Predicting Tropical Cyclone Extreme Rainfall in Guangxi, China: An Interpretable Machine Learning Framework Addressing Class Imbalance and Feature Optimization

ABSTRACT Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However, it remains a formidable challenge due to the intricate interactions among multi‐scale meteorological factors and the inherent data imbalances....

Full description

Saved in:
Bibliographic Details
Published in:Meteorological applications Vol. 32; no. 3
Main Authors: Cai, Yuexing, Huang, Cuiyin, Zheng, Fengqin, Li, Guangtao, Lai, Sheng, Zhu, Liyun, Zhu, Qiuyu
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.05.2025
Wiley
Subjects:
ISSN:1350-4827, 1469-8080
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However, it remains a formidable challenge due to the intricate interactions among multi‐scale meteorological factors and the inherent data imbalances. This study presented an interpretable machine learning (ML) framework aimed at predicting both the occurrence and magnitude of TCER in Guangxi (GX), China. The framework integrated three supervised learning algorithms, namely XGBoost, Random Forest, and AdaBoost, along with feature selection techniques and an explainable method. A total of 202 experiments were conducted to comprehensively evaluate the framework's performance. Genetic Algorithm (GA) optimization and Shapley additive explanations (SHAP) were utilized to identify the optimal subsets of features and accurately quantify the contributions of each variable. Results showed that the optimized XGBoost model exhibited outstanding performance, integrating 18 predictors across dynamic, thermodynamic, moisture, and precursor variables, with a Threat Score of 0.41 for the classification of TCER occurrence and a Threat Score of 0.49 for the regression of rainfall magnitude, outperforming the TIGGE ensemble data in case studies of typhoons Chaba (2022) and Doksuri (2023). SHAP analysis revealed that Distance to Track is the most crucial factor for TCER occurrence. It also unveiled the existence of nonlinear interactions. For instance, an increase in vertical wind shear, favorable thermal conditions, ascending motion, and subtropical high activity can substantially amplify the likelihood of TCER when coupled with low‐level humidity accumulation. Moreover, time‐lagged variables and time‐evolution variables demonstrated their ability to capture the precursor signals of TCER events, like humidity accumulation, circulation adjustment, and typhoon intensity changes, highlighting the model's effectiveness in considering these factors. Therefore, this study showcases the great potential of ML in enhancing TCER prediction while maintaining physical interpretability. Additionally, it offers a valuable reference for addressing imbalance issues in similar research fields. This study developed a machine learning (ML) framework to predict TC‐induced extreme rainfall events and their magnitudes in Guangxi (GX), China, providing a reference for the solution of imbalance problems in similar fields. This study demonstrates the transformative potential of ML in advancing TCER prediction while maintaining physical interpretability.
AbstractList ABSTRACT Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However, it remains a formidable challenge due to the intricate interactions among multi‐scale meteorological factors and the inherent data imbalances. This study presented an interpretable machine learning (ML) framework aimed at predicting both the occurrence and magnitude of TCER in Guangxi (GX), China. The framework integrated three supervised learning algorithms, namely XGBoost, Random Forest, and AdaBoost, along with feature selection techniques and an explainable method. A total of 202 experiments were conducted to comprehensively evaluate the framework's performance. Genetic Algorithm (GA) optimization and Shapley additive explanations (SHAP) were utilized to identify the optimal subsets of features and accurately quantify the contributions of each variable. Results showed that the optimized XGBoost model exhibited outstanding performance, integrating 18 predictors across dynamic, thermodynamic, moisture, and precursor variables, with a Threat Score of 0.41 for the classification of TCER occurrence and a Threat Score of 0.49 for the regression of rainfall magnitude, outperforming the TIGGE ensemble data in case studies of typhoons Chaba (2022) and Doksuri (2023). SHAP analysis revealed that Distance to Track is the most crucial factor for TCER occurrence. It also unveiled the existence of nonlinear interactions. For instance, an increase in vertical wind shear, favorable thermal conditions, ascending motion, and subtropical high activity can substantially amplify the likelihood of TCER when coupled with low‐level humidity accumulation. Moreover, time‐lagged variables and time‐evolution variables demonstrated their ability to capture the precursor signals of TCER events, like humidity accumulation, circulation adjustment, and typhoon intensity changes, highlighting the model's effectiveness in considering these factors. Therefore, this study showcases the great potential of ML in enhancing TCER prediction while maintaining physical interpretability. Additionally, it offers a valuable reference for addressing imbalance issues in similar research fields. This study developed a machine learning (ML) framework to predict TC‐induced extreme rainfall events and their magnitudes in Guangxi (GX), China, providing a reference for the solution of imbalance problems in similar fields. This study demonstrates the transformative potential of ML in advancing TCER prediction while maintaining physical interpretability.
Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However, it remains a formidable challenge due to the intricate interactions among multi‐scale meteorological factors and the inherent data imbalances. This study presented an interpretable machine learning (ML) framework aimed at predicting both the occurrence and magnitude of TCER in Guangxi (GX), China. The framework integrated three supervised learning algorithms, namely XGBoost, Random Forest, and AdaBoost, along with feature selection techniques and an explainable method. A total of 202 experiments were conducted to comprehensively evaluate the framework's performance. Genetic Algorithm (GA) optimization and Shapley additive explanations (SHAP) were utilized to identify the optimal subsets of features and accurately quantify the contributions of each variable. Results showed that the optimized XGBoost model exhibited outstanding performance, integrating 18 predictors across dynamic, thermodynamic, moisture, and precursor variables, with a Threat Score of 0.41 for the classification of TCER occurrence and a Threat Score of 0.49 for the regression of rainfall magnitude, outperforming the TIGGE ensemble data in case studies of typhoons Chaba (2022) and Doksuri (2023). SHAP analysis revealed that Distance to Track is the most crucial factor for TCER occurrence. It also unveiled the existence of nonlinear interactions. For instance, an increase in vertical wind shear, favorable thermal conditions, ascending motion, and subtropical high activity can substantially amplify the likelihood of TCER when coupled with low‐level humidity accumulation. Moreover, time‐lagged variables and time‐evolution variables demonstrated their ability to capture the precursor signals of TCER events, like humidity accumulation, circulation adjustment, and typhoon intensity changes, highlighting the model's effectiveness in considering these factors. Therefore, this study showcases the great potential of ML in enhancing TCER prediction while maintaining physical interpretability. Additionally, it offers a valuable reference for addressing imbalance issues in similar research fields.
ABSTRACT Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However, it remains a formidable challenge due to the intricate interactions among multi‐scale meteorological factors and the inherent data imbalances. This study presented an interpretable machine learning (ML) framework aimed at predicting both the occurrence and magnitude of TCER in Guangxi (GX), China. The framework integrated three supervised learning algorithms, namely XGBoost, Random Forest, and AdaBoost, along with feature selection techniques and an explainable method. A total of 202 experiments were conducted to comprehensively evaluate the framework's performance. Genetic Algorithm (GA) optimization and Shapley additive explanations (SHAP) were utilized to identify the optimal subsets of features and accurately quantify the contributions of each variable. Results showed that the optimized XGBoost model exhibited outstanding performance, integrating 18 predictors across dynamic, thermodynamic, moisture, and precursor variables, with a Threat Score of 0.41 for the classification of TCER occurrence and a Threat Score of 0.49 for the regression of rainfall magnitude, outperforming the TIGGE ensemble data in case studies of typhoons Chaba (2022) and Doksuri (2023). SHAP analysis revealed that Distance to Track is the most crucial factor for TCER occurrence. It also unveiled the existence of nonlinear interactions. For instance, an increase in vertical wind shear, favorable thermal conditions, ascending motion, and subtropical high activity can substantially amplify the likelihood of TCER when coupled with low‐level humidity accumulation. Moreover, time‐lagged variables and time‐evolution variables demonstrated their ability to capture the precursor signals of TCER events, like humidity accumulation, circulation adjustment, and typhoon intensity changes, highlighting the model's effectiveness in considering these factors. Therefore, this study showcases the great potential of ML in enhancing TCER prediction while maintaining physical interpretability. Additionally, it offers a valuable reference for addressing imbalance issues in similar research fields.
Author Zhu, Qiuyu
Cai, Yuexing
Huang, Cuiyin
Lai, Sheng
Zheng, Fengqin
Zhu, Liyun
Li, Guangtao
Author_xml – sequence: 1
  givenname: Yuexing
  orcidid: 0000-0002-0244-046X
  surname: Cai
  fullname: Cai, Yuexing
  organization: Guangxi Climate Center
– sequence: 2
  givenname: Cuiyin
  surname: Huang
  fullname: Huang, Cuiyin
  email: huangcy5710@163.com
  organization: Guangxi Climate Center
– sequence: 3
  givenname: Fengqin
  surname: Zheng
  fullname: Zheng, Fengqin
  organization: Guangxi Climate Center
– sequence: 4
  givenname: Guangtao
  surname: Li
  fullname: Li, Guangtao
  organization: Guangxi Climate Center
– sequence: 5
  givenname: Sheng
  surname: Lai
  fullname: Lai, Sheng
  organization: Guangxi Climate Center
– sequence: 6
  givenname: Liyun
  surname: Zhu
  fullname: Zhu, Liyun
  organization: Guangxi Meteorological Disaster and Prevention Center
– sequence: 7
  givenname: Qiuyu
  surname: Zhu
  fullname: Zhu, Qiuyu
  organization: Guangxi Climate Center
BookMark eNp9kc9u2zAMxoWhA9Z2O-wNdB0wt5Rt-c9ugZG0AVK0KNKzQUtUpk6WA1lFm77MXnVOUuwwYD2RID_-CPI7Yyd-8MTYVwEXAiC97ClelAAy_cBORV7USQUVnEx5JiHJq7T8xM7G8RFAZEKIU_b7LpC2Klq_4eswbK1Cx5udchOWz19ioJ74PVpv0DluPb96Qr95sd9589N6_MFnni99pLANFLFzxG9QTR3iK8Lg99hFwJ6eh_CLz7QONI77YuNwHPmy79ChV8TRa74gjE-B-O022t6-YrSD_8w-TptH-vIWz9nDYr5urpPV7dWyma0SlZVpmuRQlQrKWhkyhqgD0KWuRS3zDDqT1RqgTk1XSG3KQkiptco6VUjsSpRVl2XnbHnk6gEf222wPYZdO6BtD4UhbFoM0SpHbVoWUk3vlLIyuRETODekKp0ZBCNVPrG-HVkqDOMYyPzlCWj3LrWTS-3BpUl7-Y9W2Xi4PAa07r2JZ-to9390ezNfHyf-ABZEqFQ
CitedBy_id crossref_primary_10_3390_w17121776
Cites_doi 10.1007/s11069‐017‐3122‐x
10.1002/qj.4755
10.1175/1520‐0493(2004)132<2410:ADOCAW>2.0.CO;2
10.2151/jmsj.2012‐510
10.1175/MWR‐D‐19‐0344.1
10.1002/met.1973
10.11737/j.issn.1003‐0239.2018.04.008
10.1029/2022MS003334
10.1007/s00376‐020‐0211‐7
10.1002/joc.6027
10.1007/s00376‐017‐7051‐0
10.1016/j.atmosres.2023.106740
10.1029/2011GL050578
10.3969/j.issn.1006‐8775.2010.02.009
10.1029/2022EA002238
10.1175/JHM‐D‐19‐0045.1
10.1016/j.atmosres.2013.12.015
10.1002/qj.3635
10.1002/joc.7326
10.1175/1520‐0493(2004)132<1645:PDITCU>2.0.CO;2
10.1016/j.atmosres.2019.03.037
10.1002/2014GL060958
10.16765/j.cnki.1673‐7148.2017.01.001
10.1175/WAF‐D‐19‐0247.1
10.1145/2939672.2939785
10.16555/j.1006‐8775.2017.04.007
10.1175/MWR‐D‐19‐0168.1
10.1029/2021JD034604
10.1023/A:1010933404324
10.1175/MWR‐D‐17‐0250.1
10.3390/atmos14010018
10.3969/j.issn.1006‐8775.2012.02.007
10.1175/1520‐0493(2002)130<2110:TEOVWS>2.0.CO;2
10.1175/JCLI‐D‐19‐0693.1
10.1002/met.1754
10.1175/JAMC‐D‐21‐0170.1
10.1016/j.atmosres.2017.07.017
10.1175/JAMC‐D‐13‐0359.1
10.1016/j.atmosres.2022.106124
10.1175/JAMC‐D‐16‐0334.1
10.1007/s00382‐014‐2288‐0
10.1175/MWR3245.1
10.1002/widm.1072
10.3390/rs12233854
10.1007/s13143‐020‐00204‐3
10.1029/2011WR011508
10.1029/2010JD015092
10.1007/s00703‐018‐0594‐5
10.1175/WAF‐D‐18‐0007.1
10.1007/s00376‐021‐0281‐1
10.1155/2015/269856
10.1175/2010JAS3268.1
10.1002/qj.3803
10.1098/rsta.2009.0159
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/met.70052
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1469-8080
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2765c350558f4f10924fec8d3fa0f5c4
10_1002_met_70052
MET70052
Genre article
GrantInformation_xml – fundername: Innovation and Development Special Project of China Meteorological Administration
  funderid: CXFZ2025J013
– fundername: Laboratory of Beihai National Climate Observatory
  funderid: BNCO‐N202301
– fundername: Guangxi Meteorological Research Program Project
  funderid: Guiqike2024QN04
– fundername: Guangxi Key Research and Development Program
  funderid: GuikeAB25069165
– fundername: Natural Science Foundation of Guangxi Zhuang Autonomous Region
  funderid: 2020GXNSFAA159092; 2023GXNSFBA026346; 2023GXNSFBA026349; 2024GXNSFBA010259
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1ZS
24P
31~
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABVKB
ACBWZ
ACCMX
ACGFS
ACPOU
ACQPF
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADMLS
ADNMO
ADXAS
AEFGJ
AEIMD
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFKSM
AFPKN
AFRAH
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
CHEAL
COF
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HVGLF
HZ~
IAO
IGS
ITC
IX1
J0M
JPC
L98
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
M~E
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PCBAR
PHGZM
PHGZT
PIMPY
PUEGO
Q.N
Q11
QB0
QRW
R.K
RCA
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AFFHD
CITATION
O8X
ID FETCH-LOGICAL-c3722-4087c079cfeffeeb00d7d9195430bf39d0092fb65df76155ddc3bc65ab7a58b33
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485623000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-4827
IngestDate Fri Oct 03 12:45:38 EDT 2025
Sat Nov 29 07:42:20 EST 2025
Tue Nov 18 20:40:36 EST 2025
Thu Sep 25 07:36:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3722-4087c079cfeffeeb00d7d9195430bf39d0092fb65df76155ddc3bc65ab7a58b33
Notes Funding
This work was supported by the Natural Science Foundation of Guangxi (2023GXNSFBA026346, 2024GXNSFBA010259, 2020GXNSFAA159092, and 2023GXNSFBA026349), Innovation and Development Special Project of China Meteorological Administration (CXFZ2025J013), Guangxi Key Research and Development Program (Guike AB25069165), Laboratory of Beihai National Climate Observatory (BNCO‐N202301), Guangxi Meteorological Research Program Project (Guiqike2024QN04).
ORCID 0000-0002-0244-046X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmet.70052
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_2765c350558f4f10924fec8d3fa0f5c4
crossref_primary_10_1002_met_70052
crossref_citationtrail_10_1002_met_70052
wiley_primary_10_1002_met_70052_MET70052
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Meteorological applications
PublicationYear 2025
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References 2017; 40
2011; 116
2014; 139
2010; 16
2021; 126
2021; 28
2012; 18
2020; 12
2000; 1
2017; 197
2012; 13
2001; 45
2006; 134
1979
2010; 67
2015; 45
2004; 132
2021; 38
2019; 20
2019; 26
1980
2018; 33
2009; 367
2024; 150
2018; 35
2023; 14
2022; 271
2023; 15
2002; 130
2023; 289
2018; 146
2017; 23
2015; 54
2020; 148
2019; 39
2019; 225
2006
2020; 35
2022; 42
2012; 39
2020; 146
2020; 33
2014; 41
2010; 40
2021; 57
2012; 2
2012; 90
2013; 32
2022; 61
2021
2022; 9
2017; 56
2015; 2015
2018; 91
2017
2016
2017; 18
2012; 48
2019; 131
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Biau G. (e_1_2_9_2_1) 2012; 13
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Seneviratne S. (e_1_2_9_49_1) 2021
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_43_1
e_1_2_9_66_1
Ying C. (e_1_2_9_60_1) 2012; 39
e_1_2_9_6_1
e_1_2_9_4_1
Donoho D. L. (e_1_2_9_22_1) 2000; 1
Wang Y. (e_1_2_9_53_1) 2012; 18
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
Chen L. S. (e_1_2_9_10_1) 2010; 40
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
National Geophysical Data Center (e_1_2_9_46_1) 2006
Gao S. T. (e_1_2_9_24_1) 2013; 32
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_23_1
Lemaitre G. (e_1_2_9_38_1) 2017; 18
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Chen L. (e_1_2_9_8_1) 1979
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Tao S. (e_1_2_9_51_1) 1980
e_1_2_9_29_1
References_xml – volume: 42
  start-page: 1660
  issue: 3
  year: 2022
  end-page: 1669
  article-title: Poleward Migration of Tropical Cyclones and Its Related Typological Characteristics of Seasonal Maximum Precipitation in China
  publication-title: International Journal of Climatology
– volume: 225
  start-page: 131
  year: 2019
  end-page: 143
  article-title: Composite Analysis of Precipitation Intensity and Distribution Characteristics of Western Track Landfall Typhoons Over China Under Strong and Weak Monsoon Conditions
  publication-title: Atmospheric Research
– volume: 367
  start-page: 4237
  year: 2009
  end-page: 4253
  article-title: Statistical Challenges of High‐Dimensional Data
  publication-title: Royal Society Publishing
– volume: 1
  start-page: 32
  year: 2000
  article-title: High‐Dimensional Data Analysis: The Curses and Blessings of Dimensionality
  publication-title: AMS Math Challenges Lecture
– volume: 35
  start-page: 1967
  year: 2020
  end-page: 1980
  article-title: Improvement in the Forecasting of Heavy Rainfall Over South China in the Dsaef_ltp Model by Introducing the Intensity of the Tropical Cyclone
  publication-title: Weather and Forecasting
– volume: 91
  start-page: 201
  year: 2018
  end-page: 220
  article-title: Fuzzy Neural Network and LLE Algorithm for Forecasting Precipitation in Tropical Cyclones: Comparisons With Interpolation Method by ECMWF and Stepwise Regression Method
  publication-title: Natural Hazards
– volume: 26
  start-page: 213
  issue: 2
  year: 2019
  end-page: 220
  article-title: Rainfall Asymmetries of Landfalling Tropical Cyclones Along the South China Coast
  publication-title: Meteorological Applications
– volume: 57
  start-page: 405
  issue: 3
  year: 2021
  end-page: 420
  article-title: A Comparative Study on the Offshore Intensification of Supertyphoon Rammasun (2014) and Typhoon Rumbia (2013): The Role of Summer Monsoon
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
– volume: 33
  start-page: 1725
  year: 2018
  end-page: 1742
  article-title: An Objective Track Similarity Index and Its Preliminary Application to Predicting Precipitation of Landfalling Tropical Cyclones
  publication-title: Weather and Forecasting
– volume: 38
  start-page: 771
  year: 2021
  end-page: 784
  article-title: Impact of the Monsoonal Surge on Extreme Rainfall of Landfalling Tropical Cyclones
  publication-title: Advances in Atmospheric Sciences
– volume: 56
  start-page: 2883
  year: 2017
  end-page: 2901
  article-title: On the Relationship Between Intensity and Rainfall Distribution in Tropical Cyclones Making Landfall Over China
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random Forests
  publication-title: Machine Learning
– volume: 132
  start-page: 2410
  issue: 10
  year: 2004
  end-page: 2420
  article-title: Asymmetric Distribution of Convection Associated With Tropical Cyclones Making Landfall Along the South China Coast
  publication-title: Monthly Weather Review
– year: 1979
– volume: 148
  start-page: 2503
  year: 2020
  end-page: 2525
  article-title: Rainfall Mechanisms for One of the Wettest Tropical Cyclones on Record in Australia‐Oswald (2013)
  publication-title: Monthly Weather Review
– volume: 18
  start-page: 537
  issue: 4
  year: 2012
  end-page: 542
  article-title: Verification of Tropical Cyclone Rainfall Predictions From CMA and JMA Global Models
  publication-title: Journal of Tropical Meteorology
– volume: 14
  year: 2023
  article-title: Impact of Thermal Forcing Over the Southeast of the Tibetan Plateau on Frequency of Tropical Cyclones Affecting Guangxi During Boreal Summer
  publication-title: Atmosphere
– volume: 23
  start-page: 417
  issue: 4
  year: 2017
  end-page: 425
  article-title: A Composite Study of Asymmetries of Tropical Cyclones After Making Landfall in Guangdong Province
  publication-title: Journal of Tropical Meteorology
– volume: 148
  start-page: 2135
  year: 2020
  end-page: 2161
  article-title: Forecasting Severe Weather With Random Forests
  publication-title: Monthly Weather Review
– volume: 28
  start-page: 1
  year: 2021
  end-page: 16
  article-title: Using Machine Learning to Predict Fire‐Ignition Occurrences From Lightning Forecasts
  publication-title: Meteorological Applications
– volume: 35
  start-page: 58
  year: 2018
  end-page: 67
  article-title: Analysis on Numbers and Intensity Characteristics of Typhoon Landed in the South China (In Chinese). Mar. Forecast
  publication-title: Marine Forecasts
– volume: 131
  start-page: 613
  year: 2019
  end-page: 626
  article-title: Characteristics of Tropical Cyclone Extreme Precipitation and Its Preliminary Causes in Southeast China
  publication-title: Meteorology and Atmospheric Physics
– volume: 54
  start-page: 117
  year: 2015
  end-page: 136
  article-title: Observed Rainfall Asymmetry in Tropical Cyclones Making Landfall Over China
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 61
  start-page: 651
  year: 2022
  end-page: 667
  article-title: Extreme Rainfall Indices Prediction With Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 39
  start-page: 3379
  issue: 8
  year: 2019
  end-page: 3395
  article-title: Observed Rainfall Asymmetry of Tropical Cyclone in the Process of Making Landfall in Guangdong, South China
  publication-title: International Journal of Climatology
– volume: 40
  start-page: 3
  year: 2010
  end-page: 10
  article-title: Tropical Meteorological Calamities and Its Research Evaluation (In Chinese)
  publication-title: Meteorological Monthly
– volume: 45
  start-page: 175
  issue: 1
  year: 2015
  end-page: 184
  article-title: Non‐Stationary and Non‐Linear Influence of ENSO and Indian Ocean Dipole on the Variability of Indian Monsoon Rainfall and Extreme Rain Events
  publication-title: Climate Dynamics
– volume: 271
  start-page: 106
  year: 2022
  end-page: 124
  article-title: Comparative Analyses of the Heavy Rainfall Associated With Landfalling Tropical Cyclones SOULIK (1307) and MARIA (1808) With Similar Routes
  publication-title: Atmospheric Research
– volume: 39
  start-page: 745
  issue: 6
  year: 2012
  end-page: 758
  article-title: Advance and Prospects of Adaboost Algorithm
  publication-title: Acta Automatica Sinica
– volume: 16
  start-page: 171
  year: 2010
  end-page: 180
  article-title: Observational Analysis of Asymmetric Distribution of Convection Associated With Tropical Cyclones “Chanchu” and “Prapiroon” Making Landfall Along the South China Coast
  publication-title: Journal of Tropical Meteorology
– volume: 150
  start-page: 3167
  issue: 762
  year: 2024
  end-page: 3181
  article-title: Improving Forecasts of Precipitation Extremes Over Northern and Central Italy Using Machine Learning
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 48
  start-page: W09540
  year: 2012
  article-title: Linking Typhoon Tracks and Spatial Rainfall Patterns for Improving Flood Lead Time Predictions Over a Mesoscale Mountainous Watershed
  publication-title: Water Resources Research
– volume: 2015
  year: 2015
  article-title: A Structural SVM Based Approach for Binary Classification Under Class Imbalance
  publication-title: Mathematical Problems in Engineering
– volume: 146
  start-page: 69
  year: 2020
  end-page: 85
  article-title: Extreme Precipitation Events Over Northern Italy. Part I: A Systematic Classification With Machine‐Learning Techniques
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 130
  start-page: 2110
  issue: 9
  year: 2002
  end-page: 2123
  article-title: The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones
  publication-title: Monthly Weather Review
– volume: 32
  start-page: 289
  year: 2013
  end-page: 302
  article-title: The “Ensemble Dynamic Factors” Approach to Predict Rainstorm (In Chinese)
  publication-title: Torrential Rain Disasters
– volume: 116
  start-page: D05104
  issue: 5
  year: 2011
  article-title: On the Extreme Rainfall of Typhoon Morakot (2009)
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 9
  year: 2022
  article-title: Characteristics and Preliminary Causes of Extremely Persistent Heavy Rainfall Generated by Landfalling Tropical Cyclones Over China
  publication-title: Earth and Space Science
– volume: 134
  start-page: 3190
  issue: 11
  year: 2006
  end-page: 3208
  article-title: Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced From TRMM
  publication-title: Monthly Weather Review
– volume: 15
  start-page: 1
  year: 2023
  end-page: 29
  article-title: Machine Learning of Key Variables Impacting Extreme Precipitation in Various Regions of the Contiguous United States
  publication-title: Journal of Advanced Modeling Earth Systems
– volume: 20
  start-page: 1707
  issue: 8
  year: 2019
  end-page: 1720
  article-title: Decisive Atmospheric Circulation Indices for July–August Precipitation in North China Based on Tree Models
  publication-title: Journal of Hydrometeorology
– volume: 2
  start-page: 493
  issue: 6
  year: 2012
  end-page: 507
  article-title: Overview of Random Forest Methodology and Practical Guidance With Emphasis on Computational Biology and Bioinformatics
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 67
  start-page: 3541
  year: 2010
  end-page: 3558
  article-title: Rainfall Reinforcement Associated With Landfalling Tropical Cyclones
  publication-title: Journal of the Atmospheric Sciences
– volume: 146
  start-page: 1571
  year: 2018
  end-page: 1600
  article-title: Money Doesn't Grow on Trees, but Forecasts Do: Forecasting Extreme Precipitation With Random Forests
  publication-title: Monthly Weather Review
– volume: 40
  start-page: 3
  year: 2017
  end-page: 10
  article-title: Review of Typhoon Very Heavy Rainfall in China
  publication-title: Meteorological and Environmental Sciences
– year: 2016
– volume: 35
  start-page: 580
  year: 2018
  end-page: 591
  article-title: Characteristics and Preliminary Causes of Tropical Cyclone Extreme Rainfall Events Over Hainan Island
  publication-title: Advances in Atmospheric Sciences
– volume: 38
  start-page: 690
  year: 2021
  end-page: 699
  article-title: Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration
  publication-title: Advances in Atmospheric Sciences
– volume: 197
  start-page: 379
  year: 2017
  end-page: 389
  article-title: Changes of Extreme Precipitation and Nonlinear Influence of Climate Variables Over Monsoon Region in China
  publication-title: Atmospheric Research
– volume: 13
  start-page: 1063
  issue: 38
  year: 2012
  end-page: 1095
  article-title: Analysis of Random Forest Model
  publication-title: Journal of Machine Learning Research
– volume: 33
  start-page: 2223
  year: 2020
  end-page: 2235
  article-title: Trends in Landfalling Tropical Cyclone ‐ Induced Precipitation Over China
  publication-title: Journal of Climate
– volume: 39
  issue: 2
  year: 2012
  article-title: Importance of the Upper‐Level Warm Core in the Rapid Intensification of a Tropical Cyclone
  publication-title: Geophysical Research Letters
– volume: 139
  start-page: 18
  year: 2014
  end-page: 26
  article-title: Rainfall Asymmetries of Tropical Cyclones Prior to, During, and After Making Landfall in South China and Southeast United States
  publication-title: Atmospheric Research
– volume: 289
  year: 2023
  article-title: Dynamic Comparative Analysis of Different Types of Precipitation Caused by Landfalling Strong Typhoons Over South China
  publication-title: Atmospheric Research
– year: 1980
– volume: 18
  start-page: 172
  year: 2012
  end-page: 186
  article-title: Effects of Vertical Wind Shear on Intensity and Structure of Tropical Cyclone
  publication-title: Journal of Tropical Meteorology
– year: 2006
– volume: 18
  start-page: 559
  year: 2017
  end-page: 563
  article-title: Imbalanced‐Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
  publication-title: Journal of Machine Learning Research
– volume: 90
  start-page: 721
  issue: 5
  year: 2012
  end-page: 736
  article-title: Temporal and Spatial Characteristics of Typhoon Extreme Rainfall in Taiwan
  publication-title: Journal of the Meteorological Society of Japan
– volume: 126
  start-page: e2021JD034604
  issue: 7
  year: 2021
  article-title: Evaluating Variations in Tropical Cyclone Precipitation in Eastern Mexico Using Machine Learning Techniques
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 132
  start-page: 1645
  issue: 7
  year: 2004
  end-page: 1660
  article-title: Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective
  publication-title: Monthly Weather Review
– start-page: 1513
  year: 2021
  end-page: 1766
– year: 2017
– volume: 12
  start-page: 1
  year: 2020
  end-page: 26
  article-title: Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments
  publication-title: Remote Sensing
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  article-title: The ERA5 Global Reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 41
  start-page: 5678
  issue: 15
  year: 2014
  end-page: 5684
  article-title: Rainfall‐Aerosol Relationships Explained by Wet Scavenging and Humidity
  publication-title: Geophysical Research Letters
– ident: e_1_2_9_33_1
  doi: 10.1007/s11069‐017‐3122‐x
– ident: e_1_2_9_28_1
  doi: 10.1002/qj.4755
– ident: e_1_2_9_6_1
  doi: 10.1175/1520‐0493(2004)132<2410:ADOCAW>2.0.CO;2
– ident: e_1_2_9_50_1
  doi: 10.2151/jmsj.2012‐510
– ident: e_1_2_9_31_1
  doi: 10.1175/MWR‐D‐19‐0344.1
– volume: 13
  start-page: 1063
  issue: 38
  year: 2012
  ident: e_1_2_9_2_1
  article-title: Analysis of Random Forest Model
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_18_1
  doi: 10.1002/met.1973
– ident: e_1_2_9_45_1
  doi: 10.11737/j.issn.1003‐0239.2018.04.008
– ident: e_1_2_9_39_1
  doi: 10.1029/2022MS003334
– volume: 18
  start-page: 537
  issue: 4
  year: 2012
  ident: e_1_2_9_53_1
  article-title: Verification of Tropical Cyclone Rainfall Predictions From CMA and JMA Global Models
  publication-title: Journal of Tropical Meteorology
– ident: e_1_2_9_43_1
  doi: 10.1007/s00376‐020‐0211‐7
– ident: e_1_2_9_54_1
  doi: 10.1002/joc.6027
– ident: e_1_2_9_35_1
  doi: 10.1007/s00376‐017‐7051‐0
– ident: e_1_2_9_5_1
  doi: 10.1016/j.atmosres.2023.106740
– ident: e_1_2_9_65_1
  doi: 10.1029/2011GL050578
– ident: e_1_2_9_44_1
– ident: e_1_2_9_63_1
  doi: 10.3969/j.issn.1006‐8775.2010.02.009
– start-page: 1513
  volume-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2021
  ident: e_1_2_9_49_1
– ident: e_1_2_9_40_1
  doi: 10.1029/2022EA002238
– volume: 40
  start-page: 3
  year: 2010
  ident: e_1_2_9_10_1
  article-title: Tropical Meteorological Calamities and Its Research Evaluation (In Chinese)
  publication-title: Meteorological Monthly
– ident: e_1_2_9_52_1
  doi: 10.1175/JHM‐D‐19‐0045.1
– ident: e_1_2_9_58_1
  doi: 10.1016/j.atmosres.2013.12.015
– ident: e_1_2_9_27_1
  doi: 10.1002/qj.3635
– ident: e_1_2_9_56_1
  doi: 10.1002/joc.7326
– ident: e_1_2_9_42_1
  doi: 10.1175/1520‐0493(2004)132<1645:PDITCU>2.0.CO;2
– volume: 39
  start-page: 745
  issue: 6
  year: 2012
  ident: e_1_2_9_60_1
  article-title: Advance and Prospects of Adaboost Algorithm
  publication-title: Acta Automatica Sinica
– ident: e_1_2_9_67_1
  doi: 10.1016/j.atmosres.2019.03.037
– ident: e_1_2_9_26_1
  doi: 10.1002/2014GL060958
– ident: e_1_2_9_9_1
  doi: 10.16765/j.cnki.1673‐7148.2017.01.001
– volume-title: 2‐Minute Gridded Global Relief Data (ETOPO2) v2
  year: 2006
  ident: e_1_2_9_46_1
– ident: e_1_2_9_20_1
  doi: 10.1175/WAF‐D‐19‐0247.1
– ident: e_1_2_9_13_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_9_55_1
  doi: 10.16555/j.1006‐8775.2017.04.007
– volume-title: The Torrential Rain in China (in Chinese)
  year: 1980
  ident: e_1_2_9_51_1
– ident: e_1_2_9_19_1
  doi: 10.1175/MWR‐D‐19‐0168.1
– ident: e_1_2_9_68_1
  doi: 10.1029/2021JD034604
– ident: e_1_2_9_4_1
  doi: 10.1023/A:1010933404324
– volume: 1
  start-page: 32
  year: 2000
  ident: e_1_2_9_22_1
  article-title: High‐Dimensional Data Analysis: The Curses and Blessings of Dimensionality
  publication-title: AMS Math Challenges Lecture
– ident: e_1_2_9_29_1
  doi: 10.1175/MWR‐D‐17‐0250.1
– ident: e_1_2_9_64_1
  doi: 10.3390/atmos14010018
– ident: e_1_2_9_11_1
  doi: 10.3969/j.issn.1006‐8775.2012.02.007
– ident: e_1_2_9_17_1
  doi: 10.1175/1520‐0493(2002)130<2110:TEOVWS>2.0.CO;2
– ident: e_1_2_9_41_1
  doi: 10.1175/JCLI‐D‐19‐0693.1
– ident: e_1_2_9_7_1
  doi: 10.1002/met.1754
– ident: e_1_2_9_34_1
  doi: 10.1175/JAMC‐D‐21‐0170.1
– ident: e_1_2_9_25_1
  doi: 10.1016/j.atmosres.2017.07.017
– ident: e_1_2_9_61_1
  doi: 10.1175/JAMC‐D‐13‐0359.1
– ident: e_1_2_9_59_1
  doi: 10.1016/j.atmosres.2022.106124
– ident: e_1_2_9_62_1
  doi: 10.1175/JAMC‐D‐16‐0334.1
– ident: e_1_2_9_37_1
  doi: 10.1007/s00382‐014‐2288‐0
– volume-title: An Introduction to the Western Pacific Typhoons (in Chinese)
  year: 1979
  ident: e_1_2_9_8_1
– ident: e_1_2_9_12_1
  doi: 10.1175/MWR3245.1
– ident: e_1_2_9_3_1
  doi: 10.1002/widm.1072
– ident: e_1_2_9_14_1
  doi: 10.3390/rs12233854
– ident: e_1_2_9_57_1
  doi: 10.1007/s13143‐020‐00204‐3
– ident: e_1_2_9_32_1
  doi: 10.1029/2011WR011508
– ident: e_1_2_9_16_1
  doi: 10.1029/2010JD015092
– volume: 18
  start-page: 559
  year: 2017
  ident: e_1_2_9_38_1
  article-title: Imbalanced‐Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_47_1
  doi: 10.1007/s00703‐018‐0594‐5
– ident: e_1_2_9_48_1
  doi: 10.1175/WAF‐D‐18‐0007.1
– ident: e_1_2_9_23_1
– ident: e_1_2_9_66_1
  doi: 10.1007/s00376‐021‐0281‐1
– ident: e_1_2_9_15_1
  doi: 10.1155/2015/269856
– ident: e_1_2_9_21_1
  doi: 10.1175/2010JAS3268.1
– volume: 32
  start-page: 289
  year: 2013
  ident: e_1_2_9_24_1
  article-title: The “Ensemble Dynamic Factors” Approach to Predict Rainstorm (In Chinese)
  publication-title: Torrential Rain Disasters
– ident: e_1_2_9_30_1
  doi: 10.1002/qj.3803
– ident: e_1_2_9_36_1
  doi: 10.1098/rsta.2009.0159
SSID ssj0013111
Score 2.3902318
Snippet ABSTRACT Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However,...
Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However, it remains...
ABSTRACT Accurate prediction of tropical cyclone‐induced extreme rainfall (TCER) is of utmost importance for disaster mitigation in coastal regions. However,...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms algorithm efficiency
feature reduction
physical consistency
SHAP interpretability
time‐lagged precursors
tropical cyclone‐induced extreme rainfall
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUh9NBLafpBt2nDUErooW5kayXZuW2XXZrDpjlsITdjfYUFrze4m5D8mvzVzsh20kBLL73ZQiBZM0hvNM9vGPtYGOW98jLJfC6SMfpEUmWkul9op7zIMOrisdiEPj3Nz8-Ls99KfREnrJMH7hbuKNNKWoHntMzDOKQc44Xgbe5EqHiQNiqBIuoZgqkhf5CmXagleUJCl4OmEM-O1n77RdNt6KOTKAr2Pwao8YSZP2fPemgIk25Ke2zHNy_YaIGodtPGy284hGm9QogZ316yu7OW0ixEXIZlu7mk9Ybpra03jYfZzZau_oASOKGqa1g1gP7QXNysPkOsmn0MkwYeSIem9rCI1EoPverqBcwH7hZMnIuUWWyMhTThZG2IFmk9VI0DgpJXrYfvuAWt-387X7Ef89ly-i3pCy4kVmgMSsc815brwgYik1BVIaddQZpwgpsgCkcKTcEo6YKmfKZzVhirZGV0JXMjxGu22-AnvmHg0rRCbFJgAGnGHlFgSsr8uJvkUlVK8RH7NCx-aXs1ciqKUZedjnJWop3KaKcR-3Df9bKT4PhTp69kwfsOpJodG9CXyt6Xyn_5Ek4q2v_vw5SL2TI-vP0f4-2zpxmVE478yXdsd9te-ffsib3ern62B9GjfwHowvmT
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting Tropical Cyclone Extreme Rainfall in Guangxi, China: An Interpretable Machine Learning Framework Addressing Class Imbalance and Feature Optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmet.70052
https://doaj.org/article/2765c350558f4f10924fec8d3fa0f5c4
Volume 32
WOSCitedRecordID wos001485623000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1469-8080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013111
  issn: 1350-4827
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1469-8080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013111
  issn: 1350-4827
  databaseCode: M~E
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-8080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013111
  issn: 1350-4827
  databaseCode: PCBAR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-8080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013111
  issn: 1350-4827
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1469-8080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013111
  issn: 1350-4827
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1469-8080
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013111
  issn: 1350-4827
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbbbQ-99F02fSxDKaWHumtblmS3pzQktIdsc0hhb8Z6hYDjLN7ssnvpX-lf7YzsJCy0UOjF2ELGEjOS56XvY-xtoaVz0okodTmPMtSJqEoJdb9QVjqeotcVB7IJdXqan50VswP2eXsWpsOH2AXcaGWE_ZoWeKUvTvagoSu3-agoqnmH3U0SnhNvQ5rN9imEJOm8LRFHhHW5hRWK05Pdq7d-RgGz_7aNGn4yk4f_NbxH7EFvW8KwU4bH7MA1T9hgimbxug3Rc3gHo3qJNmp4esp-zVrK01DlM8zb9TkJDEY3pl43DsbXG4odAmWAfFXXsGwAFapZXC8_QKDd_gTDBvZVi7p2MA21mQ562NYFTLbFXzC0NtTcYmNg4oRvK011lcZB1VggW_SydfAd97BVfzj0GfsxGc9HX6OesSEyXKFXm8W5MrEqjKdqFKIlssoWBCrHY-15YQniyWsprFeUELXWcG2kqLSqRK45f84OG5ziEQObJBUaNwV6oDpzaEYmBO2P21EuZCVlPGDvt6IrTQ9nTqwaddkBMaclSqAMEhiwN7uu5x2Gx586fSH57zoQ7HZoWLeLsl_FZaqkMKhQQuQ-8wlOJvPO5Jb7KvbCZDiooBN__0w5Hc_DzYt_7_qS3U-JdTiUWb5ih5v20r1m98zVZnnRHgetPw6xBLxOf45_A_QXB00
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_OU9AXz0-sejqIiA_mLslms8lxL7W03OG19qHCvYXsVymk6RF7cv41_qvObNKWAwXBt2SZkF1mZne-9jeMvc9Vam1qRRDbjAcJykRQxoS6n0uTWh6j1xX6ZhNyMskuL_PpHjvd3IVp8SG2ATfSDL9fk4JTQPp4hxq6tOsjSWHNO-xugqcMSXmcTHc5hChq3S0RBgR2ucEVCuPj7ae3TiMP2n_bSPWnzOjg_-b3iD3srEvot-LwmO3Z-gnrjdEwXjU-fg4fYFAt0Er1b0_Zr2lDmRqqfYZZs7oilsHgp65WtYXhzZqih0A5IFdWFSxqQJGq5zeLT-Abb59Av4Zd3aKqLIx9daaFDrh1DqNN-Rf0jfFVtzjoe3HC-VJRZaW2UNYGyBq9bix8xV1s2V0Pfca-jYazwVnQ9WwINJfo1yZhJnUoc-2oHoUaExlpcoKV46FyPDcE8uRUKoyTlBI1RnOlU1EqWYpMcf6c7de4xBcMTBSVaN7k6IOqxKIhGRG4P25ImUjLNA177OOGd4XuAM2pr0ZVtFDMcYEcKDwHeuzdlvSqRfH4E9FnEoAtAQFv-4FVMy86PS5imQqNEiVE5hIX4WISZ3VmuCtDJ3SCk_JC8fffFOPhzD-8_HfSt-z-2Wx8UVycT768Yg9i6kHsiy5fs_11c20P2T39Y7343rzxKvAbO54JEg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF_OU8QXz0-snjqIiA_GS7LZ3UR8qbXFQ1v7UOHeQrIfpZCmJfbk_GvuX72ZTdpyoCD4loQJu8vM7M7X_oax11kprZVWBLFNeZCgTARFTKj7mTLS8hi9rtA3m1CTSXp2lk0P2MftXZgWH2IXcCPN8Ps1KbhdG3eyRw1d2s17RWHNG-wmDhKRTMfJdJ9DiKLW3RJhQGCXW1yhMD7Z_XrtNPKg_deNVH_KjI7-b3732N3OuoR-Kw732YGtH7DeGA3jVePj5_AGBtUCrVT_9pBdThvK1FDtM8ya1ZpYBoPfulrVFoYXG4oeAuWAXFFVsKgBRaqeXyzegW-8_QH6NezrFsvKwthXZ1rogFvnMNqWf0HfGF91ix99L044XZZUWaktFLUBskbPGwvfcRdbdtdDH7Efo-Fs8CXoejYEmiv0a5MwVTpUmXZUj0KNiYwyGcHK8bB0PDME8uRKKYxTlBI1RvNSS1GUqhBpyfljdljjEp8wMFFUoHmToQ9aJhYNyYjA_XFDSoUspAx77O2Wd7nuAM2pr0aVt1DMcY4cyD0HeuzVjnTdonj8iegTCcCOgIC3_YdVM887Pc5jJYVGiRIidYmLcDGJszo13BWhEzrBSXmh-Psw-Xg48w9P_530Jbs9_TzKv51Ovj5jd2JqQexrLo_Z4aY5t8_ZLf1rs_jZvPAacAXT9giW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Tropical+Cyclone+Extreme+Rainfall+in+Guangxi%2C+China%3A+An+Interpretable+Machine+Learning+Framework+Addressing+Class+Imbalance+and+Feature+Optimization&rft.jtitle=Meteorological+applications&rft.au=Cai%2C+Yuexing&rft.au=Huang%2C+Cuiyin&rft.au=Zheng%2C+Fengqin&rft.au=Li%2C+Guangtao&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1350-4827&rft.eissn=1469-8080&rft.volume=32&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmet.70052&rft.externalDBID=10.1002%252Fmet.70052&rft.externalDocID=MET70052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4827&client=summon