Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data
In recent years, with the rapid development of single-cell sequencing technology, this brings new opportunities and challenges to reconstruct gene regulatory networks. On the one hand, scRNA-seq data reveal statistical information of gene expression at single-cell resolution, which is beneficial to...
Saved in:
| Published in: | Journal of computational biology Vol. 30; no. 5; p. 619 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.05.2023
|
| Subjects: | |
| ISSN: | 1557-8666, 1557-8666 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In recent years, with the rapid development of single-cell sequencing technology, this brings new opportunities and challenges to reconstruct gene regulatory networks. On the one hand, scRNA-seq data reveal statistical information of gene expression at single-cell resolution, which is beneficial to construct gene expression regulatory networks. On the other hand, the noise and dropout of single-cell data bring great difficulties to the analysis of scRNA-seq data, resulting in lower accuracy of gene regulatory networks reconstructed by traditional methods. In this article, we propose a novel supervised convolutional neural network (CNNSE), which can extract gene expression information from 2D co-expression matrices of gene doublets and identify interactions between genes. Our method can avoid the loss of extreme point interference by constructing a 2D co-expression matrix of gene pairs and significantly improve the regulation precision between gene pairs. And the CNNSE model is able to obtain detailed and high-level semantic information from the 2D co-expression matrix. Our method achieves satisfactory results on simulated data [accuracy (ACC): 0.712, F1: 0.724]. On two real scRNA-seq datasets, our method exhibits higher stability and accuracy in inference tasks compared with other existing gene regulatory network inference algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1557-8666 1557-8666 |
| DOI: | 10.1089/cmb.2022.0355 |