An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data
•Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its high-dimensionality.•An efficient multivariate feature selection method is proposed for microarray data.•We demonstrate its usefulness of high accurac...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 166; S. 113971 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
15.03.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its high-dimensionality.•An efficient multivariate feature selection method is proposed for microarray data.•We demonstrate its usefulness of high accuracy and good efficiency using real data.•The method outperforms other comparable gene selection methods in terms of accuracy.
Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands) compared to the number of observations (<tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency. |
|---|---|
| AbstractList | •Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its high-dimensionality.•An efficient multivariate feature selection method is proposed for microarray data.•We demonstrate its usefulness of high accuracy and good efficiency using real data.•The method outperforms other comparable gene selection methods in terms of accuracy.
Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands) compared to the number of observations (<tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency. Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands) compared to the number of observations (<tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency. |
| ArticleNumber | 113971 |
| Author | Choi, In Young Lee, Junghye Jun, Chi-Hyuck |
| Author_xml | – sequence: 1 givenname: Junghye orcidid: 0000-0002-9736-4796 surname: Lee fullname: Lee, Junghye email: junghyelee@unist.ac.kr organization: Department of Industrial Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea – sequence: 2 givenname: In Young surname: Choi fullname: Choi, In Young email: iychoi@catholic.ac.kr organization: Department of Medical Informatics, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, Republic of Korea – sequence: 3 givenname: Chi-Hyuck orcidid: 0000-0003-0911-7347 surname: Jun fullname: Jun, Chi-Hyuck email: chjun@postech.ac.kr organization: Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Republic of Korea |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz1uT3e0mC15K8QsKXvQcxs2kTd3N1iSt9N-bpZ489DTw8j7DzDMhI9c7JOSWsxlnvLrfzjD8wCxneQp4UQt-QcZciiKrRF2MyJjVc5GVXJRXZBLCljEuGBNjsl44isbYxqKLtNu30R7AW4hIDULce6Qe3Jd1a9ph3PSamt7TNTqkAVtsou0dtY5u7HqTaduhCymBlna28T14D0eqIcI1uTTQBrz5m1Py8fT4vnzJVm_Pr8vFKmsKkceM809gCCCl0KKqZFkJMChkgfU8n88NNxxA6JIBcGANa3SJVa1TSw4fQTEld6e9O99_7zFEte33Ph0UVF5KxlhZVDK18lMr3RiCR6N23nbgj4ozNQhVWzUIVYNQdRKaIPkPamyEQUD0YNvz6MMJxfT6waJXYRDeoLY-OVS6t-fwX7HklK0 |
| CitedBy_id | crossref_primary_10_3390_electronics13234612 crossref_primary_10_1007_s11042_024_18387_6 crossref_primary_10_1016_j_eswa_2021_115304 crossref_primary_10_1016_j_asoc_2021_107729 crossref_primary_10_1016_j_chemolab_2022_104713 crossref_primary_10_1016_j_knosys_2022_109884 crossref_primary_10_1016_j_bspc_2022_103785 crossref_primary_10_1016_j_asoc_2022_109052 crossref_primary_10_1016_j_asoc_2023_110034 crossref_primary_10_1016_j_asoc_2025_112895 crossref_primary_10_1016_j_eswa_2023_122504 crossref_primary_10_1038_s41598_021_03316_6 crossref_primary_10_1186_s12859_022_04848_y crossref_primary_10_3389_fdata_2025_1624507 crossref_primary_10_1016_j_asoc_2022_109699 crossref_primary_10_1007_s00521_024_09581_6 crossref_primary_10_3390_diagnostics11101936 crossref_primary_10_1007_s41965_022_00111_8 crossref_primary_10_1016_j_bspc_2022_104080 crossref_primary_10_1016_j_jbi_2025_104803 crossref_primary_10_1007_s11517_022_02555_7 crossref_primary_10_1007_s00500_023_08126_8 crossref_primary_10_1016_j_chaos_2022_112972 crossref_primary_10_1016_j_chemolab_2023_104989 crossref_primary_10_1007_s10115_024_02292_3 crossref_primary_10_1016_j_matpr_2022_04_803 crossref_primary_10_4103_jcrt_jcrt_811_21 crossref_primary_10_1016_j_eswa_2022_117641 crossref_primary_10_1007_s13369_024_09587_1 crossref_primary_10_1007_s10115_025_02340_6 crossref_primary_10_1007_s12539_023_00553_3 crossref_primary_10_3390_biomedicines10082052 crossref_primary_10_1177_17483026231184171 crossref_primary_10_1109_JAS_2023_123648 crossref_primary_10_1109_JSEN_2022_3161596 crossref_primary_10_1109_ACCESS_2024_3362228 crossref_primary_10_1016_j_knosys_2022_110250 |
| Cites_doi | 10.1016/j.procs.2018.05.127 10.1109/TCBB.2012.33 10.1073/pnas.96.12.6745 10.1126/science.286.5439.531 10.1016/j.fiae.2016.09.004 10.1038/73432 10.1109/ACCESS.2018.2873634 10.1038/415530a 10.1093/bioinformatics/btm344 10.1155/2014/972125 10.1016/j.jbi.2016.05.007 10.1023/A:1012487302797 10.1109/TCBB.2015.2415790 10.1007/s10489-018-1320-1 10.1016/j.jbi.2011.01.001 10.1111/j.1469-1809.1936.tb02137.x 10.1142/S0219720005001004 10.1016/j.procs.2015.03.178 10.1109/72.298224 10.1109/ACCESS.2018.2812734 10.1109/IJCNN.2004.1380157 10.1016/j.csda.2009.02.028 10.1089/106652700750050943 10.1214/aoms/1177732360 10.1016/S0004-3702(97)00043-X 10.1016/j.compbiomed.2016.12.002 10.1111/j.2517-6161.1958.tb00292.x 10.1080/02522667.2018.1555311 10.1016/j.patcog.2005.11.001 10.1145/3335676 10.1023/A:1022627411411 10.1109/TCBB.2015.2478454 10.1155/2015/198363 10.1109/TPAMI.1979.4766926 10.1007/978-3-319-58838-4_53 10.1016/j.eswa.2010.12.156 10.1109/TPAMI.2005.159 10.1016/j.ins.2014.09.064 10.1109/ACCESS.2019.2922987 10.1109/TCYB.2016.2539338 10.1016/j.ijar.2006.06.008 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Copyright Elsevier BV Mar 15, 2021 |
| Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright Elsevier BV Mar 15, 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113971 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113971 S095741742030751X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c372t-11ba0eaa887d7668467afe783e95255f1f1aa7d40aa1a0c0cd4e69d67a80170a3 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598522500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 05:19:19 EDT 2025 Sat Nov 29 07:08:53 EST 2025 Tue Nov 18 21:34:47 EST 2025 Fri Feb 23 02:47:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High-dimensional data Mixed-type data Ranking Microarray data Classification Markov blanket Gene selection Multiclass Multivariate feature selection |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-11ba0eaa887d7668467afe783e95255f1f1aa7d40aa1a0c0cd4e69d67a80170a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0911-7347 0000-0002-9736-4796 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.eswa.2020.113971 |
| PQID | 2480004368 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2480004368 crossref_primary_10_1016_j_eswa_2020_113971 crossref_citationtrail_10_1016_j_eswa_2020_113971 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113971 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-15 |
| PublicationDateYYYYMMDD | 2021-03-15 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Brown, G. (2009). A new perspective for information theoretic feature selection. In (b0295) 2008; Vol. 1 Almugren, Alshamlan (b0015) 2019; 7 Manikandan, Abirami (b0225) 2018 Sun, Zhang, Qian, Xu, Zhang, Tian (b0275) 2019; 49 Liao, Jiang, Liang, Peng, Peng, Hanyurwimfura, Li, Chen (b0195) 2015; 12 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) Lamba, Munjal, Gigras (b0175) 2018; 132 Chandra, Gupta (b0050) 2011; 44 Proceedings of the world congress on engineering (Vol. 2, pp. 1415-1419). IEEE. Devi Arockia Vanitha, Devaraj, Venkatesuluc (b0070) 2015; 47 Koller, Sahami (b0165) 1996 Fisher (b0085) 1936; 7 Hoque, Ahmed, Bhattacharyya, Kalita (b0145) 2016; 8 Lê Cao, Bonnet, Gadat (b0185) 2009; 53 (Vol. 1, pp. 321-328). Newswood Ltd. Saeys, Inza, Larrañaga (b0265) 2007; 23 Advances in bioinformatics Artificial intelligence and statistics Ling, Yu, Wang, Liu, Ding, Wu (b0200) 2019; 10 Wilks (b0310) 1938; 9 Pearl (b0235) 2014 Mabu, Prasad, Yadav (b0220) 2020; 41 Ben-Dor, Bruhn, Friedman, Nachman, Schummer, Yakhini (b0035) 2000; 7 Guyon, Elisseeff (b0130) 2003; 3 (b0105) 2008; Vol. 21 Ding, Peng (b0075) 2005; 3 Battiti (b0030) 1994; 5 Ross, Scherf, Eisen, Perou, Rees, Spellman, Iyer, Jeffrey, Van de Rijn, Waltham, Pergamenschikov (b0255) 2000; 24 Fu, Desmarais (b0095) 2008 Peng, Long, Ding (b0245) 2005; 27 2014. Kohavi, John (b0160) 1997; 97 Gao, Ji (b0110) 2016; 47 Hira, Z. M., & Gillies, D. F. (2015). A review of feature selection and feature extraction methods applied on microarray data. García, V., Sánchez, J. S., Cleofas-Sánchez, L., Ochoa-Domínguez, H. J., & López-Orozco, F. (2017). An insight on the ‘large G, small n’problem in gene-expression microarray classification. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 483-490). Springer, Cham. Cox (b0065) 1958 Tsamardinos, Aliferis, Statnikov, Statnikov (b0290) 2003; 2 Chen, Zhang, Gutman (b0055) 2016; 62 Abdulqader, Abdulazeez, Zeebaree (b0010) 2020; 62 Vanjimalar, Ramyachitra, Manikandan (b0315) 2018 (pp. 49-56). Fu, S., & Desmarais, M. C. (2010). Markov blanket based feature selection: a review of past decade. In Wang, An, Yang, Chen, Li, Alterovitz (b0300) 2017; 81 Van’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H.L., Van Der Kooy, K., Marton, M.J., Witteveen, A.T., & Schreiber, G. J. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Tang, Alelyani, Liu (b0280) 2014 Wang, J., Zhou, S., Yi, Y., & Kong, J. (2014). An improved feature selection based on effective range for classification. Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (b0040) 2015 Abe, S. (2005). Support vector machines for pattern classification (Vol. 2, p. 44). London: Springer. Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (b0020) 1999; 96 2015. Lee, Jeong, Jun (b0190) 2020; 113398 Fix, Hodges (b0090) 1989; 57 Pena, Nilsson, Björkegren, Tegnér (b0240) 2007; 45 415(6871), 530. Nature Cortes, Vapnik (b0060) 1995; 20 García, Sánchez (b0115) 2015; 294 Hsu, Hsieh, Lu (b0150) 2011; 38 Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield (b0125) 1999; 286 Trunk (b0285) 1979; 3 Lazar, Taminau, Meganck, Steenhoff, Coletta, Molter, Nowe (b0180) 2012; 9 Raweh, Nassef, Badr (b0250) 2018; 6 Kononenko (b0170) 1994 Liu, Motoda, Dash (b0210) 1998 Ang, Mirzal, Haron, Hamed (b0025) 2015; 13 Duch, W., Wieczorek, T., Biesiada, J., & Blachnik, M. (2004). Comparison of feature ranking methods based on information entropy. In Liu, Setiono (b0215) 1995 Quinlan (b0230) 2014; C4 Ke, Wu, Wu, Xiong (b0155) 2018; 6 Liu, Li, Wong (b0205) 2002; 13 The Scientific World Journal Ruiz, Riquelme, Aguilar-Ruiz (b0260) 2006; 39 Guyon, Weston, Barnhill, Vapnik (b0135) 2002; 46 Shen, Diao, Su (b0270) 2012; 10 Chen (10.1016/j.eswa.2020.113971_b0055) 2016; 62 Pena (10.1016/j.eswa.2020.113971_b0240) 2007; 45 10.1016/j.eswa.2020.113971_b0140 Tang (10.1016/j.eswa.2020.113971_b0280) 2014 Ruiz (10.1016/j.eswa.2020.113971_b0260) 2006; 39 Fu (10.1016/j.eswa.2020.113971_b0095) 2008 Gao (10.1016/j.eswa.2020.113971_b0110) 2016; 47 Devi Arockia Vanitha (10.1016/j.eswa.2020.113971_b0070) 2015; 47 Tsamardinos (10.1016/j.eswa.2020.113971_b0290) 2003; 2 Vanjimalar (10.1016/j.eswa.2020.113971_b0315) 2018 Liu (10.1016/j.eswa.2020.113971_b0205) 2002; 13 Liu (10.1016/j.eswa.2020.113971_b0210) 1998 (10.1016/j.eswa.2020.113971_b0295) 2008; Vol. 1 Guyon (10.1016/j.eswa.2020.113971_b0135) 2002; 46 Manikandan (10.1016/j.eswa.2020.113971_b0225) 2018 Lê Cao (10.1016/j.eswa.2020.113971_b0185) 2009; 53 Hoque (10.1016/j.eswa.2020.113971_b0145) 2016; 8 Fix (10.1016/j.eswa.2020.113971_b0090) 1989; 57 Koller (10.1016/j.eswa.2020.113971_b0165) 1996 Wang (10.1016/j.eswa.2020.113971_b0300) 2017; 81 Ben-Dor (10.1016/j.eswa.2020.113971_b0035) 2000; 7 Guyon (10.1016/j.eswa.2020.113971_b0130) 2003; 3 Ross (10.1016/j.eswa.2020.113971_b0255) 2000; 24 Saeys (10.1016/j.eswa.2020.113971_b0265) 2007; 23 Peng (10.1016/j.eswa.2020.113971_b0245) 2005; 27 Lazar (10.1016/j.eswa.2020.113971_b0180) 2012; 9 Quinlan (10.1016/j.eswa.2020.113971_b0230) 2014; C4 Bolón-Canedo (10.1016/j.eswa.2020.113971_b0040) 2015 10.1016/j.eswa.2020.113971_b0100 Lee (10.1016/j.eswa.2020.113971_b0190) 2020; 113398 Alon (10.1016/j.eswa.2020.113971_b0020) 1999; 96 10.1016/j.eswa.2020.113971_b0305 García (10.1016/j.eswa.2020.113971_b0115) 2015; 294 10.1016/j.eswa.2020.113971_b0120 Wilks (10.1016/j.eswa.2020.113971_b0310) 1938; 9 Golub (10.1016/j.eswa.2020.113971_b0125) 1999; 286 Sun (10.1016/j.eswa.2020.113971_b0275) 2019; 49 10.1016/j.eswa.2020.113971_b0080 Ke (10.1016/j.eswa.2020.113971_b0155) 2018; 6 Hsu (10.1016/j.eswa.2020.113971_b0150) 2011; 38 Fisher (10.1016/j.eswa.2020.113971_b0085) 1936; 7 Lamba (10.1016/j.eswa.2020.113971_b0175) 2018; 132 Mabu (10.1016/j.eswa.2020.113971_b0220) 2020; 41 Abdulqader (10.1016/j.eswa.2020.113971_b0010) 2020; 62 Cox (10.1016/j.eswa.2020.113971_b0065) 1958 Kohavi (10.1016/j.eswa.2020.113971_b0160) 1997; 97 Cortes (10.1016/j.eswa.2020.113971_b0060) 1995; 20 Liu (10.1016/j.eswa.2020.113971_b0215) 1995 Liao (10.1016/j.eswa.2020.113971_b0195) 2015; 12 Raweh (10.1016/j.eswa.2020.113971_b0250) 2018; 6 Ding (10.1016/j.eswa.2020.113971_b0075) 2005; 3 Chandra (10.1016/j.eswa.2020.113971_b0050) 2011; 44 Trunk (10.1016/j.eswa.2020.113971_b0285) 1979; 3 Kononenko (10.1016/j.eswa.2020.113971_b0170) 1994 Shen (10.1016/j.eswa.2020.113971_b0270) 2012; 10 Battiti (10.1016/j.eswa.2020.113971_b0030) 1994; 5 (10.1016/j.eswa.2020.113971_b0105) 2008; Vol. 21 10.1016/j.eswa.2020.113971_b0045 10.1016/j.eswa.2020.113971_b0320 Ling (10.1016/j.eswa.2020.113971_b0200) 2019; 10 10.1016/j.eswa.2020.113971_b0005 Ang (10.1016/j.eswa.2020.113971_b0025) 2015; 13 Pearl (10.1016/j.eswa.2020.113971_b0235) 2014 Almugren (10.1016/j.eswa.2020.113971_b0015) 2019; 7 |
| References_xml | – volume: 7 start-page: 559 year: 2000 end-page: 583 ident: b0035 article-title: Tissue classification with gene expression profiles publication-title: Journal of Computational Biology – volume: 12 start-page: 1374 year: 2015 end-page: 1384 ident: b0195 article-title: On efficient feature ranking methods for high-throughput data analysis publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – reference: Van’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H.L., Van Der Kooy, K., Marton, M.J., Witteveen, A.T., & Schreiber, G. J. (2002). Gene expression profiling predicts clinical outcome of breast cancer. – reference: (pp. 49-56). – reference: Fu, S., & Desmarais, M. C. (2010). Markov blanket based feature selection: a review of past decade. In – start-page: 37 year: 2014 ident: b0280 article-title: Feature selection for classification: A review – volume: 6 start-page: 61065 year: 2018 end-page: 61076 ident: b0155 article-title: A new filter feature selection based on criteria fusion for gene microarray data publication-title: IEEE Access – volume: 13 start-page: 971 year: 2015 end-page: 989 ident: b0025 article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – reference: 415(6871), 530. – reference: Advances in bioinformatics, – volume: 13 start-page: 51 year: 2002 end-page: 60 ident: b0205 article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns publication-title: Genome informatics – reference: Duch, W., Wieczorek, T., Biesiada, J., & Blachnik, M. (2004). Comparison of feature ranking methods based on information entropy. In – reference: The Scientific World Journal, – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b0245 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 113398 year: 2020 ident: b0190 article-title: Markov Blanket-based Universal Feature Selection for Classification and Regression of Mixed-Type Data publication-title: Expert Systems with Applications – volume: 57 start-page: 238 year: 1989 end-page: 247 ident: b0090 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: International Statistical Review/Revue Internationale de Statistique – volume: 62 year: 2020 ident: b0010 article-title: Machine Learning Supervised Algorithms of Gene Selection: A Review publication-title: Machine Learning – volume: 81 start-page: 11 year: 2017 end-page: 23 ident: b0300 article-title: Wrapper-based gene selection with Markov blanket publication-title: Computers in biology and medicine – reference: 2015. – volume: 2 start-page: 376 year: 2003 end-page: 380 ident: b0290 article-title: Algorithms for Large Scale Markov Blanket Discovery publication-title: FLAIRS Conference – reference: Proceedings of the world congress on engineering – volume: Vol. 21 year: 2008 ident: b0105 publication-title: Computational intelligence: a compendium – reference: García, V., Sánchez, J. S., Cleofas-Sánchez, L., Ochoa-Domínguez, H. J., & López-Orozco, F. (2017). An insight on the ‘large G, small n’problem in gene-expression microarray classification. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 483-490). Springer, Cham. – volume: 9 start-page: 1106 year: 2012 end-page: 1119 ident: b0180 article-title: A survey on filter techniques for feature selection in gene expression microarray analysis publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – start-page: 215 year: 1958 end-page: 242 ident: b0065 article-title: The regression analysis of binary sequences publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – reference: Hira, Z. M., & Gillies, D. F. (2015). A review of feature selection and feature extraction methods applied on microarray data. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0060 article-title: Support-vector networks – reference: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b0160 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence – volume: 41 start-page: 723 year: 2020 end-page: 742 ident: b0220 article-title: Mining gene expression data using data mining techniques: A critical review publication-title: Journal of Information and Optimization Sciences – volume: 38 start-page: 8144 year: 2011 end-page: 8150 ident: b0150 article-title: Hybrid feature selection by combining filters and wrappers publication-title: Expert Systems with Applications – volume: 10 start-page: 289 year: 2012 end-page: 306 ident: b0270 article-title: Feature Selection Ensemble publication-title: Turing-100 – reference: Wang, J., Zhou, S., Yi, Y., & Kong, J. (2014). An improved feature selection based on effective range for classification. – reference: 2014. – volume: 8 start-page: 355 year: 2016 end-page: 384 ident: b0145 article-title: A fuzzy mutual information-based feature selection method for classification publication-title: Fuzzy Information and Engineering – volume: 132 start-page: 1619 year: 2018 end-page: 1625 ident: b0175 article-title: Feature Selection of Micro-array expression data (FSM)-A Review publication-title: Procedia Computer science – year: 2015 ident: b0040 article-title: Feature Selection for High-Dimensional Data – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: b0265 article-title: A review of feature selection techniques in bioinformatics publication-title: bioinformatics – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b0130 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – volume: 10 start-page: 1 year: 2019 end-page: 25 ident: b0200 article-title: Bamb: A balanced Markov blanket discovery approach to feature selection publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: b0085 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics – volume: C4 start-page: 5 year: 2014 ident: b0230 publication-title: programs for machine learning – volume: 9 start-page: 60 year: 1938 end-page: 62 ident: b0310 article-title: The large-sample distribution of the likelihood ratio for testing composite hypotheses publication-title: The Annals of Mathematical Statistics – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: b0125 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: science – volume: 5 start-page: 537 year: 1994 end-page: 550 ident: b0030 article-title: Using mutual information for selecting features in supervised neural net learning publication-title: IEEE Transactions on Neural Networks – reference: Brown, G. (2009). A new perspective for information theoretic feature selection. In – reference: Artificial intelligence and statistics – volume: 96 start-page: 6745 year: 1999 end-page: 6750 ident: b0020 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proceedings of the National Academy of Sciences – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b0135 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine learning – volume: 294 start-page: 362 year: 2015 end-page: 375 ident: b0115 article-title: Mapping microarray gene expression data into dissimilarity spaces for tumor classification publication-title: Information Sciences – year: 1996 ident: b0165 article-title: Toward optimal feature selection – start-page: 388 year: 1995 end-page: 391 ident: b0215 publication-title: Chi2: Feature selection and discretization of numeric attributes – start-page: 96 year: 2008 end-page: 107 ident: b0095 publication-title: Fast Markov blanket discovery algorithm via local learning within single pass – reference: (Vol. 2, pp. 1415-1419). IEEE. – volume: 47 start-page: 13 year: 2015 end-page: 21 ident: b0070 article-title: Gene expression data classification using support vector machine and mutual information-based gene selection publication-title: Procedia Computer Science – volume: 49 start-page: 1245 year: 2019 end-page: 1259 ident: b0275 article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification publication-title: Applied Intelligence – year: 2018 ident: b0225 article-title: A survey on feature selection and extraction techniques for high-dimensional microarray datasets – volume: 3 start-page: 306 year: 1979 end-page: 307 ident: b0285 article-title: A problem of dimensionality: A simple example publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1 year: 2018 end-page: 4 ident: b0315 publication-title: A Review on Feature Selection Techniques for Gene Expression Data – volume: 39 start-page: 2383 year: 2006 end-page: 2392 ident: b0260 article-title: Incremental wrapper-based gene selection from microarray data for cancer classification publication-title: Pattern Recognition – volume: 44 start-page: 529 year: 2011 end-page: 535 ident: b0050 article-title: An efficient statistical feature selection approach for classification of gene expression data publication-title: Journal of Biomedical Informatics – reference: (Vol. 1, pp. 321-328). Newswood Ltd. – year: 2014 ident: b0235 article-title: Probabilistic reasoning in intelligent systems: Networks of plausible inference – volume: Vol. 1 year: 2008 ident: b0295 publication-title: Handbook of knowledge representation – reference: Nature, – volume: 45 start-page: 211 year: 2007 end-page: 232 ident: b0240 article-title: Towards scalable and data efficient learning of Markov boundaries publication-title: International Journal of Approximate Reasoning – start-page: 101 year: 1998 end-page: 106 ident: b0210 publication-title: A monotonic measure for optimal feature selection – reference: Abe, S. (2005). Support vector machines for pattern classification (Vol. 2, p. 44). London: Springer. – volume: 6 start-page: 15212 year: 2018 end-page: 15223 ident: b0250 article-title: A hybridized feature selection and extraction approach for enhancing cancer prediction based on DNA methylation publication-title: IEEE Access – volume: 53 start-page: 3601 year: 2009 end-page: 3615 ident: b0185 article-title: Multiclass classification and gene selection with a stochastic algorithm publication-title: Computational Statistics & Data Analysis – volume: 7 start-page: 78533 year: 2019 end-page: 78548 ident: b0015 article-title: A survey on hybrid feature selection methods in microarray gene expression data for cancer classification publication-title: IEEE Access – volume: 47 start-page: 1169 year: 2016 end-page: 1179 ident: b0110 article-title: Efficient Markov blanket discovery and its application publication-title: IEEE transactions on Cybernetics – volume: 62 start-page: 12 year: 2016 end-page: 20 ident: b0055 article-title: A kernel-based clustering method for gene selection with gene expression data publication-title: Journal of Biomedical Informatics – volume: 3 start-page: 185 year: 2005 end-page: 205 ident: b0075 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: Journal of Bioinformatics and Computational Biology – volume: 24 start-page: 227 year: 2000 ident: b0255 article-title: Systematic variation in gene expression patterns in human cancer cell lines publication-title: Nature Genetics – start-page: 171 year: 1994 end-page: 182 ident: b0170 publication-title: Estimating attributes: analysis and extensions of RELIEF – volume: 132 start-page: 1619 year: 2018 ident: 10.1016/j.eswa.2020.113971_b0175 article-title: Feature Selection of Micro-array expression data (FSM)-A Review publication-title: Procedia Computer science doi: 10.1016/j.procs.2018.05.127 – volume: 9 start-page: 1106 issue: 4 year: 2012 ident: 10.1016/j.eswa.2020.113971_b0180 article-title: A survey on filter techniques for feature selection in gene expression microarray analysis publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2012.33 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 10.1016/j.eswa.2020.113971_b0020 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.96.12.6745 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 10.1016/j.eswa.2020.113971_b0125 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: science doi: 10.1126/science.286.5439.531 – ident: 10.1016/j.eswa.2020.113971_b0045 – volume: 8 start-page: 355 issue: 3 year: 2016 ident: 10.1016/j.eswa.2020.113971_b0145 article-title: A fuzzy mutual information-based feature selection method for classification publication-title: Fuzzy Information and Engineering doi: 10.1016/j.fiae.2016.09.004 – start-page: 101 year: 1998 ident: 10.1016/j.eswa.2020.113971_b0210 – volume: 24 start-page: 227 issue: 3 year: 2000 ident: 10.1016/j.eswa.2020.113971_b0255 article-title: Systematic variation in gene expression patterns in human cancer cell lines publication-title: Nature Genetics doi: 10.1038/73432 – year: 2014 ident: 10.1016/j.eswa.2020.113971_b0235 – volume: 6 start-page: 61065 year: 2018 ident: 10.1016/j.eswa.2020.113971_b0155 article-title: A new filter feature selection based on criteria fusion for gene microarray data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873634 – ident: 10.1016/j.eswa.2020.113971_b0320 doi: 10.1038/415530a – volume: 113398 year: 2020 ident: 10.1016/j.eswa.2020.113971_b0190 article-title: Markov Blanket-based Universal Feature Selection for Classification and Regression of Mixed-Type Data publication-title: Expert Systems with Applications – volume: C4 start-page: 5 year: 2014 ident: 10.1016/j.eswa.2020.113971_b0230 publication-title: programs for machine learning – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2020.113971_b0315 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.eswa.2020.113971_b0265 article-title: A review of feature selection techniques in bioinformatics publication-title: bioinformatics doi: 10.1093/bioinformatics/btm344 – ident: 10.1016/j.eswa.2020.113971_b0305 doi: 10.1155/2014/972125 – volume: 62 start-page: 12 year: 2016 ident: 10.1016/j.eswa.2020.113971_b0055 article-title: A kernel-based clustering method for gene selection with gene expression data publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2016.05.007 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 10.1016/j.eswa.2020.113971_b0135 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine learning doi: 10.1023/A:1012487302797 – volume: 12 start-page: 1374 issue: 6 year: 2015 ident: 10.1016/j.eswa.2020.113971_b0195 article-title: On efficient feature ranking methods for high-throughput data analysis publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2015.2415790 – volume: 49 start-page: 1245 issue: 4 year: 2019 ident: 10.1016/j.eswa.2020.113971_b0275 article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification publication-title: Applied Intelligence doi: 10.1007/s10489-018-1320-1 – start-page: 37 year: 2014 ident: 10.1016/j.eswa.2020.113971_b0280 – volume: 44 start-page: 529 issue: 4 year: 2011 ident: 10.1016/j.eswa.2020.113971_b0050 article-title: An efficient statistical feature selection approach for classification of gene expression data publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2011.01.001 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.eswa.2020.113971_b0085 article-title: The use of multiple measurements in taxonomic problems publication-title: Annals of Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 57 start-page: 238 issue: 3 year: 1989 ident: 10.1016/j.eswa.2020.113971_b0090 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: International Statistical Review/Revue Internationale de Statistique – ident: 10.1016/j.eswa.2020.113971_b0100 – volume: 3 start-page: 185 issue: 02 year: 2005 ident: 10.1016/j.eswa.2020.113971_b0075 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: Journal of Bioinformatics and Computational Biology doi: 10.1142/S0219720005001004 – year: 2015 ident: 10.1016/j.eswa.2020.113971_b0040 – volume: 47 start-page: 13 year: 2015 ident: 10.1016/j.eswa.2020.113971_b0070 article-title: Gene expression data classification using support vector machine and mutual information-based gene selection publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.03.178 – volume: 10 start-page: 289 year: 2012 ident: 10.1016/j.eswa.2020.113971_b0270 article-title: Feature Selection Ensemble publication-title: Turing-100 – volume: 5 start-page: 537 issue: 4 year: 1994 ident: 10.1016/j.eswa.2020.113971_b0030 article-title: Using mutual information for selecting features in supervised neural net learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.298224 – volume: 6 start-page: 15212 year: 2018 ident: 10.1016/j.eswa.2020.113971_b0250 article-title: A hybridized feature selection and extraction approach for enhancing cancer prediction based on DNA methylation publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812734 – ident: 10.1016/j.eswa.2020.113971_b0080 doi: 10.1109/IJCNN.2004.1380157 – year: 2018 ident: 10.1016/j.eswa.2020.113971_b0225 – ident: 10.1016/j.eswa.2020.113971_b0005 – year: 1996 ident: 10.1016/j.eswa.2020.113971_b0165 – volume: 53 start-page: 3601 issue: 10 year: 2009 ident: 10.1016/j.eswa.2020.113971_b0185 article-title: Multiclass classification and gene selection with a stochastic algorithm publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2009.02.028 – volume: 7 start-page: 559 issue: 3–4 year: 2000 ident: 10.1016/j.eswa.2020.113971_b0035 article-title: Tissue classification with gene expression profiles publication-title: Journal of Computational Biology doi: 10.1089/106652700750050943 – volume: 9 start-page: 60 issue: 1 year: 1938 ident: 10.1016/j.eswa.2020.113971_b0310 article-title: The large-sample distribution of the likelihood ratio for testing composite hypotheses publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177732360 – volume: Vol. 21 year: 2008 ident: 10.1016/j.eswa.2020.113971_b0105 – volume: 62 issue: 03 year: 2020 ident: 10.1016/j.eswa.2020.113971_b0010 article-title: Machine Learning Supervised Algorithms of Gene Selection: A Review publication-title: Machine Learning – start-page: 388 year: 1995 ident: 10.1016/j.eswa.2020.113971_b0215 – volume: 97 start-page: 273 issue: 1–2 year: 1997 ident: 10.1016/j.eswa.2020.113971_b0160 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – volume: 81 start-page: 11 year: 2017 ident: 10.1016/j.eswa.2020.113971_b0300 article-title: Wrapper-based gene selection with Markov blanket publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2016.12.002 – start-page: 171 year: 1994 ident: 10.1016/j.eswa.2020.113971_b0170 – volume: 2 start-page: 376 year: 2003 ident: 10.1016/j.eswa.2020.113971_b0290 article-title: Algorithms for Large Scale Markov Blanket Discovery publication-title: FLAIRS Conference – start-page: 215 year: 1958 ident: 10.1016/j.eswa.2020.113971_b0065 article-title: The regression analysis of binary sequences publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1958.tb00292.x – volume: 41 start-page: 723 issue: 3 year: 2020 ident: 10.1016/j.eswa.2020.113971_b0220 article-title: Mining gene expression data using data mining techniques: A critical review publication-title: Journal of Information and Optimization Sciences doi: 10.1080/02522667.2018.1555311 – volume: 39 start-page: 2383 issue: 12 year: 2006 ident: 10.1016/j.eswa.2020.113971_b0260 article-title: Incremental wrapper-based gene selection from microarray data for cancer classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.11.001 – volume: 10 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.eswa.2020.113971_b0200 article-title: Bamb: A balanced Markov blanket discovery approach to feature selection publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) doi: 10.1145/3335676 – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 10.1016/j.eswa.2020.113971_b0130 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.eswa.2020.113971_b0060 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1023/A:1022627411411 – volume: 13 start-page: 971 issue: 5 year: 2015 ident: 10.1016/j.eswa.2020.113971_b0025 article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2015.2478454 – ident: 10.1016/j.eswa.2020.113971_b0140 doi: 10.1155/2015/198363 – volume: 3 start-page: 306 year: 1979 ident: 10.1016/j.eswa.2020.113971_b0285 article-title: A problem of dimensionality: A simple example publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1979.4766926 – ident: 10.1016/j.eswa.2020.113971_b0120 doi: 10.1007/978-3-319-58838-4_53 – volume: 38 start-page: 8144 issue: 7 year: 2011 ident: 10.1016/j.eswa.2020.113971_b0150 article-title: Hybrid feature selection by combining filters and wrappers publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.156 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.eswa.2020.113971_b0245 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.159 – volume: 294 start-page: 362 year: 2015 ident: 10.1016/j.eswa.2020.113971_b0115 article-title: Mapping microarray gene expression data into dissimilarity spaces for tumor classification publication-title: Information Sciences doi: 10.1016/j.ins.2014.09.064 – volume: 13 start-page: 51 year: 2002 ident: 10.1016/j.eswa.2020.113971_b0205 article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns publication-title: Genome informatics – volume: 7 start-page: 78533 year: 2019 ident: 10.1016/j.eswa.2020.113971_b0015 article-title: A survey on hybrid feature selection methods in microarray gene expression data for cancer classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922987 – start-page: 96 year: 2008 ident: 10.1016/j.eswa.2020.113971_b0095 – volume: 47 start-page: 1169 issue: 5 year: 2016 ident: 10.1016/j.eswa.2020.113971_b0110 article-title: Efficient Markov blanket discovery and its application publication-title: IEEE transactions on Cybernetics doi: 10.1109/TCYB.2016.2539338 – volume: 45 start-page: 211 issue: 2 year: 2007 ident: 10.1016/j.eswa.2020.113971_b0240 article-title: Towards scalable and data efficient learning of Markov boundaries publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2006.06.008 – volume: Vol. 1 year: 2008 ident: 10.1016/j.eswa.2020.113971_b0295 |
| SSID | ssj0017007 |
| Score | 2.5463033 |
| Snippet | •Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its... Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113971 |
| SubjectTerms | Accuracy Cancer Classification Gene selection High-dimensional data Markov blanket Microarray data Mixed-type data Multiclass Multivariate analysis Multivariate feature selection Ranking Redundancy |
| Title | An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113971 https://www.proquest.com/docview/2480004368 |
| Volume | 166 |
| WOSCitedRecordID | wos000598522500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXNH2hSZOCQ9FFYEA9SY1G4CAtDLeDU3gjKIpqFKSK41fiH9D_3aNIyY7RGu3QRTBkSTZ4H0_H4933IfRBJQywqzSJ_KAgkU4ywmMeEiUL6mcRBEpZza4_YMMhH4_Tr53Oz6YXZnnDqoo_PKST_2pqOAfGNq2z_2Du9qFwAj6D0eEIZofjXxm-V5kijbJudLT1gktYD0NI6RW6ZvH0jE67yRBY9ei60BCepr1ZrYnjih8NjzHJDfe_5e3wfpjSPTmdypXnGtrWKX3Dlzx3rNBNv9zGzvh21Q84mKtVi6izq9vSuiqv9j1tUc_CFQSU5GK1cOT9LkER1BVatkXTZs3azplvj7KPDOBhBXpOtfW9nIUkYVYwsXXOyaZ79X_r9G3-4fpUz-4Nk1RQC9WkVtnlMcP28Is4vxwMxKg_Hn2c3BEjPmY26Z0SyxO0F7A45V201_vUH39ut6MYtX33zb923Ve2UHD7Z_8U4Wy96-sAZnSA9t3KA_csYl6gjq5eoueNqgd2Tv4V-t6rcAsgvAkg7ACEHYCwBRAGAGEDINwCCJcV3gYQXgMIGwC9Rpfn_dHZBXFyHESFLJgT388k1VLCaylnSWICV1loxkOdxrAwLfzCl5LlEZXSl1RRlcPUT3O4ipsRlOEb1K1uK_0WYcYyTmMVJprKiEKEnkOUlOSMyzBKVUIPkd8MoVCOq95IptyIpijxWphhF2bYhR32Q-S190wsU8vOq-PGMsLFmjaGFICqnfcdN2YUbtLPRBBxarUcjnZ__Q49W8-QY9SdTxf6BD1Vy3k5m753qPsFseWqtA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multivariate+feature+ranking+method+for+gene+selection+in+high-dimensional+microarray+data&rft.jtitle=Expert+systems+with+applications&rft.au=Lee%2C+Junghye&rft.au=Choi%2C+In+Young&rft.au=Jun%2C+Chi-Hyuck&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.113971&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |