BinBRO: Binary Battle Royale Optimizer algorithm

Stochastic methods attempt to solve problems that cannot be solved by deterministic methods with reasonable time complexity. Optimization algorithms benefit from stochastic methods; however, they do not guarantee to obtain the optimal solution. Many optimization algorithms have been proposed for sol...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 195; p. 116599
Main Authors: (Rahkar Farshi), Taymaz Akan, Agahian, Saeid, Dehkharghani, Rahim
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.06.2022
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Stochastic methods attempt to solve problems that cannot be solved by deterministic methods with reasonable time complexity. Optimization algorithms benefit from stochastic methods; however, they do not guarantee to obtain the optimal solution. Many optimization algorithms have been proposed for solving problems with continuous nature; nevertheless, they are unable to solve discrete or binary problems. Adaptation and use of continuous optimization algorithms for solving discrete problems have gained growing popularity in recent decades. In this paper, the binary version of a recently proposed optimization algorithm, Battle Royale Optimization, which we named BinBRO, has been proposed. The proposed algorithm has been applied to two benchmark datasets: the uncapacitated facility location problem, and the maximum-cut graph problem, and has been compared with 6 other binary optimization algorithms, namely, Particle Swarm Optimization, different versions of Genetic Algorithm, and different versions of Artificial Bee Colony algorithm. The BinBRO-based algorithms could rank first among those algorithms when applying on all benchmark datasets of both problems, UFLP and Max-Cut. •We proposed a binary version of Battle Royale Optimization algorithm named BinBRO.•BinBRO performs as good as or better than existing binary optimization algorithms.•BinBRO provides a good balance between exploration and exploitation.
AbstractList Stochastic methods attempt to solve problems that cannot be solved by deterministic methods with reasonable time complexity. Optimization algorithms benefit from stochastic methods; however, they do not guarantee to obtain the optimal solution. Many optimization algorithms have been proposed for solving problems with continuous nature; nevertheless, they are unable to solve discrete or binary problems. Adaptation and use of continuous optimization algorithms for solving discrete problems have gained growing popularity in recent decades. In this paper, the binary version of a recently proposed optimization algorithm, Battle Royale Optimization, which we named BinBRO, has been proposed. The proposed algorithm has been applied to two benchmark datasets: the uncapacitated facility location problem, and the maximum-cut graph problem, and has been compared with 6 other binary optimization algorithms, namely, Particle Swarm Optimization, different versions of Genetic Algorithm, and different versions of Artificial Bee Colony algorithm. The BinBRO-based algorithms could rank first among those algorithms when applying on all benchmark datasets of both problems, UFLP and Max-Cut.
Stochastic methods attempt to solve problems that cannot be solved by deterministic methods with reasonable time complexity. Optimization algorithms benefit from stochastic methods; however, they do not guarantee to obtain the optimal solution. Many optimization algorithms have been proposed for solving problems with continuous nature; nevertheless, they are unable to solve discrete or binary problems. Adaptation and use of continuous optimization algorithms for solving discrete problems have gained growing popularity in recent decades. In this paper, the binary version of a recently proposed optimization algorithm, Battle Royale Optimization, which we named BinBRO, has been proposed. The proposed algorithm has been applied to two benchmark datasets: the uncapacitated facility location problem, and the maximum-cut graph problem, and has been compared with 6 other binary optimization algorithms, namely, Particle Swarm Optimization, different versions of Genetic Algorithm, and different versions of Artificial Bee Colony algorithm. The BinBRO-based algorithms could rank first among those algorithms when applying on all benchmark datasets of both problems, UFLP and Max-Cut. •We proposed a binary version of Battle Royale Optimization algorithm named BinBRO.•BinBRO performs as good as or better than existing binary optimization algorithms.•BinBRO provides a good balance between exploration and exploitation.
ArticleNumber 116599
Author Dehkharghani, Rahim
(Rahkar Farshi), Taymaz Akan
Agahian, Saeid
Author_xml – sequence: 1
  givenname: Taymaz Akan
  surname: (Rahkar Farshi)
  fullname: (Rahkar Farshi), Taymaz Akan
  email: taymazfarshi@ayvansaray.edu.tr
  organization: Istanbul Ayvansaray University, Istanbul, Turkey
– sequence: 2
  givenname: Saeid
  orcidid: 0000-0003-2462-6166
  surname: Agahian
  fullname: Agahian, Saeid
  email: saeid.agahian@erzurum.edu.tr
  organization: Erzurum Technical University, Erzurum, Turkey
– sequence: 3
  givenname: Rahim
  orcidid: 0000-0002-9619-8247
  surname: Dehkharghani
  fullname: Dehkharghani, Rahim
  email: rahim.dehkharghani@isikun.edu.tr
  organization: Department of Computer Engineering, Isik University, Istanbul, Turkey
BookMark eNp9kD1PwzAURS1UJErhDzBFYk7ws5M4Riy04kuqVKmC2XLcF3DUxsV2QeXXkypMDJ3ucs99euecjDrXISFXQDOgUN60GYZvnTHKWAZQFlKekDFUgqelkHxExlQWIs1B5GfkPISWUhCUijGhU9tNl4vbpE_t98lUx7jGZOn2uo_FNtqN_UGf6PW78zZ-bC7IaaPXAS__ckLeHh9eZ8_pfPH0Mrufp4YLFlMQheQmlwZRV1AhkyDYKi-hEJxryaRsalnzgtWG1rmu8hpKKg2HphGsrjSfkOthd-vd5w5DVK3b-a4_qViZCy7LomJ9qxpaxrsQPDbK2KijdV302q4VUHXwo1p18KMOftTgp0fZP3Tr7aZ3cBy6GyDsX_-y6FUwFjuDK-vRRLVy9hj-C-cAfpc
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3455168
crossref_primary_10_3390_sym15051073
crossref_primary_10_1002_cpe_7205
crossref_primary_10_1007_s12530_023_09557_2
crossref_primary_10_3233_IDT_230264
crossref_primary_10_1002_oca_70023
crossref_primary_10_1007_s00500_023_09074_z
crossref_primary_10_1111_coin_70017
crossref_primary_10_1007_s11042_024_19550_9
crossref_primary_10_1007_s13198_025_02759_8
crossref_primary_10_1109_ACCESS_2022_3204311
crossref_primary_10_1007_s00521_023_09190_9
crossref_primary_10_1007_s11227_023_05664_8
Cites_doi 10.4249/scholarpedia.6915
10.1016/j.ins.2017.09.028
10.1007/s13042-017-0772-7
10.1016/j.cor.2005.07.014
10.1016/j.asoc.2011.08.038
10.1007/s00521-020-05004-4
10.1016/j.eswa.2020.113618
10.1016/j.apm.2015.10.040
10.1016/j.cie.2014.04.010
10.1016/S0305-0548(01)00021-1
10.1016/j.knosys.2020.105586
10.1007/s10732-011-9189-8
10.1287/ijoc.1080.0275
10.1016/j.asoc.2015.04.007
10.1016/j.cnsns.2013.08.027
10.1016/j.asoc.2019.105576
10.2528/PIER07082403
10.1016/j.advengsoft.2013.12.007
10.1109/MCI.2006.329691
10.1016/j.ins.2009.03.004
10.1057/jors.1990.166
10.1080/1055678021000090033
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116599
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116599
S0957417422000938
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-17593c49ceea818e29172d4615733a9299fb9b352bc0b4a84b1609c31ff72b8a3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000787281000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 04:08:01 EST 2025
Tue Nov 18 21:47:17 EST 2025
Sat Nov 29 07:08:12 EST 2025
Fri Feb 23 02:40:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Discrete optimization
Optimization
Battle Royale Optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-17593c49ceea818e29172d4615733a9299fb9b352bc0b4a84b1609c31ff72b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9619-8247
0000-0003-2462-6166
OpenAccessLink https://hdl.handle.net/11729/3449
PQID 2647396582
PQPubID 2045477
ParticipantIDs proquest_journals_2647396582
crossref_citationtrail_10_1016_j_eswa_2022_116599
crossref_primary_10_1016_j_eswa_2022_116599
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116599
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Agahian, Akan (b1) 2021
Aslan, Gunduz, Kiran (b4) 2019; 82
Holland (b16) 1992
Atta, Mahapatra, Mukhopadhyay (b5) 2018
Cornuéjols, Nemhauser, Wolsey (b9) 1983
Festa, Pardalos, Resende, Ribeiro (b11) 2002; 17
Ardjmand, Park, Weckman, Amin-Naseri (b2) 2014; 73
Karaboga (b19) 2010; 5
Moscato (b27) 1989; 826
Sun (b33) 2006; 33
Hancer, Xue, Zhang, Karaboga, Akay (b15) 2018; 422
(pp. 16–17).
Mirjalili, Mirjalili, Lewis (b26) 2014; 69
Korkmaz, Babalik, Kiran (b24) 2018; 9
Dorigo, Birattari, Stutzle (b10) 2006; 1
Norton, Hazell (b28) 1986
Hristakeva, M., & Shrestha, D. (2004). Solving the 0-1 knapsack problem with genetic algorithms. In
Rashedi, Nezamabadi-Pour, Saryazdi (b30) 2009; 179
Savsani, Savsani (b31) 2016; 40
Baş, Ülker (b6) 2020; 161
Askarzadeh (b3) 2014; 19
Jaramillo, Bhadury, Batta (b18) 2002; 29
Tsuya, Takaya, Yamamura (b34) 2017; 32
Gölcük, Ozsoydan (b13) 2020; 194
Khanesar, Teshnehlab, Shoorehdeli (b21) 2007
Sevkli, Guner (b32) 2006
Kashan, Nahavandi, Kashan (b20) 2012; 12
Woolson (b37) 2007
Commander (b8) 2009; 2
Formato (b12) 2007; 77
Wisconsin-Institute (b36) 2020
Beasley (b7) 1990; 41
Kochenberger, Hao, Lü, Wang, Glover (b23) 2013; 19
Kiran (b22) 2015; 33
Han, Pei, Kamber (b14) 2011
Wiegele (b35) 2007; 51
Rahkar Farshi (b29) 2021; 33
Martí, Duarte, Laguna (b25) 2009; 21
Hancer (10.1016/j.eswa.2022.116599_b15) 2018; 422
10.1016/j.eswa.2022.116599_b17
Atta (10.1016/j.eswa.2022.116599_b5) 2018
Wiegele (10.1016/j.eswa.2022.116599_b35) 2007; 51
Gölcük (10.1016/j.eswa.2022.116599_b13) 2020; 194
Korkmaz (10.1016/j.eswa.2022.116599_b24) 2018; 9
Askarzadeh (10.1016/j.eswa.2022.116599_b3) 2014; 19
Festa (10.1016/j.eswa.2022.116599_b11) 2002; 17
Han (10.1016/j.eswa.2022.116599_b14) 2011
Beasley (10.1016/j.eswa.2022.116599_b7) 1990; 41
Rahkar Farshi (10.1016/j.eswa.2022.116599_b29) 2021; 33
Khanesar (10.1016/j.eswa.2022.116599_b21) 2007
Jaramillo (10.1016/j.eswa.2022.116599_b18) 2002; 29
Baş (10.1016/j.eswa.2022.116599_b6) 2020; 161
Wisconsin-Institute (10.1016/j.eswa.2022.116599_b36) 2020
Cornuéjols (10.1016/j.eswa.2022.116599_b9) 1983
Holland (10.1016/j.eswa.2022.116599_b16) 1992
Kochenberger (10.1016/j.eswa.2022.116599_b23) 2013; 19
Rashedi (10.1016/j.eswa.2022.116599_b30) 2009; 179
Kiran (10.1016/j.eswa.2022.116599_b22) 2015; 33
Agahian (10.1016/j.eswa.2022.116599_b1) 2021
Karaboga (10.1016/j.eswa.2022.116599_b19) 2010; 5
Ardjmand (10.1016/j.eswa.2022.116599_b2) 2014; 73
Tsuya (10.1016/j.eswa.2022.116599_b34) 2017; 32
Martí (10.1016/j.eswa.2022.116599_b25) 2009; 21
Dorigo (10.1016/j.eswa.2022.116599_b10) 2006; 1
Sun (10.1016/j.eswa.2022.116599_b33) 2006; 33
Woolson (10.1016/j.eswa.2022.116599_b37) 2007
Mirjalili (10.1016/j.eswa.2022.116599_b26) 2014; 69
Formato (10.1016/j.eswa.2022.116599_b12) 2007; 77
Savsani (10.1016/j.eswa.2022.116599_b31) 2016; 40
Moscato (10.1016/j.eswa.2022.116599_b27) 1989; 826
Sevkli (10.1016/j.eswa.2022.116599_b32) 2006
Commander (10.1016/j.eswa.2022.116599_b8) 2009; 2
Norton (10.1016/j.eswa.2022.116599_b28) 1986
Kashan (10.1016/j.eswa.2022.116599_b20) 2012; 12
Aslan (10.1016/j.eswa.2022.116599_b4) 2019; 82
References_xml – volume: 40
  start-page: 3951
  year: 2016
  end-page: 3978
  ident: b31
  article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm
  publication-title: Applied Mathematical Modelling
– volume: 5
  start-page: 6915
  year: 2010
  ident: b19
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
– volume: 77
  start-page: 425
  year: 2007
  end-page: 491
  ident: b12
  article-title: Central force optimization
  publication-title: Prog Electromagn Res
– start-page: 1
  year: 2007
  end-page: 6
  ident: b21
  article-title: A novel binary particle swarm optimization
  publication-title: 2007 Mediterranean conference on control & automation
– volume: 422
  start-page: 462
  year: 2018
  end-page: 479
  ident: b15
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Information Sciences
– volume: 51
  year: 2007
  ident: b35
  article-title: Biq mac library—A collection of max-cut and quadratic 0-1 programming instances of medium size
  publication-title: Preprint
– volume: 161
  year: 2020
  ident: b6
  article-title: A binary social spider algorithm for uncapacitated facility location problem
  publication-title: Expert Systems With Applications
– volume: 19
  start-page: 1213
  year: 2014
  end-page: 1228
  ident: b3
  article-title: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 41
  start-page: 1069
  year: 1990
  end-page: 1072
  ident: b7
  article-title: OR-library: distributing test problems by electronic mail
  publication-title: Journal Of The Operational Research Society
– year: 1986
  ident: b28
  article-title: Mathematical programming for economic analysis in agriculture
– start-page: 71
  year: 2018
  end-page: 78
  ident: b5
  article-title: Solving uncapacitated facility location problem using monkey algorithm
  publication-title: Intelligent engineering informatics
– volume: 21
  start-page: 26
  year: 2009
  end-page: 38
  ident: b25
  article-title: Advanced scatter search for the max-cut problem
  publication-title: INFORMS Journal On Computing
– reference: (pp. 16–17).
– volume: 73
  start-page: 32
  year: 2014
  end-page: 40
  ident: b2
  article-title: The discrete unconscious search and its application to uncapacitated facility location problem
  publication-title: Computers & Industrial Engineering
– year: 1992
  ident: b16
  article-title: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b26
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 19
  start-page: 565
  year: 2013
  end-page: 571
  ident: b23
  article-title: Solving large scale max cut problems via tabu search
  publication-title: Journal Of Heuristics
– volume: 9
  start-page: 1233
  year: 2018
  end-page: 1247
  ident: b24
  article-title: An artificial algae algorithm for solving binary optimization problems
  publication-title: International Journal Of Machine Learning and Cybernetics
– volume: 82
  year: 2019
  ident: b4
  article-title: Jayax: Jaya algorithm with xor operator for binary optimization
  publication-title: Applied Soft Computing
– volume: 33
  start-page: 15
  year: 2015
  end-page: 23
  ident: b22
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
– volume: 29
  start-page: 761
  year: 2002
  end-page: 779
  ident: b18
  article-title: On the use of genetic algorithms to solve location problems
  publication-title: Computers & Operations Research
– volume: 194
  year: 2020
  ident: b13
  article-title: Evolutionary and adaptive inheritance enhanced grey wolf optimization algorithm for binary domains
  publication-title: Knowledge-Based Systems
– volume: 12
  start-page: 342
  year: 2012
  end-page: 352
  ident: b20
  article-title: DisABC: A new artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
– year: 1983
  ident: b9
  article-title: The uncapicitated facility location problem
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b10
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
– start-page: 316
  year: 2006
  end-page: 323
  ident: b32
  article-title: A continuous particle swarm optimization algorithm for uncapacitated facility location problem
  publication-title: International workshop on ant colony optimization and swarm intelligence
– reference: Hristakeva, M., & Shrestha, D. (2004). Solving the 0-1 knapsack problem with genetic algorithms. In
– year: 2020
  ident: b36
  article-title: Discrete optimization
– volume: 2
  year: 2009
  ident: b8
  article-title: Maximum cut problem, MAX-cut.
  publication-title: Encyclopedia Of Optimization
– volume: 32
  start-page: 3201
  year: 2017
  end-page: 3208
  ident: b34
  article-title: Application of the firefly algorithm to the uncapacitated facility location problem
  publication-title: Journal Of Intelligent & Fuzzy Systems
– start-page: 1
  year: 2021
  end-page: 13
  ident: b1
  article-title: Battle royale optimizer for training multi-layer perceptron
  publication-title: Evolving Systems
– year: 2011
  ident: b14
  article-title: Data mining: Concepts and techniques
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b30
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 33
  start-page: 2563
  year: 2006
  end-page: 2589
  ident: b33
  article-title: Solving the uncapacitated facility location problem using tabu search
  publication-title: Computers & Operations Research
– start-page: 1
  year: 2007
  end-page: 3
  ident: b37
  article-title: Wilcoxon signed-rank test
  publication-title: Wiley Encyclopedia Of Clinical Trials
– volume: 826
  start-page: 1989
  year: 1989
  ident: b27
  article-title: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms
  publication-title: Caltech Concurrent Computation Program, C3P Report
– volume: 17
  start-page: 1033
  year: 2002
  end-page: 1058
  ident: b11
  article-title: Randomized heuristics for the MAX-CUT problem
  publication-title: Optimization Methods and Software
– volume: 33
  start-page: 1139
  year: 2021
  end-page: 1157
  ident: b29
  article-title: Battle royale optimization algorithm
  publication-title: Neural Computing and Applications
– volume: 5
  start-page: 6915
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2022.116599_b19
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6915
– volume: 422
  start-page: 462
  year: 2018
  ident: 10.1016/j.eswa.2022.116599_b15
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.09.028
– start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2022.116599_b21
  article-title: A novel binary particle swarm optimization
– volume: 2
  year: 2009
  ident: 10.1016/j.eswa.2022.116599_b8
  article-title: Maximum cut problem, MAX-cut.
  publication-title: Encyclopedia Of Optimization
– volume: 9
  start-page: 1233
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2022.116599_b24
  article-title: An artificial algae algorithm for solving binary optimization problems
  publication-title: International Journal Of Machine Learning and Cybernetics
  doi: 10.1007/s13042-017-0772-7
– year: 1986
  ident: 10.1016/j.eswa.2022.116599_b28
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116599_b1
  article-title: Battle royale optimizer for training multi-layer perceptron
  publication-title: Evolving Systems
– start-page: 71
  year: 2018
  ident: 10.1016/j.eswa.2022.116599_b5
  article-title: Solving uncapacitated facility location problem using monkey algorithm
– volume: 33
  start-page: 2563
  issue: 9
  year: 2006
  ident: 10.1016/j.eswa.2022.116599_b33
  article-title: Solving the uncapacitated facility location problem using tabu search
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.07.014
– year: 2011
  ident: 10.1016/j.eswa.2022.116599_b14
– volume: 12
  start-page: 342
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2022.116599_b20
  article-title: DisABC: A new artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.08.038
– volume: 33
  start-page: 1139
  year: 2021
  ident: 10.1016/j.eswa.2022.116599_b29
  article-title: Battle royale optimization algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05004-4
– volume: 161
  year: 2020
  ident: 10.1016/j.eswa.2022.116599_b6
  article-title: A binary social spider algorithm for uncapacitated facility location problem
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2020.113618
– volume: 40
  start-page: 3951
  issue: 5–6
  year: 2016
  ident: 10.1016/j.eswa.2022.116599_b31
  article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2015.10.040
– volume: 73
  start-page: 32
  year: 2014
  ident: 10.1016/j.eswa.2022.116599_b2
  article-title: The discrete unconscious search and its application to uncapacitated facility location problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2014.04.010
– year: 1992
  ident: 10.1016/j.eswa.2022.116599_b16
– volume: 29
  start-page: 761
  issue: 6
  year: 2002
  ident: 10.1016/j.eswa.2022.116599_b18
  article-title: On the use of genetic algorithms to solve location problems
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(01)00021-1
– ident: 10.1016/j.eswa.2022.116599_b17
– volume: 194
  year: 2020
  ident: 10.1016/j.eswa.2022.116599_b13
  article-title: Evolutionary and adaptive inheritance enhanced grey wolf optimization algorithm for binary domains
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105586
– volume: 19
  start-page: 565
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2022.116599_b23
  article-title: Solving large scale max cut problems via tabu search
  publication-title: Journal Of Heuristics
  doi: 10.1007/s10732-011-9189-8
– year: 2020
  ident: 10.1016/j.eswa.2022.116599_b36
– volume: 21
  start-page: 26
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2022.116599_b25
  article-title: Advanced scatter search for the max-cut problem
  publication-title: INFORMS Journal On Computing
  doi: 10.1287/ijoc.1080.0275
– volume: 33
  start-page: 15
  year: 2015
  ident: 10.1016/j.eswa.2022.116599_b22
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.007
– volume: 19
  start-page: 1213
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2022.116599_b3
  article-title: Bird mating optimizer: an optimization algorithm inspired by bird mating strategies
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2013.08.027
– start-page: 316
  year: 2006
  ident: 10.1016/j.eswa.2022.116599_b32
  article-title: A continuous particle swarm optimization algorithm for uncapacitated facility location problem
– volume: 51
  year: 2007
  ident: 10.1016/j.eswa.2022.116599_b35
  article-title: Biq mac library—A collection of max-cut and quadratic 0-1 programming instances of medium size
  publication-title: Preprint
– year: 1983
  ident: 10.1016/j.eswa.2022.116599_b9
– volume: 826
  start-page: 1989
  year: 1989
  ident: 10.1016/j.eswa.2022.116599_b27
  article-title: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms
  publication-title: Caltech Concurrent Computation Program, C3P Report
– volume: 82
  year: 2019
  ident: 10.1016/j.eswa.2022.116599_b4
  article-title: Jayax: Jaya algorithm with xor operator for binary optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105576
– volume: 32
  start-page: 3201
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.116599_b34
  article-title: Application of the firefly algorithm to the uncapacitated facility location problem
  publication-title: Journal Of Intelligent & Fuzzy Systems
– volume: 77
  start-page: 425
  year: 2007
  ident: 10.1016/j.eswa.2022.116599_b12
  article-title: Central force optimization
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER07082403
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2022.116599_b26
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2022.116599_b10
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2022.116599_b30
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 41
  start-page: 1069
  issue: 11
  year: 1990
  ident: 10.1016/j.eswa.2022.116599_b7
  article-title: OR-library: distributing test problems by electronic mail
  publication-title: Journal Of The Operational Research Society
  doi: 10.1057/jors.1990.166
– start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2022.116599_b37
  article-title: Wilcoxon signed-rank test
  publication-title: Wiley Encyclopedia Of Clinical Trials
– volume: 17
  start-page: 1033
  issue: 6
  year: 2002
  ident: 10.1016/j.eswa.2022.116599_b11
  article-title: Randomized heuristics for the MAX-CUT problem
  publication-title: Optimization Methods and Software
  doi: 10.1080/1055678021000090033
SSID ssj0017007
Score 2.5146935
Snippet Stochastic methods attempt to solve problems that cannot be solved by deterministic methods with reasonable time complexity. Optimization algorithms benefit...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116599
SubjectTerms Battle Royale Optimization algorithm
Benchmarks
Datasets
Discrete optimization
Genetic algorithms
Operations research
Optimization
Optimization algorithms
Particle swarm optimization
Problem solving
Search algorithms
Site selection
Title BinBRO: Binary Battle Royale Optimizer algorithm
URI https://dx.doi.org/10.1016/j.eswa.2022.116599
https://www.proquest.com/docview/2647396582
Volume 195
WOSCitedRecordID wos000787281000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa6KGX0qeghSqH9hQFJc7Ddm-7CNT2AFVFpb1ZtrFJWDagbNpSfj3j2MkuW4HKoZcoipKRlfky-WY8D4Q-GKUphs8mMkRnUaaliQQtaEQZkSLGqshP4m7YBDk8pJMJ--aT2OfdOAFS1_Tqil3-V1XDNVC2LZ19gLoHoXABzkHpcAS1w_GfFD-u6vH3I-vpj12t7bjrUxx2gQIdHoGNmFXXugnF-elFU7Xl7FZ03rY-bn2D5770bWmTu1eQjTyIciqa8EDYTOiPmHWqF39m4jocTRegG52KsvJhVqH7BHqgzrqc2jZNpZsqFYK4arYchAD_dUiWGqKJJMoSN3BnMKwsXzKNts-Pm4X0l9V2AYSzXT3_bVtBYby7uPl2i-yVX9eQUNjnqp1xK4NbGdzJeIzWMckZ2Oz10Zf9yddhi4nErpa-X7mvqHLJf6sruYu1rPy_O1Jy_Bw9895EMHIoeIEe6fol2ugndQTecL9CsQPFp8BBInCQCBwkggESwQCJ1-jHwf7x3ufIz8qIVEpwGwELZKnKGHAeARxMY3DD8UkGfJWkqQAOzIxkEti2VLHMBM1kUsRMpYkxBEsq0jdorb6o9SYKcIE1kH5CDbjqQhEqk5wqyrJCpYaYYgsl_bvgyjeSt_NMzvndWthC4fDMpWujcu_def-KuSeCjuBxQMy9z233-uD-i5xzYPwktS2O8NsHLeIderpA-jZaa5ufegc9Ub_aat6892i6AfVjhXY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BinBRO%3A+Binary+Battle+Royale+Optimizer+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=%28Rahkar+Farshi%29%2C+Taymaz+Akan&rft.au=Agahian%2C+Saeid&rft.au=Dehkharghani%2C+Rahim&rft.date=2022-06-01&rft.issn=0957-4174&rft.volume=195&rft.spage=116599&rft_id=info:doi/10.1016%2Fj.eswa.2022.116599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_116599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon