Musculoskeletal Inverse Kinematics Tool for Inertial Motion Capture Data Based on the Adaptive Unscented Kalman Smoother: An Implementation for OpenSim

Purpose Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT—a tool for whole-body kinematics estimation in the Bayesian fr...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering Vol. 53; no. 11; pp. 2966 - 2982
Main Authors: Kortelainen, Matti J., Vartiainen, Paavo, Beattie, Alexander, Lavikainen, Jere, Karjalainen, Pasi A.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Subjects:
ISSN:0090-6964, 1573-9686, 1573-9686
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT—a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings. Methods We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim. Results AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8–1.9%), the velocities of six joints (0.7- - 7.6%), and the accelerations of seven joints (3.0–13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3–7.6%), and the velocities of three joints (4.4–8.3%). Conclusion With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.
AbstractList PurposeConventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT—a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings.MethodsWe implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim.ResultsAUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8–1.9%), the velocities of six joints (0.7--7.6%), and the accelerations of seven joints (3.0–13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3–7.6%), and the velocities of three joints (4.4–8.3%).ConclusionWith respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.
Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT-a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings.PURPOSEConventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT-a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings.We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim.METHODSWe implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim.AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8-1.9%), the velocities of six joints (0.7- - 7.6%), and the accelerations of seven joints (3.0-13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3-7.6%), and the velocities of three joints (4.4-8.3%).RESULTSAUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8-1.9%), the velocities of six joints (0.7- - 7.6%), and the accelerations of seven joints (3.0-13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3-7.6%), and the velocities of three joints (4.4-8.3%).With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.CONCLUSIONWith respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.
Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT-a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings. We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim. AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8-1.9%), the velocities of six joints (0.7- 7.6%), and the accelerations of seven joints (3.0-13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3-7.6%), and the velocities of three joints (4.4-8.3%). With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.
Purpose Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no estimate for the uncertainty of their solutions. This paper presents AUKSMIKT—a tool for whole-body kinematics estimation in the Bayesian framework to account for these shortcomings. Methods We implemented AUKSMIKT as a C++ class that extends the OpenSim (v4.5) application programming interface. AUKSMIKT is based on the unscented Kalman filter combined with a run-time estimator of process and observation noises, and a fixed-lag Rauch-Tung-Striebel smoother. We tested the performance of AUKSMIKT using data from a public dataset consisting of both optical and inertial motion capture data recorded from overground walking subjects. We computed the mean absolute errors of estimated angular positions, velocities, and accelerations with respect to the gold standard optical motion capture estimates, and compared these metrics to those obtained from the least squares estimation-based tool native to OpenSim. Results AUKSMIKT produced smaller errors than the native tool for the angular position of three joints (0.8–1.9%), the velocities of six joints (0.7- - 7.6%), and the accelerations of seven joints (3.0–13.7%). AUKSMIKT produced larger errors in the angular positions of five joints (1.3–7.6%), and the velocities of three joints (4.4–8.3%). Conclusion With respect to the optical motion capture solution, AUKSMIKT can estimate lower-body kinematics from inertial motion capture data with comparable or higher accuracy than the native OpenSim least squares estimator.
Author Karjalainen, Pasi A.
Vartiainen, Paavo
Kortelainen, Matti J.
Lavikainen, Jere
Beattie, Alexander
Author_xml – sequence: 1
  givenname: Matti J.
  orcidid: 0000-0002-6873-0531
  surname: Kortelainen
  fullname: Kortelainen, Matti J.
  email: matti.kortelainen@uef.fi
  organization: Department of Technical Physics, University of Eastern Finland
– sequence: 2
  givenname: Paavo
  orcidid: 0000-0003-0974-0913
  surname: Vartiainen
  fullname: Vartiainen, Paavo
  organization: Department of Technical Physics, University of Eastern Finland
– sequence: 3
  givenname: Alexander
  orcidid: 0009-0005-7639-1102
  surname: Beattie
  fullname: Beattie, Alexander
  organization: Department of Technical Physics, University of Eastern Finland
– sequence: 4
  givenname: Jere
  orcidid: 0000-0002-7636-8229
  surname: Lavikainen
  fullname: Lavikainen, Jere
  organization: Department of Technical Physics, University of Eastern Finland, PSHVA Research Services, Kuopio University Hospital, Wellbeing Services County of North Savo
– sequence: 5
  givenname: Pasi A.
  orcidid: 0000-0002-1267-493X
  surname: Karjalainen
  fullname: Karjalainen, Pasi A.
  organization: Department of Technical Physics, University of Eastern Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40721566$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFF2CBLLFhE_BP7MTshuFv1FZdtF1bHucGUhI72E5VnoTX5bZTQGLBypLPd8-9OueIHIQYgJDnnL3mjDVvMme1NBUTqmKyZU11-4isuGpkZXSrD8iKMcMqbXR9SI5yvmaM81aqJ-SwZo3gSusV-Xm2ZL-MMX-DEYob6TbcQMpAT4YAkyuDz_QyxpH2MaEGqQwIncUyxEA3bi5LAvreFUffuQwdxd_yFei6Q2m4AXoVsodQUDlx4-QCvZhiRCK9petAt9M8woS6u_e723E-Q7gYpqfkce_GDM8e3mNy9fHD5eZzdXr-abtZn1ZeNqJU3Ddsp4xrfbtTspZdb3wvegFeK9U1GEYjvdvxGlxbawGACYi27jsNsvOml8fk1d53TvH7ArnYacCLx9EFiEu2UqArM4bXiL78B72OSwp4HVK6UbVCb6RePFDLboLOzmmYXPphf0eOgNgDPsWcE_R_EM7sXa9236vFXu19r_YWh-R-KCMcvkD6u_s_U78AsSynBQ
Cites_doi 10.1109/TAC.1972.1100100
10.1109/ACC.2005.1470611
10.1016/j.gaitpost.2014.10.025
10.1186/s12984-022-01001-x
10.1016/S0966-6362(96)01088-0
10.1007/s11044-023-09938-0
10.1109/TBME.2016.2523512
10.1016/j.compchemeng.2009.01.012
10.1080/00140139.2015.1079335
10.5281/zenodo.10559504
10.1145/195784.197480
10.1109/TBME.2022.3156018
10.2514/3.3166
10.1016/j.gaitpost.2004.05.002
10.1007/s10439-014-1181-7
10.1186/s12891-019-2416-4
10.1038/s41598-025-89716-4
10.1016/j.gaitpost.2020.10.026
10.1007/978-3-031-23824-6
10.1109/TBME.2016.2586891
10.1016/j.jbiomech.2008.09.035
10.1016/j.jbiomech.2014.12.049
10.1002/0470045345
10.1016/j.ymssp.2020.106837
10.1109/ICIEA.2009.5138274
10.1109/TBME.2014.2318354
10.1016/j.jelekin.2018.06.009
10.1016/j.gaitpost.2007.07.012
10.1016/j.gaitpost.2012.01.016
10.3233/NRE-130928
10.3109/03093646.2010.485597
10.3390/s21051804
10.1109/ASSPCC.2000.882463
10.1016/j.jbiomech.2016.12.027
10.1371/journal.pcbi.1006223
10.1016/j.ymssp.2019.07.021
10.1016/j.mechmachtheory.2012.07.010
10.1016/j.pmr.2018.12.012
10.1016/0141-1195(86)90098-7
10.1145/3272127.3275108
10.1049/iet-spr.2012.0330
10.1016/j.dib.2024.110841
10.1109/JSEN.2022.3225931
10.1017/CBO9781139344203
10.1016/j.jbiomech.2015.09.021
10.1371/journal.pone.0276302
10.1016/j.jelekin.2017.09.004
10.1016/j.bspc.2007.09.001
10.1080/00207728908910103
10.1109/TBME.2015.2403368
10.3389/fbioe.2022.874725
10.1016/j.gaitpost.2021.10.024
10.1007/978-3-319-39904-1_31
10.1109/JPROC.2003.823141
10.1109/TAC.2008.919531
10.1038/s41598-023-31906-z
10.1152/jn.01042.2012
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1007/s10439-025-03807-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 2982
ExternalDocumentID 40721566
10_1007_s10439_025_03807_x
Genre Journal Article
GrantInformation_xml – fundername: Research Council of Finland
  grantid: 349469
– fundername: Biocenter Kuopio
– fundername: University of Eastern Finland (including Kuopio University Hospital)
– fundername: Finnish Ministry of Education and Culture’s Pilot for Doctoral Programs (Pilot project Mathematics of Sensing, Imaging and Modeling)
– fundername: State Research Funding for university- level health research, Kuopio University Hospital, Wellbeing services county of North Savo
  grantid: 5041814
GroupedDBID ---
-DZ
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
AAYZH
ID FETCH-LOGICAL-c372t-1c70b59a8c8b5343df9cf2f2ec655d715773cab14ea8462ee118284fd6e3dc9f3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001537782200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6964
1573-9686
IngestDate Fri Sep 05 15:33:26 EDT 2025
Wed Nov 05 14:54:31 EST 2025
Mon Nov 03 02:00:23 EST 2025
Sat Nov 29 07:00:14 EST 2025
Sat Nov 01 10:34:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Inertial sensors
Motion estimation
Kalman filters
Open source software
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-1c70b59a8c8b5343df9cf2f2ec655d715773cab14ea8462ee118284fd6e3dc9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6873-0531
0000-0002-1267-493X
0009-0005-7639-1102
0000-0003-0974-0913
0000-0002-7636-8229
OpenAccessLink https://link.springer.com/10.1007/s10439-025-03807-x
PMID 40721566
PQID 3267545182
PQPubID 54090
PageCount 17
ParticipantIDs proquest_miscellaneous_3234309914
proquest_journals_3267545182
pubmed_primary_40721566
crossref_primary_10_1007_s10439_025_03807_x
springer_journals_10_1007_s10439_025_03807_x
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References D Calvetti (3807_CR8) 2023
3807_CR38
C Pizzolato (3807_CR6) 2015; 48
M Zago (3807_CR17) 2018; 42
U Lugrís (3807_CR51) 2023; 60
RM Asl (3807_CR24) 2019; 132
Y Huang (3807_CR41) 2016; 63
RA Resende (3807_CR49) 2015; 41
TK Uchida (3807_CR59) 2022; 10
JC Hart (3807_CR29) 1994; 13
OA Kannape (3807_CR55) 2013; 110
S Kolås (3807_CR63) 2009; 33
J Lavikainen (3807_CR32) 2024; 56
D Simon (3807_CR20) 2006
F De Groote (3807_CR9) 2008; 41
Y Huang (3807_CR44) 2018; 37
R Zügner (3807_CR18) 2019; 20
BC Conner (3807_CR3) 2022; 91
E Owen (3807_CR42) 2010; 34
L Chang (3807_CR54) 2013; 7
3807_CR47
S Särkkä (3807_CR11) 2013
S Särkkä (3807_CR26) 2008; 53
R Riemer (3807_CR57) 2008; 27
D Stanev (3807_CR56) 2021; 21
V Hernandez (3807_CR43) 2021; 83
R Pàmies-Vilà (3807_CR58) 2012; 58
3807_CR52
SM Moghadam (3807_CR46) 2023; 13
HJ Woltring (3807_CR36) 1986; 8
A Leardini (3807_CR40) 2005; 21
P Vartiainen (3807_CR12) 2014; 61
M Al Borno (3807_CR37) 2022; 19
V Bonnet (3807_CR13) 2017; 62
3807_CR19
A Seth (3807_CR5) 2018; 14
A Rajagopal (3807_CR33) 2016; 63
J Lavikainen (3807_CR31) 2024
ZF Lerner (3807_CR34) 2015; 48
K Park (3807_CR48) 2012; 36
SJ Julier (3807_CR53) 2004; 92
M Cortes (3807_CR4) 2013; 33
MC Schall Jr (3807_CR16) 2016; 59
3807_CR62
M Song (3807_CR22) 2020; 143
3807_CR61
3807_CR60
3807_CR23
RK Mehra (3807_CR21) 1972; 17
A Esquenazi (3807_CR2) 2019; 30
B Hur (3807_CR45) 2025; 15
A Esrafilian (3807_CR35) 2022; 69
S Fioretti (3807_CR27) 1989; 20
H Zhou (3807_CR1) 2007; 3
E Bernardes (3807_CR28) 2022; 17
M El-Gohary (3807_CR15) 2015; 62
Y Koshino (3807_CR50) 2017; 37
CA Myers (3807_CR7) 2014; 43
3807_CR30
JP Holden (3807_CR39) 1997; 5
HE Rauch (3807_CR10) 1965; 3
L Truppa (3807_CR14) 2023; 23
YS Shmaliy (3807_CR25) 2017; 37
References_xml – volume: 17
  start-page: 693
  issue: 5
  year: 1972
  ident: 3807_CR21
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1972.1100100
– ident: 3807_CR52
  doi: 10.1109/ACC.2005.1470611
– volume: 41
  start-page: 395
  issue: 2
  year: 2015
  ident: 3807_CR49
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2014.10.025
– volume: 19
  start-page: 22, 1–11
  year: 2022
  ident: 3807_CR37
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-022-01001-x
– volume: 5
  start-page: 217
  issue: 3
  year: 1997
  ident: 3807_CR39
  publication-title: Gait & Posture
  doi: 10.1016/S0966-6362(96)01088-0
– volume: 60
  start-page: 3
  issue: 1
  year: 2023
  ident: 3807_CR51
  publication-title: Multibody Syst.Dyn.
  doi: 10.1007/s11044-023-09938-0
– volume: 63
  start-page: 2278
  issue: 11
  year: 2016
  ident: 3807_CR41
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2523512
– ident: 3807_CR61
– volume: 33
  start-page: 1386
  issue: 8
  year: 2009
  ident: 3807_CR63
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.01.012
– volume: 59
  start-page: 591
  year: 2016
  ident: 3807_CR16
  publication-title: Ergonomics
  doi: 10.1080/00140139.2015.1079335
– year: 2024
  ident: 3807_CR31
  publication-title: Zenodo
  doi: 10.5281/zenodo.10559504
– volume: 13
  start-page: 256
  year: 1994
  ident: 3807_CR29
  publication-title: ACM Trans. Graph.
  doi: 10.1145/195784.197480
– volume: 69
  start-page: 2860
  year: 2022
  ident: 3807_CR35
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3156018
– volume: 37
  start-page: 70
  year: 2017
  ident: 3807_CR25
  publication-title: IEEE Control Syst. Mag.
– volume: 3
  start-page: 1445
  year: 1965
  ident: 3807_CR10
  publication-title: AIAA J.
  doi: 10.2514/3.3166
– volume: 21
  start-page: 212
  issue: 2
  year: 2005
  ident: 3807_CR40
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– volume: 43
  start-page: 1098
  year: 2014
  ident: 3807_CR7
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1181-7
– volume: 20
  start-page: 1
  year: 2019
  ident: 3807_CR18
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-019-2416-4
– volume: 15
  start-page: 5287
  issue: 1
  year: 2025
  ident: 3807_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-89716-4
– ident: 3807_CR62
– volume: 83
  start-page: 185
  year: 2021
  ident: 3807_CR43
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2020.10.026
– volume-title: Bayesian Scientific Computing
  year: 2023
  ident: 3807_CR8
  doi: 10.1007/978-3-031-23824-6
– volume: 63
  start-page: 2068
  issue: 10
  year: 2016
  ident: 3807_CR33
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2586891
– volume: 41
  start-page: 3390
  year: 2008
  ident: 3807_CR9
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.09.035
– volume: 48
  start-page: 644
  issue: 4
  year: 2015
  ident: 3807_CR34
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.049
– volume-title: Optimal State Estimation: Kalman, $$\text{H}_{\infty }$$, and Nonlinear Approaches
  year: 2006
  ident: 3807_CR20
  doi: 10.1002/0470045345
– volume: 143
  year: 2020
  ident: 3807_CR22
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106837
– ident: 3807_CR23
  doi: 10.1109/ICIEA.2009.5138274
– volume: 61
  start-page: 2167
  year: 2014
  ident: 3807_CR12
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2318354
– volume: 42
  start-page: 44
  year: 2018
  ident: 3807_CR17
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2018.06.009
– volume: 27
  start-page: 578
  issue: 4
  year: 2008
  ident: 3807_CR57
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2007.07.012
– volume: 36
  start-page: 120
  issue: 1
  year: 2012
  ident: 3807_CR48
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2012.01.016
– volume: 33
  start-page: 57
  year: 2013
  ident: 3807_CR4
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-130928
– volume: 34
  start-page: 254
  issue: 3
  year: 2010
  ident: 3807_CR42
  publication-title: Prosthet. Orthot. Int.
  doi: 10.3109/03093646.2010.485597
– volume: 21
  start-page: 1804
  issue: 5
  year: 2021
  ident: 3807_CR56
  publication-title: Sensors
  doi: 10.3390/s21051804
– ident: 3807_CR19
  doi: 10.1109/ASSPCC.2000.882463
– volume: 62
  start-page: 140
  year: 2017
  ident: 3807_CR13
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.12.027
– volume: 14
  start-page: 1
  year: 2018
  ident: 3807_CR5
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006223
– volume: 132
  start-page: 670
  year: 2019
  ident: 3807_CR24
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.07.021
– volume: 58
  start-page: 153
  year: 2012
  ident: 3807_CR58
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.07.010
– volume: 30
  start-page: 385
  year: 2019
  ident: 3807_CR2
  publication-title: Phys. Med. Rehabil. Clin. N. Am.
  doi: 10.1016/j.pmr.2018.12.012
– volume: 8
  start-page: 104
  year: 1986
  ident: 3807_CR36
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/0141-1195(86)90098-7
– volume: 37
  start-page: 1
  issue: 6
  year: 2018
  ident: 3807_CR44
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3272127.3275108
– volume: 7
  start-page: 167
  issue: 3
  year: 2013
  ident: 3807_CR54
  publication-title: IET Signal Proc.
  doi: 10.1049/iet-spr.2012.0330
– ident: 3807_CR30
– volume: 56
  start-page: 110841
  year: 2024
  ident: 3807_CR32
  publication-title: Data Brief
  doi: 10.1016/j.dib.2024.110841
– volume: 23
  start-page: 3212
  year: 2023
  ident: 3807_CR14
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3225931
– ident: 3807_CR38
– volume-title: Bayesian Filtering and Smoothing
  year: 2013
  ident: 3807_CR11
  doi: 10.1017/CBO9781139344203
– volume: 48
  start-page: 3929
  year: 2015
  ident: 3807_CR6
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.021
– volume: 17
  start-page: e0276302, 1–13
  issue: 11
  year: 2022
  ident: 3807_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0276302
– volume: 37
  start-page: 75
  year: 2017
  ident: 3807_CR50
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2017.09.004
– volume: 3
  start-page: 1
  year: 2007
  ident: 3807_CR1
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.09.001
– volume: 20
  start-page: 33
  year: 1989
  ident: 3807_CR27
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207728908910103
– volume: 62
  start-page: 1759
  issue: 7
  year: 2015
  ident: 3807_CR15
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2403368
– volume: 10
  start-page: 1
  year: 2022
  ident: 3807_CR59
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.874725
– volume: 91
  start-page: 165
  year: 2022
  ident: 3807_CR3
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2021.10.024
– ident: 3807_CR47
– ident: 3807_CR60
  doi: 10.1007/978-3-319-39904-1_31
– volume: 92
  start-page: 401
  year: 2004
  ident: 3807_CR53
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.823141
– volume: 53
  start-page: 845
  year: 2008
  ident: 3807_CR26
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.919531
– volume: 13
  start-page: 5046
  issue: 1
  year: 2023
  ident: 3807_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31906-z
– volume: 110
  start-page: 1837
  year: 2013
  ident: 3807_CR55
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01042.2012
SSID ssj0011835
Score 2.463359
Snippet Purpose Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no...
Conventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no...
PurposeConventional tools for human kinematics estimation presume that observations are subject to uncorrelated, zero-mean Gaussian noise, and they provide no...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2966
SubjectTerms Adult
Algorithms
Angular position
Angular velocity
Application programming interface
Bayes Theorem
Bayesian analysis
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Body kinematics
Classical Mechanics
Errors
Estimates
Female
Humans
Inverse kinematics
Kalman filters
Kinematics
Male
Models, Biological
Motion Capture
Open source software
Original Article
Random noise
Software
Time series
Walking - physiology
Title Musculoskeletal Inverse Kinematics Tool for Inertial Motion Capture Data Based on the Adaptive Unscented Kalman Smoother: An Implementation for OpenSim
URI https://link.springer.com/article/10.1007/s10439-025-03807-x
https://www.ncbi.nlm.nih.gov/pubmed/40721566
https://www.proquest.com/docview/3267545182
https://www.proquest.com/docview/3234309914
Volume 53
WOSCitedRecordID wos001537782200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BQQgObSlfaUtlJG4QqUmc2Olt-yWkslXFtmhvkWM7UkU3qTa7iH_C3-2zN9kWlR7gkkPGchx7xvOs8bwh-shLYxOZlWEGMBRyi0eudBpGWmjONYete3b9r-L0VI7H-VmXFNb2t937kKTfqe8ku8F5hq786q5jSQ-BHJ_A3Ulnjt9G35exAyjpom5BjoNRnvEuVebvffzpju5hzHvxUe92jtf-b8DrtNrBTDZY6MVLemTrDXpxh3xwg54Nu7D6K_o9nLv7qE37A04IaJw59o1pa9kJxJ7TtWXnTXPFgHAhc1ex0WjoCwCxA3XtohDsUM0U24dTNAxvgSvZwECE3ZRd1J4zCpITdTVRNRtNGp_5tccGNfMExZMuB6r233DXXEaXk9d0cXx0fvAl7Co2hDoR8cyt8G6Z5kpqWaYJT0yV6yquYquzNDUiSoVItCojqABwT2ytO95IXpnMJkbnVfKGVuqmtu-IibiEzkTS6KSEQhmZRTg4V8pUIqtKZQL61C9ccb0g5ihuKZjdzBeY-cLPfPEroO1-bYvOSNsCyFUAQGIIAX1YimFeLmaiatvMXRv8BlB0xAN6u9CJ5ec8txzgcECfewW47fzhsWz-W_Mteh47HfL5j9u0MpvO7Xt6qn_OLtvpDj0WY7njDeAGgQUCLg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VpQJ6oFBaGihgJG4QqUmcOOltKa2K9kOI3aLeIsd2pKrdpNrsIv4Jf7fP3mRbVDjAJYeM5Tj22POsmXlD9J4X2kRpUvgJwJDPDR6ZVLEfKKE4Vxx73bHrD8RolJ6fZ1_bpLCmi3bvXJLupL6T7Abj6dvyqweWJd0HcnzAYbFsIN-38feV7wBKuqxbkOFilCW8TZX5cx-_m6N7GPOef9SZnZOt_xvwU3rSwkzWW-rFM1oz1TZt3iEf3KaHw9at_px-DRc2HrVuLmGEgMaZZd-YNYb1IXacrg2b1PUVA8KFzIZio9HQFQBiR_LaeiHYZzmX7BOMomZ4C1zJehoinKbsrHKcUZD05dVUVmw8rV3m1yHrVcwRFE_bHKjKfcOGuYwvpjt0dnI8OTr124oNvopEOLcrfFDEmUxVWsQRj3SZqTIsQ6OSONYiiIWIlCwCqABwT2iMvd6kvNSJibTKymiX1qu6MnvERFhAZ4JUq6iAQuk0CXBxLqUuRVIWUnv0oVu4_HpJzJHfUjDbmc8x87mb-fynR_vd2ubtJm1yIFcBAIkhePRuJcb2sj4TWZl6YdvgN4CiA-7Ri6VOrD7nuOUAhz362CnAbed_H8vLf2v-lh6dToaDfPBl1H9Fj0OrTy4Xcp_W57OFeU0b6sf8opm9cdvgBo2XBCo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hQGg8MGBjhMEwEm9bBEmcOOGtA6pNpRVSYeItcvxDQqNO1aSI_2T_7s5OWjrBHqa95CFn2Y59zn2n830HcEwLqaI0KfwEwZBPFT4yLmI_EExQKiiedceuf8UGg_TuLrteyOJ3t91nIckmp8GyNJn6ZCz1yULiGxpS35ZiPbWM6T6iyBVqiwZZf334Yx5HQIVtahhk6CRlCW3TZl7v40_T9AJvvoiVOhPUffv_k9-EjRZ-kk6jL1uwpMw2rC-QEm7DWr8Nt7-DX_2pvadaVj_ROCFKJ5aVY1Ip0kOx43qtyE1ZPhBEviizV7SxUd8VBiLnfGyjE-SC15x8RWMpCb5FvEk6EkX4lyW3xnFJoaTHH0bckOGodBlhZ6RjiCMuHrW5UcaNYa-_DO9H7-G2e3lz_s1vKzn4ImJhbXf-tIgznoq0iCMaSZ0JHepQiSSOJQtixiLBiwBVA_FQqJR1e1KqZaIiKTId7cCyKY3aBcLCAnUpSKWIClQ0mSYBOtSaS80SXXDpwefZJubjhrAjf6Zmtiuf48rnbuXzJw_2Z_uct4e3yhHRMgSWOAUPjuZiPHY2lsKNKqe2DX4GouuAevCh0Y_5cI5zDmGyB19myvDc-d_nsvdvzQ9h7fqim199H_Q-wpvQqpNLkdyH5XoyVQewKh7r-2ryyZ2I31VkDQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Musculoskeletal+Inverse+Kinematics+Tool+for+Inertial+Motion+Capture+Data+Based+on+the+Adaptive+Unscented+Kalman+Smoother%3A+An+Implementation+for+OpenSim&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Kortelainen%2C+Matti+J&rft.au=Vartiainen%2C+Paavo&rft.au=Beattie%2C+Alexander&rft.au=Lavikainen%2C+Jere&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=53&rft.issue=11&rft.spage=2966&rft.epage=2982&rft_id=info:doi/10.1007%2Fs10439-025-03807-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon