei, Oh, Shu Lih, Arunkumar, N., Ciaccio, Edward J., Lim, Choo Min
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2019
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Epilepsy is a common neurological condition that can occur in anyone at any age. Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types contain brain activity information that can be used to identify areas affected by seizures. Generally, F EEG signals are recorded from the epileptic part of the brain, while NF EEG signals are recorded from brain regions unaffected by epilepsy. It is essential to correctly detect F EEG signals, when and where they occur, as focal epilepsy can be successfully treated by surgical means. However, all EEG signals are complex and require highly trained personnel for right interpretation. To overcome the associated challenges, in this study a computer-aided detection (CAD) system to aid in the detection of F EEG signals has been developed, and the performance of nonlinear features for differentiating F and NF EEG signals is compared. Moreover, it is noted that nonlinear features can effectively capture concealed patterns and rhythms contained in the EEG signals. Overall, it was found that the CAD system will be useful to clinicians in providing an accurate and objective paradigm for localization of the epileptogenic area. •Non-focal (NF) and focal (F) EEG signals are analyzed.•The CAD system to aid in the detection of F EEG signals are discussed.•Nonlinear features can effectively capture concealed patterns and rhythms contained in the EEG signals.•Performance of nonlinear features for differentiating F and NF EEG signals is compared.
AbstractList Epilepsy is a common neurological condition that can occur in anyone at any age. Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types contain brain activity information that can be used to identify areas affected by seizures. Generally, F EEG signals are recorded from the epileptic part of the brain, while NF EEG signals are recorded from brain regions unaffected by epilepsy. It is essential to correctly detect F EEG signals, when and where they occur, as focal epilepsy can be successfully treated by surgical means. However, all EEG signals are complex and require highly trained personnel for right interpretation. To overcome the associated challenges, in this study a computer-aided detection (CAD) system to aid in the detection of F EEG signals has been developed, and the performance of nonlinear features for differentiating F and NF EEG signals is compared. Moreover, it is noted that nonlinear features can effectively capture concealed patterns and rhythms contained in the EEG signals. Overall, it was found that the CAD system will be useful to clinicians in providing an accurate and objective paradigm for localization of the epileptogenic area. •Non-focal (NF) and focal (F) EEG signals are analyzed.•The CAD system to aid in the detection of F EEG signals are discussed.•Nonlinear features can effectively capture concealed patterns and rhythms contained in the EEG signals.•Performance of nonlinear features for differentiating F and NF EEG signals is compared.
Author Hagiwara, Yuki
Oh, Shu Lih
Suren, S.
Ciaccio, Edward J.
Lim, Choo Min
Koh, Joel En Wei
Acharya, U. Rajendra
Deshpande, Sunny Nitin
Arunkumar, N.
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 3
  givenname: Sunny Nitin
  surname: Deshpande
  fullname: Deshpande, Sunny Nitin
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: S.
  surname: Suren
  fullname: Suren, S.
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: Joel En Wei
  surname: Koh
  fullname: Koh, Joel En Wei
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 6
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 7
  givenname: N.
  orcidid: 0000-0001-9719-4451
  surname: Arunkumar
  fullname: Arunkumar, N.
  organization: Department of Electronics and Instrumentation, SASTRA University, Thanjavur, India
– sequence: 8
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
  organization: Department of Medicine, Columbia University, NY, USA
– sequence: 9
  givenname: Choo Min
  surname: Lim
  fullname: Lim, Choo Min
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BookMark eNqFj8FKw0AQhhepYFt9Aw95gaQ7yWY36UEoJVah4EXB27KdndUtNZHdVNGnN7WePCj8MDDM9zPfhI3ariXGLoFnwEHOtpnb9_tAWc6hyvgQIU7YGCqVpwqgHLHxcKZSVdSPZ2wS45ZzDqqAMZstn00w2FPwn6b3XZt0LnEdml3SNKsk-qfW7OI8WSSB3jy9n7NTNyzo4mdO2cN1c7-8Sdd3q9vlYp1iofI-BcoJKyGUIFQbdBJpU0kFpQPMayyq2loDBsHmqsylU86ClFYWZGtXAi-mbH7sxdDFGMhp9P33g30wfqeB64O63uqjuj6oaz5EiAEWv-DX4F9M-PgPuzpiNIgNskFH9NQiWR8Ie207_3fBFxind5M
CitedBy_id crossref_primary_10_3233_JIFS_179084
crossref_primary_10_1007_s11571_022_09816_z
crossref_primary_10_1016_j_amc_2025_129317
crossref_primary_10_1007_s00521_020_05467_5
crossref_primary_10_1016_j_patrec_2019_03_010
crossref_primary_10_1002_cnm_3573
crossref_primary_10_1007_s11042_019_7614_4
crossref_primary_10_1007_s11571_022_09857_4
crossref_primary_10_1016_j_chaos_2023_113453
crossref_primary_10_1016_j_bspc_2019_101702
crossref_primary_10_1515_bmt_2020_0038
crossref_primary_10_1016_j_future_2018_09_013
crossref_primary_10_1016_j_bspc_2020_102124
crossref_primary_10_1109_JBHI_2020_3027303
crossref_primary_10_1016_j_jneumeth_2021_109441
crossref_primary_10_3390_e23070832
crossref_primary_10_1007_s00521_020_05384_7
crossref_primary_10_1016_j_cogsys_2018_09_025
crossref_primary_10_1016_j_patrec_2019_03_023
crossref_primary_10_1016_j_rpor_2020_03_015
crossref_primary_10_1109_JSEN_2022_3175447
crossref_primary_10_1007_s00521_018_3919_x
crossref_primary_10_1109_JSEN_2019_2939908
crossref_primary_10_1016_j_cogsys_2018_09_026
crossref_primary_10_1016_j_ssci_2019_04_020
crossref_primary_10_3390_e26010082
crossref_primary_10_1016_j_measurement_2018_11_045
crossref_primary_10_1007_s10462_019_09698_4
crossref_primary_10_1016_j_brainresbull_2024_110984
crossref_primary_10_1016_j_measurement_2018_11_046
crossref_primary_10_1002_widm_1478
crossref_primary_10_1007_s13246_020_00963_3
crossref_primary_10_1016_j_future_2018_12_042
crossref_primary_10_3390_s24092823
crossref_primary_10_1016_j_future_2018_12_040
crossref_primary_10_1007_s42600_021_00175_y
crossref_primary_10_1016_j_future_2018_11_056
crossref_primary_10_1016_j_irbm_2020_11_002
crossref_primary_10_1007_s11042_019_7483_x
crossref_primary_10_1016_j_future_2018_11_058
crossref_primary_10_1007_s11042_019_7555_y
crossref_primary_10_1016_j_cogsys_2018_09_031
crossref_primary_10_3233_JIFS_222745
crossref_primary_10_1016_j_artmed_2019_07_006
crossref_primary_10_1109_JSEN_2019_2956072
crossref_primary_10_1016_j_eswa_2024_123991
crossref_primary_10_1016_j_future_2024_107525
crossref_primary_10_3389_fnbot_2022_873239
crossref_primary_10_1016_j_compeleceng_2019_05_013
crossref_primary_10_1016_j_future_2018_12_011
crossref_primary_10_1177_0020720918822731
crossref_primary_10_1016_j_bspc_2019_101761
crossref_primary_10_1016_j_future_2018_12_010
crossref_primary_10_1016_j_cmpb_2021_105941
crossref_primary_10_1016_j_eswa_2020_113788
crossref_primary_10_1007_s11042_019_07790_z
crossref_primary_10_1007_s11042_019_7534_3
crossref_primary_10_1016_j_measurement_2018_11_079
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_1007_s11042_023_15052_2
crossref_primary_10_1016_j_ssci_2019_03_025
crossref_primary_10_3390_bios12121176
crossref_primary_10_3390_s21227710
crossref_primary_10_1007_s40747_021_00408_8
crossref_primary_10_1016_j_measurement_2018_11_073
crossref_primary_10_1080_1206212X_2018_1550166
crossref_primary_10_1016_j_bspc_2023_104927
crossref_primary_10_1016_j_measurement_2018_11_074
crossref_primary_10_1016_j_measurement_2018_11_075
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_1109_ACCESS_2022_3184701
crossref_primary_10_1016_j_ins_2021_05_035
crossref_primary_10_3390_brainsci11050668
crossref_primary_10_1080_1206212X_2018_1553271
crossref_primary_10_1080_1206212X_2018_1553272
crossref_primary_10_3233_KES_230059
crossref_primary_10_3390_signals5020018
crossref_primary_10_1109_LSENS_2019_2909119
crossref_primary_10_1021_acsami_5c08379
crossref_primary_10_1016_j_future_2018_12_023
crossref_primary_10_1109_ACCESS_2019_2918560
crossref_primary_10_1016_j_future_2018_12_022
crossref_primary_10_1016_j_artmed_2023_102542
crossref_primary_10_1016_j_future_2018_12_021
crossref_primary_10_1016_j_future_2018_12_027
crossref_primary_10_1088_1361_6579_abc66e
crossref_primary_10_1016_j_ssci_2019_05_004
crossref_primary_10_1016_j_future_2018_12_020
crossref_primary_10_1016_j_measurement_2018_11_064
crossref_primary_10_1051_matecconf_202439201101
crossref_primary_10_1016_j_ssci_2019_04_047
crossref_primary_10_1080_1206212X_2018_1537095
crossref_primary_10_1007_s10044_024_01221_y
crossref_primary_10_1007_s11042_024_18341_6
crossref_primary_10_1109_JSEN_2020_2995749
crossref_primary_10_1007_s11042_019_7533_4
crossref_primary_10_1007_s11042_019_7537_0
crossref_primary_10_3389_fnins_2024_1367212
crossref_primary_10_1016_j_ssci_2019_05_012
crossref_primary_10_3390_mti6050035
crossref_primary_10_1007_s11051_022_05557_6
crossref_primary_10_3390_app12104879
crossref_primary_10_1007_s11042_019_7209_0
crossref_primary_10_3390_ijerph17030971
crossref_primary_10_1007_s11042_019_7474_y
crossref_primary_10_3390_biology8010015
crossref_primary_10_1007_s11042_019_7161_z
crossref_primary_10_1049_htl_2018_5036
crossref_primary_10_1155_2021_6644365
crossref_primary_10_4108_eetpht_10_5568
crossref_primary_10_1007_s10916_019_1345_y
crossref_primary_10_1016_j_nec_2020_03_006
crossref_primary_10_1007_s11042_019_07765_0
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1109_ACCESS_2019_2899188
crossref_primary_10_3390_computers9040095
crossref_primary_10_1109_ACCESS_2018_2886708
crossref_primary_10_1016_j_jneumeth_2021_109196
crossref_primary_10_1002_smsc_202300008
crossref_primary_10_1007_s11571_025_10288_0
crossref_primary_10_1007_s41870_022_00866_4
crossref_primary_10_1016_j_yebeh_2021_107830
crossref_primary_10_1007_s11042_019_7191_6
crossref_primary_10_1007_s11042_019_07759_y
crossref_primary_10_1016_j_patrec_2019_04_015
crossref_primary_10_1109_JSEN_2025_3544242
crossref_primary_10_1007_s00034_023_02423_1
crossref_primary_10_1016_j_cmpb_2019_06_018
crossref_primary_10_1016_j_compbiomed_2023_107491
crossref_primary_10_1007_s00530_021_00786_6
crossref_primary_10_1016_j_cogsys_2018_10_029
crossref_primary_10_1080_10255842_2024_2356634
crossref_primary_10_1007_s00521_018_3889_z
crossref_primary_10_1007_s11042_019_7532_5
crossref_primary_10_1007_s11042_019_7571_y
crossref_primary_10_1177_0020720918819247
crossref_primary_10_1007_s11042_019_7611_7
crossref_primary_10_1016_j_bspc_2023_104693
crossref_primary_10_1080_1206212X_2018_1554836
crossref_primary_10_3389_fbioe_2020_622923
crossref_primary_10_1002_idm2_12198
crossref_primary_10_1007_s11071_022_08118_7
crossref_primary_10_3390_s21206932
crossref_primary_10_1155_2021_6283900
crossref_primary_10_1016_j_chaos_2024_115810
crossref_primary_10_1016_j_knosys_2022_108508
crossref_primary_10_1007_s11042_019_07954_x
crossref_primary_10_1038_s41598_023_43328_y
crossref_primary_10_1016_j_bbe_2023_05_001
crossref_primary_10_1111_exsy_12957
crossref_primary_10_3390_brainsci12050630
crossref_primary_10_1177_0020720918823853
crossref_primary_10_3390_e22121415
crossref_primary_10_3233_JIFS_179076
crossref_primary_10_1109_ACCESS_2020_3040540
crossref_primary_10_1109_TNSRE_2022_3165060
crossref_primary_10_1097_ALN_0000000000003628
crossref_primary_10_1016_j_bspc_2023_104682
crossref_primary_10_3390_brainsci9080208
crossref_primary_10_1063_5_0087848
crossref_primary_10_1155_2022_7654666
crossref_primary_10_1007_s11042_021_10882_4
crossref_primary_10_1080_10095020_2023_2183145
crossref_primary_10_1016_j_seizure_2024_05_015
crossref_primary_10_1109_ACCESS_2018_2888503
crossref_primary_10_1007_s11042_019_7173_8
crossref_primary_10_1109_TKDE_2021_3128770
crossref_primary_10_1016_j_ssci_2019_04_007
Cites_doi 10.1016/j.patrec.2017.05.007
10.1007/s10916-017-0800-x
10.1109/34.192463
10.1109/TIT.1977.1055714
10.1080/01621459.1952.10483441
10.1016/j.knosys.2016.11.024
10.1016/0013-4694(70)90143-4
10.3390/e17020669
10.1016/0375-9601(92)90426-M
10.1016/j.ins.2017.04.012
10.1109/TSP.2012.2232655
10.1111/j.0013-9580.2005.66104.x
10.1109/79.221324
10.1631/jzus.B1700260
10.3949/ccjm.77a.09061
10.1016/j.knosys.2013.02.014
10.1103/PhysRevE.49.1685
10.1016/j.cmpb.2018.04.012
10.1109/TCOM.1967.1089532
10.1103/PhysRevLett.88.174102
10.1016/j.knosys.2015.08.004
10.1016/0020-0255(86)90006-X
10.1103/PhysRevE.86.046206
10.1109/TIT.1967.1053964
10.1109/78.157221
10.1023/A:1018628609742
10.1016/j.patrec.2017.03.017
10.1016/j.future.2018.05.001
10.1080/10691898.2010.11889471
10.1016/0167-2789(93)90009-P
10.1111/mice.12313
10.1209/0295-5075/4/9/004
10.1109/21.256541
10.1073/pnas.88.6.2297
10.1016/j.ejca.2011.11.036
10.1098/rspa.1998.0193
10.1109/TSP.2013.2265222
10.1002/j.1538-7305.1948.tb01338.x
10.1007/BF01016429
10.1007/s00521-016-2646-4
10.1016/S0304-3975(98)00075-9
10.1016/S0165-0270(00)00356-3
10.1140/epjst/e2008-00829-1
10.1016/j.physa.2013.07.075
10.3390/e19030099
10.1016/j.jocs.2017.03.022
10.1002/ima.22199
10.1152/ajpheart.2000.278.6.H2039
10.3390/e17085218
10.1016/j.physrep.2006.11.001
10.1016/j.bspc.2016.05.004
10.1016/j.ins.2017.06.027
10.1016/j.compbiomed.2017.08.022
10.1109/ICASSP.2013.6638947
10.2307/2331554
10.1109/TSP.2011.2143711
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2018.08.044
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 299
ExternalDocumentID 10_1016_j_future_2018_08_044
S0167739X18318818
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-1e2ec84474ec7bcf6ceb86715f1c29c389dda1ac1d27526f7fd166d63ed9f5103
ISICitedReferencesCount 198
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451790900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:25:37 EST 2025
Tue Nov 18 21:10:31 EST 2025
Fri Feb 23 02:47:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-focal
Electroencephalogram signals
Computer-aided detection system
Focal
Epilepsy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-1e2ec84474ec7bcf6ceb86715f1c29c389dda1ac1d27526f7fd166d63ed9f5103
ORCID 0000-0001-9719-4451
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_future_2018_08_044
crossref_primary_10_1016_j_future_2018_08_044
elsevier_sciencedirect_doi_10_1016_j_future_2018_08_044
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sharma, Pachori, Acharya (b6) 2015; 17
Acharya, Oh, Hagiwara, Tan, Adeli, Subha (b61) 2018; 161
Lambin, Rios-Velazquez, Leijenaar, Carvalho, Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (b67) 2012; 48
Kailath (b44) 1967; 15
Acharya, Oh, Hagiwara, Tan, Adeli (b62) 2017
Hurst (b34) 1956; 5
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (b64) 2017; 89
Ziv, Lempel (b37) 1977; 23
Fisher, Boas, Blume, Elger, Genton, Lee, Engel (b1) 2005; 46
(Accessed 23 2018).
World Health Organization, World Health Organization, 08 02 2018. [Online]. Available
Selesnick (b55) 2011; 59
Acharya, Fujita, Sudarshan, Bhat, Koh (b20) 2015; 88
Hjorth, Elema-Schonander (b33) 1970; 29
Martin (b50) 1995
Peng, Buldyrev, Havlin, Simons, Stanley, Goldberger (b19) 1994; 49
A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012.
A. Renyi, On measures of entropy and information, in: Fourth Berkeley Symposium, 1961.
Acharya, Sree, Swapna, Martis, Suri (b18) 2013; 45
Kolmogorov (b25) 1958; 119
Arunkumar, Ramkumar, Venkatraman, Abdulhay, Fernandes, Kadry, Segal (b16) 2017; 94
Kosko (b24) 1986; 40
Marwan (b40) 2008; 164
Mandelbrot (b32) 1983
Tsallis (b29) 1988; 52
Sharma, Kumar, Pachori, Acharya (b11) 2017; 20
Suykens, Vandewalle (b47) 1999; 9
Gupta, Priya, Yadav, Pachori, Acharya (b12) 2017; 94
Marwan, Romano, Thiel, Kurths (b41) 2007; 438
N. Kingsbury, The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters, in: Proceedings of the 8th IEEE Digital Signal Processing Workshop, Utah, 1998.
H.L. Weiner, J.I. Sirven, Epilepsy Foundation, 25 2013. [Online]. Available
(Accessed 12 July 2018).
Rosenstein, Colins, Luca (b36) 1993; 65
Mallat (b52) 1989; 11
Wu, Wu, Lee, Lin (b21) 2013; 392
Pincus (b23) 1991; 88
Acharya, Hagiwara, Sudarshan, Chan, Ng (b68) 2018; 19
Bandt, Pompe (b31) 2002; 88
Andrzejak, Schindler, Rummel (b5) 2012; 86
Jang (b48) 1993; 23
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b65) 2017; 415
Sharma, Dhere, Pachori, Acharya (b8) 2017; 118
Deivasigamani, Senthilpari, Wong (b9) 2016; 26
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b63) 2017; 405
R.J. Hyndman, G. Athanasopoulos, 8.1 Stationarity and differencing, in: Forecasting: Principles and practices, Melbourne, Australia, OTexts, 2013.
Vetterli, Herley (b54) 1992; 40
Shannon (b27) 1948; 27
Bhattacharyya, Pachori, Acharya (b13) 2017; 19
Tan, Bhandary, Sivaprasad, Hagiwara, Bagchi, Raghavendra, Rao, Raju, Shetty, Gertych, Chua, Acharya (b66) 2018; 87
Kruskal, Wallis (b46) 1952; 47
Theodoridis, Koutroumbas (b43) 2003
Sriraam, Raghu (b15) 2017; 41
Kolmogorov (b35) 1998; 207
A. Graves, A. Mohamed, G.E. Hinton, Speech recognition with deep recurrent neural networks, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013.
Rosso, Blanco, Yordanova, Kolev, Figliola, Schurmann, Basar (b30) 2001; 105
Derryberry, Schou, Conover (b45) 2010; 18
Sharma, Pachori, Acharya (b7) 2015; 17
Gilles (b57) 2013; 61
Zbilut, Webber (b38) 1992; 171
Nikias, Mendel (b28) 1993; 10
Bhattacharyya, Sharma, Pachori, Sircar, Acharya (b14) 2018; 29
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b51) 1998; 454
Eckmann, Kamphorst, Ruelle (b39) 1987; 4
Cover, Hart (b49) 1967; 13
Lin, Nie, Ma (b60) 2017; 32
Das, Bhuiyan (b10) 2016; 29
Bayram (b56) 2013; 61
Student (b42) 1908; 6
Richman, Moorman (b22) 2000; 278
Pati, Alexopoulos (b3) 2010; 77
Wu (10.1016/j.future.2018.08.044_b21) 2013; 392
Gupta (10.1016/j.future.2018.08.044_b12) 2017; 94
Lambin (10.1016/j.future.2018.08.044_b67) 2012; 48
Hjorth (10.1016/j.future.2018.08.044_b33) 1970; 29
Tan (10.1016/j.future.2018.08.044_b66) 2018; 87
Mallat (10.1016/j.future.2018.08.044_b52) 1989; 11
Richman (10.1016/j.future.2018.08.044_b22) 2000; 278
Bandt (10.1016/j.future.2018.08.044_b31) 2002; 88
Acharya (10.1016/j.future.2018.08.044_b63) 2017; 405
Pincus (10.1016/j.future.2018.08.044_b23) 1991; 88
Sharma (10.1016/j.future.2018.08.044_b7) 2015; 17
Acharya (10.1016/j.future.2018.08.044_b65) 2017; 415
Mandelbrot (10.1016/j.future.2018.08.044_b32) 1983
Hurst (10.1016/j.future.2018.08.044_b34) 1956; 5
Sharma (10.1016/j.future.2018.08.044_b8) 2017; 118
Acharya (10.1016/j.future.2018.08.044_b20) 2015; 88
Gilles (10.1016/j.future.2018.08.044_b57) 2013; 61
Rosenstein (10.1016/j.future.2018.08.044_b36) 1993; 65
Huang (10.1016/j.future.2018.08.044_b51) 1998; 454
10.1016/j.future.2018.08.044_b26
Shannon (10.1016/j.future.2018.08.044_b27) 1948; 27
Kailath (10.1016/j.future.2018.08.044_b44) 1967; 15
Bayram (10.1016/j.future.2018.08.044_b56) 2013; 61
10.1016/j.future.2018.08.044_b4
Andrzejak (10.1016/j.future.2018.08.044_b5) 2012; 86
Nikias (10.1016/j.future.2018.08.044_b28) 1993; 10
Kolmogorov (10.1016/j.future.2018.08.044_b35) 1998; 207
Marwan (10.1016/j.future.2018.08.044_b40) 2008; 164
Acharya (10.1016/j.future.2018.08.044_b18) 2013; 45
Theodoridis (10.1016/j.future.2018.08.044_b43) 2003
Sharma (10.1016/j.future.2018.08.044_b6) 2015; 17
Kosko (10.1016/j.future.2018.08.044_b24) 1986; 40
Acharya (10.1016/j.future.2018.08.044_b62) 2017
Sharma (10.1016/j.future.2018.08.044_b11) 2017; 20
10.1016/j.future.2018.08.044_b2
Pati (10.1016/j.future.2018.08.044_b3) 2010; 77
Cover (10.1016/j.future.2018.08.044_b49) 1967; 13
Sriraam (10.1016/j.future.2018.08.044_b15) 2017; 41
Bhattacharyya (10.1016/j.future.2018.08.044_b13) 2017; 19
10.1016/j.future.2018.08.044_b53
Vetterli (10.1016/j.future.2018.08.044_b54) 1992; 40
10.1016/j.future.2018.08.044_b58
Acharya (10.1016/j.future.2018.08.044_b64) 2017; 89
10.1016/j.future.2018.08.044_b59
10.1016/j.future.2018.08.044_b17
Fisher (10.1016/j.future.2018.08.044_b1) 2005; 46
Jang (10.1016/j.future.2018.08.044_b48) 1993; 23
Ziv (10.1016/j.future.2018.08.044_b37) 1977; 23
Bhattacharyya (10.1016/j.future.2018.08.044_b14) 2018; 29
Martin (10.1016/j.future.2018.08.044_b50) 1995
Das (10.1016/j.future.2018.08.044_b10) 2016; 29
Rosso (10.1016/j.future.2018.08.044_b30) 2001; 105
Arunkumar (10.1016/j.future.2018.08.044_b16) 2017; 94
Kolmogorov (10.1016/j.future.2018.08.044_b25) 1958; 119
Marwan (10.1016/j.future.2018.08.044_b41) 2007; 438
Derryberry (10.1016/j.future.2018.08.044_b45) 2010; 18
Selesnick (10.1016/j.future.2018.08.044_b55) 2011; 59
Kruskal (10.1016/j.future.2018.08.044_b46) 1952; 47
Zbilut (10.1016/j.future.2018.08.044_b38) 1992; 171
Eckmann (10.1016/j.future.2018.08.044_b39) 1987; 4
Acharya (10.1016/j.future.2018.08.044_b61) 2018; 161
Deivasigamani (10.1016/j.future.2018.08.044_b9) 2016; 26
Student (10.1016/j.future.2018.08.044_b42) 1908; 6
Tsallis (10.1016/j.future.2018.08.044_b29) 1988; 52
Peng (10.1016/j.future.2018.08.044_b19) 1994; 49
Lin (10.1016/j.future.2018.08.044_b60) 2017; 32
Acharya (10.1016/j.future.2018.08.044_b68) 2018; 19
Suykens (10.1016/j.future.2018.08.044_b47) 1999; 9
References_xml – volume: 45
  start-page: 147
  year: 2013
  end-page: 165
  ident: b18
  article-title: Automated EEG analysis of epilepsy: A review
  publication-title: Knowl.-Based Syst.
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: b33
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 86
  year: 2012
  ident: b5
  article-title: Nonrandomness, nonlinear dependence and nonstationarity of electroencephalographic recordings from epilepsy patients
  publication-title: Phys. Rev. E
– volume: 19
  start-page: 6
  year: 2018
  end-page: 24
  ident: b68
  article-title: Towards precision medicine: from quantitative imaging to radiomics
  publication-title: J. Zhejiang Univ. Sci. B
– volume: 118
  start-page: 217
  year: 2017
  end-page: 227
  ident: b8
  article-title: An automatic detection of focal EEG signals using new class of time-frequency localized orthogonal wavelet filter banks
  publication-title: Knowl.-Based Syst.
– volume: 164
  start-page: 3
  year: 2008
  end-page: 12
  ident: b40
  article-title: A historical review of recurrence plots
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 48
  start-page: 441
  year: 2012
  end-page: 446
  ident: b67
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer
– volume: 88
  year: 2002
  ident: b31
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b48
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 77
  start-page: 457
  year: 2010
  end-page: 467
  ident: b3
  article-title: Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies
  publication-title: Cleveland Clin. J. Med.
– volume: 49
  start-page: 1685
  year: 1994
  end-page: 1689
  ident: b19
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E
– volume: 438
  start-page: 237
  year: 2007
  end-page: 329
  ident: b41
  article-title: Recurrence plots for the analysis of complex systems
  publication-title: Phys. Rep.
– reference: A. Renyi, On measures of entropy and information, in: Fourth Berkeley Symposium, 1961.
– reference: H.L. Weiner, J.I. Sirven, Epilepsy Foundation, 25 2013. [Online]. Available:
– year: 2017
  ident: b62
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 1
  year: 2010
  end-page: 19
  ident: b45
  article-title: Teaching rank-based tests by emphasizing structural similarities to corresponding parametric tests
  publication-title: J. Stat. Educ.
– reference: . (Accessed 23 2018).
– volume: 171
  start-page: 199
  year: 1992
  end-page: 203
  ident: b38
  article-title: Embeddings and delays as derived from quantification of recurrence plots
  publication-title: Phys. Lett. A
– volume: 88
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: b23
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 65
  year: 2001
  end-page: 75
  ident: b30
  article-title: Wavelet entropy:a new tool for analysis of short duration brain electrical signals
  publication-title: J. Neurosci. Methods
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: b61
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
– reference: World Health Organization, World Health Organization, 08 02 2018. [Online]. Available:
– volume: 23
  start-page: 337
  year: 1977
  end-page: 343
  ident: b37
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans. Inform. Theory
– volume: 392
  start-page: 5865
  year: 2013
  end-page: 5873
  ident: b21
  article-title: Modified multiscale entropy for short-term time series analysis
  publication-title: Physica A
– volume: 207
  start-page: 387
  year: 1998
  end-page: 395
  ident: b35
  article-title: On tables of random numbers
  publication-title: Theoret. Comput. Sci.
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: b46
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Amer. Statist. Assoc.
– volume: 29
  start-page: 47
  year: 2018
  end-page: 57
  ident: b14
  article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform
  publication-title: Neural Comput. Appl.
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: b36
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D
– volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: b20
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 1
  year: 1908
  end-page: 25
  ident: b42
  article-title: The probable error of a mean
  publication-title: Biometrika
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b51
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Royal Soc.
– reference: N. Kingsbury, The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters, in: Proceedings of the 8th IEEE Digital Signal Processing Workshop, Utah, 1998.
– reference: . (Accessed 12 July 2018).
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: b64
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: b65
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
– volume: 278
  start-page: 2039
  year: 2000
  end-page: 2049
  ident: b22
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. - Heart Circ. Physiol.
– year: 1983
  ident: b32
  article-title: Geometry of Nature
– reference: A. Graves, A. Mohamed, G.E. Hinton, Speech recognition with deep recurrent neural networks, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013.
– volume: 40
  start-page: 165
  year: 1986
  end-page: 174
  ident: b24
  article-title: Fuzzy entropy and conditioning
  publication-title: Inform. Sci.
– volume: 26
  start-page: 277
  year: 2016
  end-page: 283
  ident: b9
  article-title: Classification of focal and nonfocal EEG signals using ANFIS classifier for epilepsy detection
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 5
  start-page: 519
  year: 1956
  end-page: 543
  ident: b34
  article-title: Methods of using long-term storage in reservoirs
  publication-title: Proc. Inst. Civ. Eng.
– volume: 46
  start-page: 470
  year: 2005
  end-page: 472
  ident: b1
  article-title: Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE)
  publication-title: Epilepsia
– volume: 15
  start-page: 52
  year: 1967
  end-page: 60
  ident: b44
  article-title: The divergence and Bhattacharyya distance measures in signal selection
  publication-title: IEEE Trans. Commun. Technol.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: b57
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 32
  start-page: 1025
  year: 2017
  end-page: 1046
  ident: b60
  article-title: Structural damage detection with automatic feature-extraction through deep learning
  publication-title: Comput. Aided Civ. Itexnfrastruct. Eng.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: b63
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 61
  start-page: 1131
  year: 2013
  end-page: 1142
  ident: b56
  article-title: An analytic wavelet transform with a flexible time-frequency covering
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: b52
  article-title: A theory for multi-resolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 52
  start-page: 479
  year: 1988
  end-page: 487
  ident: b29
  article-title: Possible generalization of Boltzmann–Gibbs statistics
  publication-title: J. Stat. Phys.
– volume: 87
  start-page: 127
  year: 2018
  end-page: 135
  ident: b66
  article-title: Age-related macular degeneration detection using deep convolutional neural network
  publication-title: Future Gener. Comput. Syst.
– volume: 94
  start-page: 180
  year: 2017
  end-page: 188
  ident: b12
  article-title: Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform
  publication-title: Pattern Recognit. Lett.
– volume: 10
  start-page: 10
  year: 1993
  end-page: 37
  ident: b28
  article-title: Higher-order spectra analysis
  publication-title: IEEE Signal Process. Mag.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012.
– volume: 41
  start-page: 160
  year: 2017
  ident: b15
  article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier
  publication-title: J. Med. Syst.
– volume: 17
  start-page: 5218
  year: 2015
  end-page: 5240
  ident: b7
  article-title: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures
  publication-title: Entropy
– volume: 94
  start-page: 112
  year: 2017
  end-page: 117
  ident: b16
  article-title: Classification of focal and non focal EEG using entropies
  publication-title: Pattern Recognit. Lett.
– volume: 4
  start-page: 973
  year: 1987
  ident: b39
  article-title: Recurrence plots of dynamical systems
  publication-title: Europhys. Lett.
– volume: 119
  start-page: 861
  year: 1958
  end-page: 864
  ident: b25
  article-title: New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces
  publication-title: Dokl. Russian Acad. Sci.
– volume: 40
  start-page: 2207
  year: 1992
  end-page: 2232
  ident: b54
  article-title: Wavelets and filter banks: theory and design
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b47
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 20
  start-page: 52
  year: 2017
  end-page: 60
  ident: b11
  article-title: Decision support system for focal EEG signals using tunable-Q wavelet transform
  publication-title: J. Comput. Sci.
– volume: 29
  start-page: 11
  year: 2016
  end-page: 21
  ident: b10
  article-title: Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain
  publication-title: Biomed. Signal Process. Control
– year: 1995
  ident: b50
  article-title: Instance-Based Learning: Nearest Neighbor with Generalization
– volume: 19
  start-page: 99
  year: 2017
  ident: b13
  article-title: Tunable-Q wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis
  publication-title: Entropy
– reference: R.J. Hyndman, G. Athanasopoulos, 8.1 Stationarity and differencing, in: Forecasting: Principles and practices, Melbourne, Australia, OTexts, 2013.
– volume: 59
  start-page: 3560
  year: 2011
  end-page: 3575
  ident: b55
  article-title: Wavelet transform with tunable Q-factor
  publication-title: IEEE Trans. Signal Process.
– start-page: 163
  year: 2003
  end-page: 205
  ident: b43
  article-title: Feature selection
  publication-title: Pattern recognition
– volume: 17
  start-page: 669
  year: 2015
  end-page: 691
  ident: b6
  article-title: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
  publication-title: Entropy
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: b27
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b49
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 94
  start-page: 112
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b16
  article-title: Classification of focal and non focal EEG using entropies
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.05.007
– volume: 41
  start-page: 160
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b15
  article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0800-x
– volume: 11
  start-page: 674
  issue: 7
  year: 1989
  ident: 10.1016/j.future.2018.08.044_b52
  article-title: A theory for multi-resolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– volume: 23
  start-page: 337
  year: 1977
  ident: 10.1016/j.future.2018.08.044_b37
  article-title: A universal algorithm for sequential data compression
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1977.1055714
– start-page: 163
  year: 2003
  ident: 10.1016/j.future.2018.08.044_b43
  article-title: Feature selection
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  ident: 10.1016/j.future.2018.08.044_b46
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1952.10483441
– ident: 10.1016/j.future.2018.08.044_b4
– volume: 118
  start-page: 217
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b8
  article-title: An automatic detection of focal EEG signals using new class of time-frequency localized orthogonal wavelet filter banks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.11.024
– volume: 29
  start-page: 306
  year: 1970
  ident: 10.1016/j.future.2018.08.044_b33
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– volume: 17
  start-page: 669
  year: 2015
  ident: 10.1016/j.future.2018.08.044_b6
  article-title: Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals
  publication-title: Entropy
  doi: 10.3390/e17020669
– volume: 171
  start-page: 199
  issue: 3–4
  year: 1992
  ident: 10.1016/j.future.2018.08.044_b38
  article-title: Embeddings and delays as derived from quantification of recurrence plots
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)90426-M
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b63
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 61
  start-page: 1131
  issue: 5
  year: 2013
  ident: 10.1016/j.future.2018.08.044_b56
  article-title: An analytic wavelet transform with a flexible time-frequency covering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2232655
– volume: 46
  start-page: 470
  issue: 4
  year: 2005
  ident: 10.1016/j.future.2018.08.044_b1
  article-title: Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE)
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.66104.x
– volume: 10
  start-page: 10
  issue: 3
  year: 1993
  ident: 10.1016/j.future.2018.08.044_b28
  article-title: Higher-order spectra analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.221324
– volume: 19
  start-page: 6
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2018.08.044_b68
  article-title: Towards precision medicine: from quantitative imaging to radiomics
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1700260
– volume: 77
  start-page: 457
  issue: 7
  year: 2010
  ident: 10.1016/j.future.2018.08.044_b3
  article-title: Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies
  publication-title: Cleveland Clin. J. Med.
  doi: 10.3949/ccjm.77a.09061
– volume: 45
  start-page: 147
  year: 2013
  ident: 10.1016/j.future.2018.08.044_b18
  article-title: Automated EEG analysis of epilepsy: A review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.02.014
– volume: 49
  start-page: 1685
  issue: 2
  year: 1994
  ident: 10.1016/j.future.2018.08.044_b19
  article-title: Mosaic organization of DNA nucleotides
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.1685
– year: 2017
  ident: 10.1016/j.future.2018.08.044_b62
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 5
  start-page: 519
  issue: 5
  year: 1956
  ident: 10.1016/j.future.2018.08.044_b34
  article-title: Methods of using long-term storage in reservoirs
  publication-title: Proc. Inst. Civ. Eng.
– volume: 161
  start-page: 103
  year: 2018
  ident: 10.1016/j.future.2018.08.044_b61
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 15
  start-page: 52
  year: 1967
  ident: 10.1016/j.future.2018.08.044_b44
  article-title: The divergence and Bhattacharyya distance measures in signal selection
  publication-title: IEEE Trans. Commun. Technol.
  doi: 10.1109/TCOM.1967.1089532
– volume: 88
  issue: 17
  year: 2002
  ident: 10.1016/j.future.2018.08.044_b31
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 88
  start-page: 85
  year: 2015
  ident: 10.1016/j.future.2018.08.044_b20
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– volume: 40
  start-page: 165
  issue: 2
  year: 1986
  ident: 10.1016/j.future.2018.08.044_b24
  article-title: Fuzzy entropy and conditioning
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(86)90006-X
– volume: 86
  year: 2012
  ident: 10.1016/j.future.2018.08.044_b5
  article-title: Nonrandomness, nonlinear dependence and nonstationarity of electroencephalographic recordings from epilepsy patients
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.046206
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.future.2018.08.044_b49
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 40
  start-page: 2207
  issue: 9
  year: 1992
  ident: 10.1016/j.future.2018.08.044_b54
  article-title: Wavelets and filter banks: theory and design
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.157221
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.future.2018.08.044_b47
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– year: 1995
  ident: 10.1016/j.future.2018.08.044_b50
– volume: 94
  start-page: 180
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b12
  article-title: Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.03.017
– volume: 87
  start-page: 127
  year: 2018
  ident: 10.1016/j.future.2018.08.044_b66
  article-title: Age-related macular degeneration detection using deep convolutional neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.001
– volume: 18
  start-page: 1
  year: 2010
  ident: 10.1016/j.future.2018.08.044_b45
  article-title: Teaching rank-based tests by emphasizing structural similarities to corresponding parametric tests
  publication-title: J. Stat. Educ.
  doi: 10.1080/10691898.2010.11889471
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.future.2018.08.044_b36
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90009-P
– year: 1983
  ident: 10.1016/j.future.2018.08.044_b32
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b60
  article-title: Structural damage detection with automatic feature-extraction through deep learning
  publication-title: Comput. Aided Civ. Itexnfrastruct. Eng.
  doi: 10.1111/mice.12313
– ident: 10.1016/j.future.2018.08.044_b53
– ident: 10.1016/j.future.2018.08.044_b59
– volume: 4
  start-page: 973
  issue: 9
  year: 1987
  ident: 10.1016/j.future.2018.08.044_b39
  article-title: Recurrence plots of dynamical systems
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/4/9/004
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.future.2018.08.044_b48
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– volume: 88
  start-page: 2297
  year: 1991
  ident: 10.1016/j.future.2018.08.044_b23
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.6.2297
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  ident: 10.1016/j.future.2018.08.044_b67
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2011.11.036
– ident: 10.1016/j.future.2018.08.044_b2
– ident: 10.1016/j.future.2018.08.044_b26
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.future.2018.08.044_b51
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Royal Soc.
  doi: 10.1098/rspa.1998.0193
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 10.1016/j.future.2018.08.044_b57
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2265222
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.future.2018.08.044_b27
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 52
  start-page: 479
  issue: 1–2
  year: 1988
  ident: 10.1016/j.future.2018.08.044_b29
  article-title: Possible generalization of Boltzmann–Gibbs statistics
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01016429
– volume: 29
  start-page: 47
  issue: 8
  year: 2018
  ident: 10.1016/j.future.2018.08.044_b14
  article-title: A novel approach for automated detection of focal EEG signals using empirical wavelet transform
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2646-4
– volume: 207
  start-page: 387
  issue: 2
  year: 1998
  ident: 10.1016/j.future.2018.08.044_b35
  article-title: On tables of random numbers
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00075-9
– volume: 105
  start-page: 65
  year: 2001
  ident: 10.1016/j.future.2018.08.044_b30
  article-title: Wavelet entropy:a new tool for analysis of short duration brain electrical signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(00)00356-3
– volume: 164
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.future.2018.08.044_b40
  article-title: A historical review of recurrence plots
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2008-00829-1
– volume: 392
  start-page: 5865
  year: 2013
  ident: 10.1016/j.future.2018.08.044_b21
  article-title: Modified multiscale entropy for short-term time series analysis
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.07.075
– volume: 19
  start-page: 99
  issue: 3
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b13
  article-title: Tunable-Q wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis
  publication-title: Entropy
  doi: 10.3390/e19030099
– volume: 20
  start-page: 52
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b11
  article-title: Decision support system for focal EEG signals using tunable-Q wavelet transform
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.03.022
– volume: 26
  start-page: 277
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2018.08.044_b9
  article-title: Classification of focal and nonfocal EEG signals using ANFIS classifier for epilepsy detection
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22199
– volume: 278
  start-page: 2039
  issue: 6
  year: 2000
  ident: 10.1016/j.future.2018.08.044_b22
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. - Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 119
  start-page: 861
  year: 1958
  ident: 10.1016/j.future.2018.08.044_b25
  article-title: New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces
  publication-title: Dokl. Russian Acad. Sci.
– volume: 17
  start-page: 5218
  year: 2015
  ident: 10.1016/j.future.2018.08.044_b7
  article-title: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures
  publication-title: Entropy
  doi: 10.3390/e17085218
– volume: 438
  start-page: 237
  issue: 5–6
  year: 2007
  ident: 10.1016/j.future.2018.08.044_b41
  article-title: Recurrence plots for the analysis of complex systems
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.11.001
– volume: 29
  start-page: 11
  year: 2016
  ident: 10.1016/j.future.2018.08.044_b10
  article-title: Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.05.004
– ident: 10.1016/j.future.2018.08.044_b17
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b65
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.future.2018.08.044_b64
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: 10.1016/j.future.2018.08.044_b58
  doi: 10.1109/ICASSP.2013.6638947
– volume: 6
  start-page: 1
  issue: 1
  year: 1908
  ident: 10.1016/j.future.2018.08.044_b42
  article-title: The probable error of a mean
  publication-title: Biometrika
  doi: 10.2307/2331554
– volume: 59
  start-page: 3560
  issue: 8
  year: 2011
  ident: 10.1016/j.future.2018.08.044_b55
  article-title: Wavelet transform with tunable Q-factor
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2143711
SSID ssj0001731
Score 2.607496
SecondaryResourceType review_article
Snippet Epilepsy is a common neurological condition that can occur in anyone at any age. Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 290
SubjectTerms Computer-aided detection system
Electroencephalogram signals
Epilepsy
Focal
Non-focal
Title Characterization of focal EEG signals: A review
URI https://dx.doi.org/10.1016/j.future.2018.08.044
Volume 91
WOSCitedRecordID wos000451790900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF7R0EMvQGkrAqXaA7fIadZee2NuEQqUCqGqQJWerM0-IGllIie0gV_f2Yc3PCoKh16syLI39s5o5vPuzPchtEOHnFKpRKQ570RUcBIBqBcRSzUkQEiIyqo1fDtix8fdwSD_4rcLplZOgJVldz7PJ__V1HAOjG1aZ59h7jAonIDfYHQ4gtnh-CTD7wUK5psAB7XJWK1-_6Bl6jXgEVxDerXYGKiVOi3FiNFVVt41hJd98JzPAYL3TL_WtYWeZ-3WVz5Wpaz4IqCdj35zq2HU-n71YxTwsppeTMy6tasIKstr8MWa_dvuTVUuDp60b69HmBaoUNvhlygh9LLECuSGGOsUueog6QRCfb6NnUDSg1DuVhXGbcetYorwupZs1dFF3mXOvpfRQp1hXcI2LtwohRmlMLqblL5AyzFLc4iEy73D_uBzyN-EeRVL_x51w6WtCnz4NH8HNLdAyukaWvFfF7jnvOI1WlLlOlqtlTuwD-Rv0Mf7ToIvNbZOgsFJsHeSXdzDzkXeorP9_unep8hLZ0QiYfEsIipWokspo0qwodCZUEPDZJhqIuJcAEqVkhMuiIQ5iDPNtCRZJrNEyVwbksV3qFFelmoD4bgjSCrNhzug7Y40hI80lTQBKJqTWMkmSur3L4TnlTfyJj-Lx2a_iaJw18TxqvzjelZPbeGxocN8BfjLo3duPvOfttCrhVu_R41ZdaW20UvxazaaVh-8s_wBhjiGgw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+focal+EEG+signals%3A+A+review&rft.jtitle=Future+generation+computer+systems&rft.au=Acharya%2C+U.+Rajendra&rft.au=Hagiwara%2C+Yuki&rft.au=Deshpande%2C+Sunny+Nitin&rft.au=Suren%2C+S.&rft.date=2019-02-01&rft.issn=0167-739X&rft.volume=91&rft.spage=290&rft.epage=299&rft_id=info:doi/10.1016%2Fj.future.2018.08.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2018_08_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon