An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data

•Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its high-dimensionality.•An efficient multivariate feature selection method is proposed for microarray data.•We demonstrate its usefulness of high accurac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 166; S. 113971
Hauptverfasser: Lee, Junghye, Choi, In Young, Jun, Chi-Hyuck
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 15.03.2021
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its high-dimensionality.•An efficient multivariate feature selection method is proposed for microarray data.•We demonstrate its usefulness of high accuracy and good efficiency using real data.•The method outperforms other comparable gene selection methods in terms of accuracy. Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands) compared to the number of observations (<tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency.
AbstractList •Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its high-dimensionality.•An efficient multivariate feature selection method is proposed for microarray data.•We demonstrate its usefulness of high accuracy and good efficiency using real data.•The method outperforms other comparable gene selection methods in terms of accuracy. Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands) compared to the number of observations (<tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency.
Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands) compared to the number of observations (<tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency.
ArticleNumber 113971
Author Choi, In Young
Lee, Junghye
Jun, Chi-Hyuck
Author_xml – sequence: 1
  givenname: Junghye
  orcidid: 0000-0002-9736-4796
  surname: Lee
  fullname: Lee, Junghye
  email: junghyelee@unist.ac.kr
  organization: Department of Industrial Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
– sequence: 2
  givenname: In Young
  surname: Choi
  fullname: Choi, In Young
  email: iychoi@catholic.ac.kr
  organization: Department of Medical Informatics, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, Republic of Korea
– sequence: 3
  givenname: Chi-Hyuck
  orcidid: 0000-0003-0911-7347
  surname: Jun
  fullname: Jun, Chi-Hyuck
  email: chjun@postech.ac.kr
  organization: Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Republic of Korea
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1uT3e0mC15K8QsKXvQcxs2kTd3N1iSt9N-bpZ489DTw8j7DzDMhI9c7JOSWsxlnvLrfzjD8wCxneQp4UQt-QcZciiKrRF2MyJjVc5GVXJRXZBLCljEuGBNjsl44isbYxqKLtNu30R7AW4hIDULce6Qe3Jd1a9ph3PSamt7TNTqkAVtsou0dtY5u7HqTaduhCymBlna28T14D0eqIcI1uTTQBrz5m1Py8fT4vnzJVm_Pr8vFKmsKkceM809gCCCl0KKqZFkJMChkgfU8n88NNxxA6JIBcGANa3SJVa1TSw4fQTEld6e9O99_7zFEte33Ph0UVF5KxlhZVDK18lMr3RiCR6N23nbgj4ozNQhVWzUIVYNQdRKaIPkPamyEQUD0YNvz6MMJxfT6waJXYRDeoLY-OVS6t-fwX7HklK0
CitedBy_id crossref_primary_10_3390_electronics13234612
crossref_primary_10_1007_s11042_024_18387_6
crossref_primary_10_1016_j_eswa_2021_115304
crossref_primary_10_1016_j_asoc_2021_107729
crossref_primary_10_1016_j_chemolab_2022_104713
crossref_primary_10_1016_j_knosys_2022_109884
crossref_primary_10_1016_j_bspc_2022_103785
crossref_primary_10_1016_j_asoc_2022_109052
crossref_primary_10_1016_j_asoc_2023_110034
crossref_primary_10_1016_j_asoc_2025_112895
crossref_primary_10_1016_j_eswa_2023_122504
crossref_primary_10_1038_s41598_021_03316_6
crossref_primary_10_1186_s12859_022_04848_y
crossref_primary_10_3389_fdata_2025_1624507
crossref_primary_10_1016_j_asoc_2022_109699
crossref_primary_10_1007_s00521_024_09581_6
crossref_primary_10_3390_diagnostics11101936
crossref_primary_10_1007_s41965_022_00111_8
crossref_primary_10_1016_j_bspc_2022_104080
crossref_primary_10_1016_j_jbi_2025_104803
crossref_primary_10_1007_s11517_022_02555_7
crossref_primary_10_1007_s00500_023_08126_8
crossref_primary_10_1016_j_chaos_2022_112972
crossref_primary_10_1016_j_chemolab_2023_104989
crossref_primary_10_1007_s10115_024_02292_3
crossref_primary_10_1016_j_matpr_2022_04_803
crossref_primary_10_4103_jcrt_jcrt_811_21
crossref_primary_10_1016_j_eswa_2022_117641
crossref_primary_10_1007_s13369_024_09587_1
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1007_s12539_023_00553_3
crossref_primary_10_3390_biomedicines10082052
crossref_primary_10_1177_17483026231184171
crossref_primary_10_1109_JAS_2023_123648
crossref_primary_10_1109_JSEN_2022_3161596
crossref_primary_10_1109_ACCESS_2024_3362228
crossref_primary_10_1016_j_knosys_2022_110250
Cites_doi 10.1016/j.procs.2018.05.127
10.1109/TCBB.2012.33
10.1073/pnas.96.12.6745
10.1126/science.286.5439.531
10.1016/j.fiae.2016.09.004
10.1038/73432
10.1109/ACCESS.2018.2873634
10.1038/415530a
10.1093/bioinformatics/btm344
10.1155/2014/972125
10.1016/j.jbi.2016.05.007
10.1023/A:1012487302797
10.1109/TCBB.2015.2415790
10.1007/s10489-018-1320-1
10.1016/j.jbi.2011.01.001
10.1111/j.1469-1809.1936.tb02137.x
10.1142/S0219720005001004
10.1016/j.procs.2015.03.178
10.1109/72.298224
10.1109/ACCESS.2018.2812734
10.1109/IJCNN.2004.1380157
10.1016/j.csda.2009.02.028
10.1089/106652700750050943
10.1214/aoms/1177732360
10.1016/S0004-3702(97)00043-X
10.1016/j.compbiomed.2016.12.002
10.1111/j.2517-6161.1958.tb00292.x
10.1080/02522667.2018.1555311
10.1016/j.patcog.2005.11.001
10.1145/3335676
10.1023/A:1022627411411
10.1109/TCBB.2015.2478454
10.1155/2015/198363
10.1109/TPAMI.1979.4766926
10.1007/978-3-319-58838-4_53
10.1016/j.eswa.2010.12.156
10.1109/TPAMI.2005.159
10.1016/j.ins.2014.09.064
10.1109/ACCESS.2019.2922987
10.1109/TCYB.2016.2539338
10.1016/j.ijar.2006.06.008
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright Elsevier BV Mar 15, 2021
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright Elsevier BV Mar 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113971
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113971
S095741742030751X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c372t-11ba0eaa887d7668467afe783e95255f1f1aa7d40aa1a0c0cd4e69d67a80170a3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598522500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 05:19:19 EDT 2025
Sat Nov 29 07:08:53 EST 2025
Tue Nov 18 21:34:47 EST 2025
Fri Feb 23 02:47:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords High-dimensional data
Mixed-type data
Ranking
Microarray data
Classification
Markov blanket
Gene selection
Multiclass
Multivariate feature selection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-11ba0eaa887d7668467afe783e95255f1f1aa7d40aa1a0c0cd4e69d67a80170a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0911-7347
0000-0002-9736-4796
OpenAccessLink https://dx.doi.org/10.1016/j.eswa.2020.113971
PQID 2480004368
PQPubID 2045477
ParticipantIDs proquest_journals_2480004368
crossref_primary_10_1016_j_eswa_2020_113971
crossref_citationtrail_10_1016_j_eswa_2020_113971
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113971
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Brown, G. (2009). A new perspective for information theoretic feature selection. In
(b0295) 2008; Vol. 1
Almugren, Alshamlan (b0015) 2019; 7
Manikandan, Abirami (b0225) 2018
Sun, Zhang, Qian, Xu, Zhang, Tian (b0275) 2019; 49
Liao, Jiang, Liang, Peng, Peng, Hanyurwimfura, Li, Chen (b0195) 2015; 12
2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541)
Lamba, Munjal, Gigras (b0175) 2018; 132
Chandra, Gupta (b0050) 2011; 44
Proceedings of the world congress on engineering
(Vol. 2, pp. 1415-1419). IEEE.
Devi Arockia Vanitha, Devaraj, Venkatesuluc (b0070) 2015; 47
Koller, Sahami (b0165) 1996
Fisher (b0085) 1936; 7
Hoque, Ahmed, Bhattacharyya, Kalita (b0145) 2016; 8
Lê Cao, Bonnet, Gadat (b0185) 2009; 53
(Vol. 1, pp. 321-328). Newswood Ltd.
Saeys, Inza, Larrañaga (b0265) 2007; 23
Advances in bioinformatics
Artificial intelligence and statistics
Ling, Yu, Wang, Liu, Ding, Wu (b0200) 2019; 10
Wilks (b0310) 1938; 9
Pearl (b0235) 2014
Mabu, Prasad, Yadav (b0220) 2020; 41
Ben-Dor, Bruhn, Friedman, Nachman, Schummer, Yakhini (b0035) 2000; 7
Guyon, Elisseeff (b0130) 2003; 3
(b0105) 2008; Vol. 21
Ding, Peng (b0075) 2005; 3
Battiti (b0030) 1994; 5
Ross, Scherf, Eisen, Perou, Rees, Spellman, Iyer, Jeffrey, Van de Rijn, Waltham, Pergamenschikov (b0255) 2000; 24
Fu, Desmarais (b0095) 2008
Peng, Long, Ding (b0245) 2005; 27
2014.
Kohavi, John (b0160) 1997; 97
Gao, Ji (b0110) 2016; 47
Hira, Z. M., & Gillies, D. F. (2015). A review of feature selection and feature extraction methods applied on microarray data.
García, V., Sánchez, J. S., Cleofas-Sánchez, L., Ochoa-Domínguez, H. J., & López-Orozco, F. (2017). An insight on the ‘large G, small n’problem in gene-expression microarray classification. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 483-490). Springer, Cham.
Cox (b0065) 1958
Tsamardinos, Aliferis, Statnikov, Statnikov (b0290) 2003; 2
Chen, Zhang, Gutman (b0055) 2016; 62
Abdulqader, Abdulazeez, Zeebaree (b0010) 2020; 62
Vanjimalar, Ramyachitra, Manikandan (b0315) 2018
(pp. 49-56).
Fu, S., & Desmarais, M. C. (2010). Markov blanket based feature selection: a review of past decade. In
Wang, An, Yang, Chen, Li, Alterovitz (b0300) 2017; 81
Van’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H.L., Van Der Kooy, K., Marton, M.J., Witteveen, A.T., & Schreiber, G. J. (2002). Gene expression profiling predicts clinical outcome of breast cancer.
Tang, Alelyani, Liu (b0280) 2014
Wang, J., Zhou, S., Yi, Y., & Kong, J. (2014). An improved feature selection based on effective range for classification.
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (b0040) 2015
Abe, S. (2005). Support vector machines for pattern classification (Vol. 2, p. 44). London: Springer.
Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (b0020) 1999; 96
2015.
Lee, Jeong, Jun (b0190) 2020; 113398
Fix, Hodges (b0090) 1989; 57
Pena, Nilsson, Björkegren, Tegnér (b0240) 2007; 45
415(6871), 530.
Nature
Cortes, Vapnik (b0060) 1995; 20
García, Sánchez (b0115) 2015; 294
Hsu, Hsieh, Lu (b0150) 2011; 38
Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield (b0125) 1999; 286
Trunk (b0285) 1979; 3
Lazar, Taminau, Meganck, Steenhoff, Coletta, Molter, Nowe (b0180) 2012; 9
Raweh, Nassef, Badr (b0250) 2018; 6
Kononenko (b0170) 1994
Liu, Motoda, Dash (b0210) 1998
Ang, Mirzal, Haron, Hamed (b0025) 2015; 13
Duch, W., Wieczorek, T., Biesiada, J., & Blachnik, M. (2004). Comparison of feature ranking methods based on information entropy. In
Liu, Setiono (b0215) 1995
Quinlan (b0230) 2014; C4
Ke, Wu, Wu, Xiong (b0155) 2018; 6
Liu, Li, Wong (b0205) 2002; 13
The Scientific World Journal
Ruiz, Riquelme, Aguilar-Ruiz (b0260) 2006; 39
Guyon, Weston, Barnhill, Vapnik (b0135) 2002; 46
Shen, Diao, Su (b0270) 2012; 10
Chen (10.1016/j.eswa.2020.113971_b0055) 2016; 62
Pena (10.1016/j.eswa.2020.113971_b0240) 2007; 45
10.1016/j.eswa.2020.113971_b0140
Tang (10.1016/j.eswa.2020.113971_b0280) 2014
Ruiz (10.1016/j.eswa.2020.113971_b0260) 2006; 39
Fu (10.1016/j.eswa.2020.113971_b0095) 2008
Gao (10.1016/j.eswa.2020.113971_b0110) 2016; 47
Devi Arockia Vanitha (10.1016/j.eswa.2020.113971_b0070) 2015; 47
Tsamardinos (10.1016/j.eswa.2020.113971_b0290) 2003; 2
Vanjimalar (10.1016/j.eswa.2020.113971_b0315) 2018
Liu (10.1016/j.eswa.2020.113971_b0205) 2002; 13
Liu (10.1016/j.eswa.2020.113971_b0210) 1998
(10.1016/j.eswa.2020.113971_b0295) 2008; Vol. 1
Guyon (10.1016/j.eswa.2020.113971_b0135) 2002; 46
Manikandan (10.1016/j.eswa.2020.113971_b0225) 2018
Lê Cao (10.1016/j.eswa.2020.113971_b0185) 2009; 53
Hoque (10.1016/j.eswa.2020.113971_b0145) 2016; 8
Fix (10.1016/j.eswa.2020.113971_b0090) 1989; 57
Koller (10.1016/j.eswa.2020.113971_b0165) 1996
Wang (10.1016/j.eswa.2020.113971_b0300) 2017; 81
Ben-Dor (10.1016/j.eswa.2020.113971_b0035) 2000; 7
Guyon (10.1016/j.eswa.2020.113971_b0130) 2003; 3
Ross (10.1016/j.eswa.2020.113971_b0255) 2000; 24
Saeys (10.1016/j.eswa.2020.113971_b0265) 2007; 23
Peng (10.1016/j.eswa.2020.113971_b0245) 2005; 27
Lazar (10.1016/j.eswa.2020.113971_b0180) 2012; 9
Quinlan (10.1016/j.eswa.2020.113971_b0230) 2014; C4
Bolón-Canedo (10.1016/j.eswa.2020.113971_b0040) 2015
10.1016/j.eswa.2020.113971_b0100
Lee (10.1016/j.eswa.2020.113971_b0190) 2020; 113398
Alon (10.1016/j.eswa.2020.113971_b0020) 1999; 96
10.1016/j.eswa.2020.113971_b0305
García (10.1016/j.eswa.2020.113971_b0115) 2015; 294
10.1016/j.eswa.2020.113971_b0120
Wilks (10.1016/j.eswa.2020.113971_b0310) 1938; 9
Golub (10.1016/j.eswa.2020.113971_b0125) 1999; 286
Sun (10.1016/j.eswa.2020.113971_b0275) 2019; 49
10.1016/j.eswa.2020.113971_b0080
Ke (10.1016/j.eswa.2020.113971_b0155) 2018; 6
Hsu (10.1016/j.eswa.2020.113971_b0150) 2011; 38
Fisher (10.1016/j.eswa.2020.113971_b0085) 1936; 7
Lamba (10.1016/j.eswa.2020.113971_b0175) 2018; 132
Mabu (10.1016/j.eswa.2020.113971_b0220) 2020; 41
Abdulqader (10.1016/j.eswa.2020.113971_b0010) 2020; 62
Cox (10.1016/j.eswa.2020.113971_b0065) 1958
Kohavi (10.1016/j.eswa.2020.113971_b0160) 1997; 97
Cortes (10.1016/j.eswa.2020.113971_b0060) 1995; 20
Liu (10.1016/j.eswa.2020.113971_b0215) 1995
Liao (10.1016/j.eswa.2020.113971_b0195) 2015; 12
Raweh (10.1016/j.eswa.2020.113971_b0250) 2018; 6
Ding (10.1016/j.eswa.2020.113971_b0075) 2005; 3
Chandra (10.1016/j.eswa.2020.113971_b0050) 2011; 44
Trunk (10.1016/j.eswa.2020.113971_b0285) 1979; 3
Kononenko (10.1016/j.eswa.2020.113971_b0170) 1994
Shen (10.1016/j.eswa.2020.113971_b0270) 2012; 10
Battiti (10.1016/j.eswa.2020.113971_b0030) 1994; 5
(10.1016/j.eswa.2020.113971_b0105) 2008; Vol. 21
10.1016/j.eswa.2020.113971_b0045
10.1016/j.eswa.2020.113971_b0320
Ling (10.1016/j.eswa.2020.113971_b0200) 2019; 10
10.1016/j.eswa.2020.113971_b0005
Ang (10.1016/j.eswa.2020.113971_b0025) 2015; 13
Pearl (10.1016/j.eswa.2020.113971_b0235) 2014
Almugren (10.1016/j.eswa.2020.113971_b0015) 2019; 7
References_xml – volume: 7
  start-page: 559
  year: 2000
  end-page: 583
  ident: b0035
  article-title: Tissue classification with gene expression profiles
  publication-title: Journal of Computational Biology
– volume: 12
  start-page: 1374
  year: 2015
  end-page: 1384
  ident: b0195
  article-title: On efficient feature ranking methods for high-throughput data analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– reference: Van’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H.L., Van Der Kooy, K., Marton, M.J., Witteveen, A.T., & Schreiber, G. J. (2002). Gene expression profiling predicts clinical outcome of breast cancer.
– reference: (pp. 49-56).
– reference: Fu, S., & Desmarais, M. C. (2010). Markov blanket based feature selection: a review of past decade. In
– start-page: 37
  year: 2014
  ident: b0280
  article-title: Feature selection for classification: A review
– volume: 6
  start-page: 61065
  year: 2018
  end-page: 61076
  ident: b0155
  article-title: A new filter feature selection based on criteria fusion for gene microarray data
  publication-title: IEEE Access
– volume: 13
  start-page: 971
  year: 2015
  end-page: 989
  ident: b0025
  article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– reference: 415(6871), 530.
– reference: Advances in bioinformatics,
– volume: 13
  start-page: 51
  year: 2002
  end-page: 60
  ident: b0205
  article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
  publication-title: Genome informatics
– reference: Duch, W., Wieczorek, T., Biesiada, J., & Blachnik, M. (2004). Comparison of feature ranking methods based on information entropy. In
– reference: The Scientific World Journal,
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b0245
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 113398
  year: 2020
  ident: b0190
  article-title: Markov Blanket-based Universal Feature Selection for Classification and Regression of Mixed-Type Data
  publication-title: Expert Systems with Applications
– volume: 57
  start-page: 238
  year: 1989
  end-page: 247
  ident: b0090
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: International Statistical Review/Revue Internationale de Statistique
– volume: 62
  year: 2020
  ident: b0010
  article-title: Machine Learning Supervised Algorithms of Gene Selection: A Review
  publication-title: Machine Learning
– volume: 81
  start-page: 11
  year: 2017
  end-page: 23
  ident: b0300
  article-title: Wrapper-based gene selection with Markov blanket
  publication-title: Computers in biology and medicine
– reference: 2015.
– volume: 2
  start-page: 376
  year: 2003
  end-page: 380
  ident: b0290
  article-title: Algorithms for Large Scale Markov Blanket Discovery
  publication-title: FLAIRS Conference
– reference: Proceedings of the world congress on engineering
– volume: Vol. 21
  year: 2008
  ident: b0105
  publication-title: Computational intelligence: a compendium
– reference: García, V., Sánchez, J. S., Cleofas-Sánchez, L., Ochoa-Domínguez, H. J., & López-Orozco, F. (2017). An insight on the ‘large G, small n’problem in gene-expression microarray classification. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 483-490). Springer, Cham.
– volume: 9
  start-page: 1106
  year: 2012
  end-page: 1119
  ident: b0180
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– start-page: 215
  year: 1958
  end-page: 242
  ident: b0065
  article-title: The regression analysis of binary sequences
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– reference: Hira, Z. M., & Gillies, D. F. (2015). A review of feature selection and feature extraction methods applied on microarray data.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0060
  article-title: Support-vector networks
– reference: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541)
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b0160
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
– volume: 41
  start-page: 723
  year: 2020
  end-page: 742
  ident: b0220
  article-title: Mining gene expression data using data mining techniques: A critical review
  publication-title: Journal of Information and Optimization Sciences
– volume: 38
  start-page: 8144
  year: 2011
  end-page: 8150
  ident: b0150
  article-title: Hybrid feature selection by combining filters and wrappers
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 289
  year: 2012
  end-page: 306
  ident: b0270
  article-title: Feature Selection Ensemble
  publication-title: Turing-100
– reference: Wang, J., Zhou, S., Yi, Y., & Kong, J. (2014). An improved feature selection based on effective range for classification.
– reference: 2014.
– volume: 8
  start-page: 355
  year: 2016
  end-page: 384
  ident: b0145
  article-title: A fuzzy mutual information-based feature selection method for classification
  publication-title: Fuzzy Information and Engineering
– volume: 132
  start-page: 1619
  year: 2018
  end-page: 1625
  ident: b0175
  article-title: Feature Selection of Micro-array expression data (FSM)-A Review
  publication-title: Procedia Computer science
– year: 2015
  ident: b0040
  article-title: Feature Selection for High-Dimensional Data
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: b0265
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: bioinformatics
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b0130
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 10
  start-page: 1
  year: 2019
  end-page: 25
  ident: b0200
  article-title: Bamb: A balanced Markov blanket discovery approach to feature selection
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: b0085
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Annals of Eugenics
– volume: C4
  start-page: 5
  year: 2014
  ident: b0230
  publication-title: programs for machine learning
– volume: 9
  start-page: 60
  year: 1938
  end-page: 62
  ident: b0310
  article-title: The large-sample distribution of the likelihood ratio for testing composite hypotheses
  publication-title: The Annals of Mathematical Statistics
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  ident: b0125
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: science
– volume: 5
  start-page: 537
  year: 1994
  end-page: 550
  ident: b0030
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Transactions on Neural Networks
– reference: Brown, G. (2009). A new perspective for information theoretic feature selection. In
– reference: Artificial intelligence and statistics
– volume: 96
  start-page: 6745
  year: 1999
  end-page: 6750
  ident: b0020
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proceedings of the National Academy of Sciences
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b0135
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine learning
– volume: 294
  start-page: 362
  year: 2015
  end-page: 375
  ident: b0115
  article-title: Mapping microarray gene expression data into dissimilarity spaces for tumor classification
  publication-title: Information Sciences
– year: 1996
  ident: b0165
  article-title: Toward optimal feature selection
– start-page: 388
  year: 1995
  end-page: 391
  ident: b0215
  publication-title: Chi2: Feature selection and discretization of numeric attributes
– start-page: 96
  year: 2008
  end-page: 107
  ident: b0095
  publication-title: Fast Markov blanket discovery algorithm via local learning within single pass
– reference: (Vol. 2, pp. 1415-1419). IEEE.
– volume: 47
  start-page: 13
  year: 2015
  end-page: 21
  ident: b0070
  article-title: Gene expression data classification using support vector machine and mutual information-based gene selection
  publication-title: Procedia Computer Science
– volume: 49
  start-page: 1245
  year: 2019
  end-page: 1259
  ident: b0275
  article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification
  publication-title: Applied Intelligence
– year: 2018
  ident: b0225
  article-title: A survey on feature selection and extraction techniques for high-dimensional microarray datasets
– volume: 3
  start-page: 306
  year: 1979
  end-page: 307
  ident: b0285
  article-title: A problem of dimensionality: A simple example
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2018
  end-page: 4
  ident: b0315
  publication-title: A Review on Feature Selection Techniques for Gene Expression Data
– volume: 39
  start-page: 2383
  year: 2006
  end-page: 2392
  ident: b0260
  article-title: Incremental wrapper-based gene selection from microarray data for cancer classification
  publication-title: Pattern Recognition
– volume: 44
  start-page: 529
  year: 2011
  end-page: 535
  ident: b0050
  article-title: An efficient statistical feature selection approach for classification of gene expression data
  publication-title: Journal of Biomedical Informatics
– reference: (Vol. 1, pp. 321-328). Newswood Ltd.
– year: 2014
  ident: b0235
  article-title: Probabilistic reasoning in intelligent systems: Networks of plausible inference
– volume: Vol. 1
  year: 2008
  ident: b0295
  publication-title: Handbook of knowledge representation
– reference: Nature,
– volume: 45
  start-page: 211
  year: 2007
  end-page: 232
  ident: b0240
  article-title: Towards scalable and data efficient learning of Markov boundaries
  publication-title: International Journal of Approximate Reasoning
– start-page: 101
  year: 1998
  end-page: 106
  ident: b0210
  publication-title: A monotonic measure for optimal feature selection
– reference: Abe, S. (2005). Support vector machines for pattern classification (Vol. 2, p. 44). London: Springer.
– volume: 6
  start-page: 15212
  year: 2018
  end-page: 15223
  ident: b0250
  article-title: A hybridized feature selection and extraction approach for enhancing cancer prediction based on DNA methylation
  publication-title: IEEE Access
– volume: 53
  start-page: 3601
  year: 2009
  end-page: 3615
  ident: b0185
  article-title: Multiclass classification and gene selection with a stochastic algorithm
  publication-title: Computational Statistics & Data Analysis
– volume: 7
  start-page: 78533
  year: 2019
  end-page: 78548
  ident: b0015
  article-title: A survey on hybrid feature selection methods in microarray gene expression data for cancer classification
  publication-title: IEEE Access
– volume: 47
  start-page: 1169
  year: 2016
  end-page: 1179
  ident: b0110
  article-title: Efficient Markov blanket discovery and its application
  publication-title: IEEE transactions on Cybernetics
– volume: 62
  start-page: 12
  year: 2016
  end-page: 20
  ident: b0055
  article-title: A kernel-based clustering method for gene selection with gene expression data
  publication-title: Journal of Biomedical Informatics
– volume: 3
  start-page: 185
  year: 2005
  end-page: 205
  ident: b0075
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: Journal of Bioinformatics and Computational Biology
– volume: 24
  start-page: 227
  year: 2000
  ident: b0255
  article-title: Systematic variation in gene expression patterns in human cancer cell lines
  publication-title: Nature Genetics
– start-page: 171
  year: 1994
  end-page: 182
  ident: b0170
  publication-title: Estimating attributes: analysis and extensions of RELIEF
– volume: 132
  start-page: 1619
  year: 2018
  ident: 10.1016/j.eswa.2020.113971_b0175
  article-title: Feature Selection of Micro-array expression data (FSM)-A Review
  publication-title: Procedia Computer science
  doi: 10.1016/j.procs.2018.05.127
– volume: 9
  start-page: 1106
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2020.113971_b0180
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2012.33
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 10.1016/j.eswa.2020.113971_b0020
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.96.12.6745
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 10.1016/j.eswa.2020.113971_b0125
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: science
  doi: 10.1126/science.286.5439.531
– ident: 10.1016/j.eswa.2020.113971_b0045
– volume: 8
  start-page: 355
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2020.113971_b0145
  article-title: A fuzzy mutual information-based feature selection method for classification
  publication-title: Fuzzy Information and Engineering
  doi: 10.1016/j.fiae.2016.09.004
– start-page: 101
  year: 1998
  ident: 10.1016/j.eswa.2020.113971_b0210
– volume: 24
  start-page: 227
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2020.113971_b0255
  article-title: Systematic variation in gene expression patterns in human cancer cell lines
  publication-title: Nature Genetics
  doi: 10.1038/73432
– year: 2014
  ident: 10.1016/j.eswa.2020.113971_b0235
– volume: 6
  start-page: 61065
  year: 2018
  ident: 10.1016/j.eswa.2020.113971_b0155
  article-title: A new filter feature selection based on criteria fusion for gene microarray data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873634
– ident: 10.1016/j.eswa.2020.113971_b0320
  doi: 10.1038/415530a
– volume: 113398
  year: 2020
  ident: 10.1016/j.eswa.2020.113971_b0190
  article-title: Markov Blanket-based Universal Feature Selection for Classification and Regression of Mixed-Type Data
  publication-title: Expert Systems with Applications
– volume: C4
  start-page: 5
  year: 2014
  ident: 10.1016/j.eswa.2020.113971_b0230
  publication-title: programs for machine learning
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113971_b0315
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.eswa.2020.113971_b0265
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: bioinformatics
  doi: 10.1093/bioinformatics/btm344
– ident: 10.1016/j.eswa.2020.113971_b0305
  doi: 10.1155/2014/972125
– volume: 62
  start-page: 12
  year: 2016
  ident: 10.1016/j.eswa.2020.113971_b0055
  article-title: A kernel-based clustering method for gene selection with gene expression data
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2016.05.007
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.eswa.2020.113971_b0135
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine learning
  doi: 10.1023/A:1012487302797
– volume: 12
  start-page: 1374
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2020.113971_b0195
  article-title: On efficient feature ranking methods for high-throughput data analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2415790
– volume: 49
  start-page: 1245
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2020.113971_b0275
  article-title: Joint neighborhood entropy-based gene selection method with fisher score for tumor classification
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1320-1
– start-page: 37
  year: 2014
  ident: 10.1016/j.eswa.2020.113971_b0280
– volume: 44
  start-page: 529
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2020.113971_b0050
  article-title: An efficient statistical feature selection approach for classification of gene expression data
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2011.01.001
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.eswa.2020.113971_b0085
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Annals of Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 57
  start-page: 238
  issue: 3
  year: 1989
  ident: 10.1016/j.eswa.2020.113971_b0090
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: International Statistical Review/Revue Internationale de Statistique
– ident: 10.1016/j.eswa.2020.113971_b0100
– volume: 3
  start-page: 185
  issue: 02
  year: 2005
  ident: 10.1016/j.eswa.2020.113971_b0075
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: Journal of Bioinformatics and Computational Biology
  doi: 10.1142/S0219720005001004
– year: 2015
  ident: 10.1016/j.eswa.2020.113971_b0040
– volume: 47
  start-page: 13
  year: 2015
  ident: 10.1016/j.eswa.2020.113971_b0070
  article-title: Gene expression data classification using support vector machine and mutual information-based gene selection
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.03.178
– volume: 10
  start-page: 289
  year: 2012
  ident: 10.1016/j.eswa.2020.113971_b0270
  article-title: Feature Selection Ensemble
  publication-title: Turing-100
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  ident: 10.1016/j.eswa.2020.113971_b0030
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.298224
– volume: 6
  start-page: 15212
  year: 2018
  ident: 10.1016/j.eswa.2020.113971_b0250
  article-title: A hybridized feature selection and extraction approach for enhancing cancer prediction based on DNA methylation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812734
– ident: 10.1016/j.eswa.2020.113971_b0080
  doi: 10.1109/IJCNN.2004.1380157
– year: 2018
  ident: 10.1016/j.eswa.2020.113971_b0225
– ident: 10.1016/j.eswa.2020.113971_b0005
– year: 1996
  ident: 10.1016/j.eswa.2020.113971_b0165
– volume: 53
  start-page: 3601
  issue: 10
  year: 2009
  ident: 10.1016/j.eswa.2020.113971_b0185
  article-title: Multiclass classification and gene selection with a stochastic algorithm
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2009.02.028
– volume: 7
  start-page: 559
  issue: 3–4
  year: 2000
  ident: 10.1016/j.eswa.2020.113971_b0035
  article-title: Tissue classification with gene expression profiles
  publication-title: Journal of Computational Biology
  doi: 10.1089/106652700750050943
– volume: 9
  start-page: 60
  issue: 1
  year: 1938
  ident: 10.1016/j.eswa.2020.113971_b0310
  article-title: The large-sample distribution of the likelihood ratio for testing composite hypotheses
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177732360
– volume: Vol. 21
  year: 2008
  ident: 10.1016/j.eswa.2020.113971_b0105
– volume: 62
  issue: 03
  year: 2020
  ident: 10.1016/j.eswa.2020.113971_b0010
  article-title: Machine Learning Supervised Algorithms of Gene Selection: A Review
  publication-title: Machine Learning
– start-page: 388
  year: 1995
  ident: 10.1016/j.eswa.2020.113971_b0215
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.eswa.2020.113971_b0160
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 81
  start-page: 11
  year: 2017
  ident: 10.1016/j.eswa.2020.113971_b0300
  article-title: Wrapper-based gene selection with Markov blanket
  publication-title: Computers in biology and medicine
  doi: 10.1016/j.compbiomed.2016.12.002
– start-page: 171
  year: 1994
  ident: 10.1016/j.eswa.2020.113971_b0170
– volume: 2
  start-page: 376
  year: 2003
  ident: 10.1016/j.eswa.2020.113971_b0290
  article-title: Algorithms for Large Scale Markov Blanket Discovery
  publication-title: FLAIRS Conference
– start-page: 215
  year: 1958
  ident: 10.1016/j.eswa.2020.113971_b0065
  article-title: The regression analysis of binary sequences
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– volume: 41
  start-page: 723
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2020.113971_b0220
  article-title: Mining gene expression data using data mining techniques: A critical review
  publication-title: Journal of Information and Optimization Sciences
  doi: 10.1080/02522667.2018.1555311
– volume: 39
  start-page: 2383
  issue: 12
  year: 2006
  ident: 10.1016/j.eswa.2020.113971_b0260
  article-title: Incremental wrapper-based gene selection from microarray data for cancer classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.11.001
– volume: 10
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2020.113971_b0200
  article-title: Bamb: A balanced Markov blanket discovery approach to feature selection
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
  doi: 10.1145/3335676
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.eswa.2020.113971_b0130
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2020.113971_b0060
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– volume: 13
  start-page: 971
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2020.113971_b0025
  article-title: Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2015.2478454
– ident: 10.1016/j.eswa.2020.113971_b0140
  doi: 10.1155/2015/198363
– volume: 3
  start-page: 306
  year: 1979
  ident: 10.1016/j.eswa.2020.113971_b0285
  article-title: A problem of dimensionality: A simple example
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1979.4766926
– ident: 10.1016/j.eswa.2020.113971_b0120
  doi: 10.1007/978-3-319-58838-4_53
– volume: 38
  start-page: 8144
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2020.113971_b0150
  article-title: Hybrid feature selection by combining filters and wrappers
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.156
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.eswa.2020.113971_b0245
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.159
– volume: 294
  start-page: 362
  year: 2015
  ident: 10.1016/j.eswa.2020.113971_b0115
  article-title: Mapping microarray gene expression data into dissimilarity spaces for tumor classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.09.064
– volume: 13
  start-page: 51
  year: 2002
  ident: 10.1016/j.eswa.2020.113971_b0205
  article-title: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
  publication-title: Genome informatics
– volume: 7
  start-page: 78533
  year: 2019
  ident: 10.1016/j.eswa.2020.113971_b0015
  article-title: A survey on hybrid feature selection methods in microarray gene expression data for cancer classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922987
– start-page: 96
  year: 2008
  ident: 10.1016/j.eswa.2020.113971_b0095
– volume: 47
  start-page: 1169
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2020.113971_b0110
  article-title: Efficient Markov blanket discovery and its application
  publication-title: IEEE transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2539338
– volume: 45
  start-page: 211
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2020.113971_b0240
  article-title: Towards scalable and data efficient learning of Markov boundaries
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2006.06.008
– volume: Vol. 1
  year: 2008
  ident: 10.1016/j.eswa.2020.113971_b0295
SSID ssj0017007
Score 2.5463033
Snippet •Classification of microarray data plays a significant role in the diagnosis of cancer.•Feature selection is necessary for better analysis due to its...
Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (>tens of thousands)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113971
SubjectTerms Accuracy
Cancer
Classification
Gene selection
High-dimensional data
Markov blanket
Microarray data
Mixed-type data
Multiclass
Multivariate analysis
Multivariate feature selection
Ranking
Redundancy
Title An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data
URI https://dx.doi.org/10.1016/j.eswa.2020.113971
https://www.proquest.com/docview/2480004368
Volume 166
WOSCitedRecordID wos000598522500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0OXNH2hSZOCQ9FFYEA9SY1G4CAtDLeDU3gjKIpqFKSK41fiH9D_3aNIyY7RGu3QRTBkSTZ4H0_H4933IfRBJQywqzSJ_KAgkU4ywmMeEiUL6mcRBEpZza4_YMMhH4_Tr53Oz6YXZnnDqoo_PKST_2pqOAfGNq2z_2Du9qFwAj6D0eEIZofjXxm-V5kijbJudLT1gktYD0NI6RW6ZvH0jE67yRBY9ei60BCepr1ZrYnjih8NjzHJDfe_5e3wfpjSPTmdypXnGtrWKX3Dlzx3rNBNv9zGzvh21Q84mKtVi6izq9vSuiqv9j1tUc_CFQSU5GK1cOT9LkER1BVatkXTZs3azplvj7KPDOBhBXpOtfW9nIUkYVYwsXXOyaZ79X_r9G3-4fpUz-4Nk1RQC9WkVtnlMcP28Is4vxwMxKg_Hn2c3BEjPmY26Z0SyxO0F7A45V201_vUH39ut6MYtX33zb923Ve2UHD7Z_8U4Wy96-sAZnSA9t3KA_csYl6gjq5eoueNqgd2Tv4V-t6rcAsgvAkg7ACEHYCwBRAGAGEDINwCCJcV3gYQXgMIGwC9Rpfn_dHZBXFyHESFLJgT388k1VLCaylnSWICV1loxkOdxrAwLfzCl5LlEZXSl1RRlcPUT3O4ipsRlOEb1K1uK_0WYcYyTmMVJprKiEKEnkOUlOSMyzBKVUIPkd8MoVCOq95IptyIpijxWphhF2bYhR32Q-S190wsU8vOq-PGMsLFmjaGFICqnfcdN2YUbtLPRBBxarUcjnZ__Q49W8-QY9SdTxf6BD1Vy3k5m753qPsFseWqtA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multivariate+feature+ranking+method+for+gene+selection+in+high-dimensional+microarray+data&rft.jtitle=Expert+systems+with+applications&rft.au=Lee%2C+Junghye&rft.au=Choi%2C+In+Young&rft.au=Jun%2C+Chi-Hyuck&rft.date=2021-03-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.113971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon