An adaptive spatially constrained fuzzy c-means algorithm for multispectral remotely sensed imagery clustering
This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by incorporating accurate local spatial and grey-level information. In this algorithm, a novel weighted factor is introduced considering spatial distance a...
Gespeichert in:
| Veröffentlicht in: | International journal of remote sensing Jg. 39; H. 8; S. 2207 - 2237 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Taylor & Francis
18.04.2018
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0143-1161, 1366-5901, 1366-5901 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by incorporating accurate local spatial and grey-level information. In this algorithm, a novel weighted factor is introduced considering spatial distance and membership differences between the centred pixel and its neighbours simultaneously. This factor can adaptively estimate the accurate spatial constrains from neighbouring pixels. To further enhance its robustness to noise and outliers, a novel prior probability function is developed by integrating the mutual dependency information in the neighbourhood to obtain accurate spatial contextual information. The proposed algorithm is free of any experimentally adjusted parameters and totally adaptive to the local image content. Not only the neighbourhood but also the centred pixel terms of the objective function are all accurately estimated. Thus, the ASCFCM enhances the conventional fuzzy c-means (FCM) algorithm by producing homogeneous regions and reducing the edge blurring artefact simultaneously. Experimental results using a series of synthetic and real-world images show that the proposed ASCFCM outperforms the competing methodologies, and hence provides an effective unsupervised method for multispectral remotely sensed imagery clustering. |
|---|---|
| AbstractList | This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by incorporating accurate local spatial and grey-level information. In this algorithm, a novel weighted factor is introduced considering spatial distance and membership differences between the centred pixel and its neighbours simultaneously. This factor can adaptively estimate the accurate spatial constrains from neighbouring pixels. To further enhance its robustness to noise and outliers, a novel prior probability function is developed by integrating the mutual dependency information in the neighbourhood to obtain accurate spatial contextual information. The proposed algorithm is free of any experimentally adjusted parameters and totally adaptive to the local image content. Not only the neighbourhood but also the centred pixel terms of the objective function are all accurately estimated. Thus, the ASCFCM enhances the conventional fuzzy c-means (FCM) algorithm by producing homogeneous regions and reducing the edge blurring artefact simultaneously. Experimental results using a series of synthetic and real-world images show that the proposed ASCFCM outperforms the competing methodologies, and hence provides an effective unsupervised method for multispectral remotely sensed imagery clustering. |
| Author | Zhang, Hua Shi, Wenzhong Li, Zhenxuan Wang, Yunjia Hao, Ming |
| Author_xml | – sequence: 1 givenname: Hua surname: Zhang fullname: Zhang, Hua organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology – sequence: 2 givenname: Wenzhong surname: Shi fullname: Shi, Wenzhong email: lswzshi@polyu.edu.hk organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University – sequence: 3 givenname: Ming surname: Hao fullname: Hao, Ming organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology – sequence: 4 givenname: Zhenxuan surname: Li fullname: Li, Zhenxuan organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology – sequence: 5 givenname: Yunjia surname: Wang fullname: Wang, Yunjia organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology |
| BookMark | eNqFkcFq3DAQhkVJoJtNHqFg6KUXb0aWZdn00hDSphDopTmLWXu8VZAlV5JbNk9fmU0vObQngfi-keb_L9iZ844Ye8dhx6GFa-C14Lzhuwq42vG6gk7Ub9iGi6YpZQf8jG1Wplyht-wixicAaJRUG-ZuXIEDzsn8oiLOmAxaeyx672IKaBwNxbg8P-ebciJ0sUB78MGkH1Mx-lBMi00mztRn2BaBJp8o65FczKaZ8EAhu3aJiYJxh0t2PqKNdPVybtnj57vvt_flw7cvX29vHspeKJ5KqmkPXO4JK6kGiUpJCQRdK_m-UpVCbGAv6oqPKBriSok-M23dVEM3yBbEln04zZ2D_7lQTHoysSdr0ZFfoq6grUHJ_FhG379Cn_wSXP6d5l0nOiWbnN2WyRPVBx9joFHPIa8XjpqDXlvQf1vQawv6pYXsfXzl9SbllL1b47X_tT-dbONy2hP-9sEOOuHR-jAGdL2JWvx7xB-k1aMA |
| CitedBy_id | crossref_primary_10_1007_s12524_020_01148_x crossref_primary_10_1080_01431161_2019_1685718 crossref_primary_10_1002_esp_5950 crossref_primary_10_1016_j_jvcir_2019_102739 crossref_primary_10_3233_JIFS_169765 crossref_primary_10_3233_JIFS_169744 crossref_primary_10_1088_1742_6596_1941_1_012041 crossref_primary_10_3390_w17162416 crossref_primary_10_1109_TFUZZ_2021_3063818 crossref_primary_10_1007_s40815_019_00706_x |
| Cites_doi | 10.1109/LGRS.2009.2025059 10.1109/LGRS.2012.2231662 10.1109/TIP.2012.2219547 10.1016/j.patcog.2009.01.023 10.1007/s10044-015-0525-8 10.1016/j.datak.2014.07.008 10.1016/0034-4257(91)90048-B 10.1109/JSTARS.2014.2308531 10.1109/JSTARS.2014.2303634 10.1109/42.996338 10.1080/01969727308546046 10.1109/36.481897 10.1007/978-1-4757-0450-1 10.1109/TIP.2010.2040763 10.1006/cviu.2001.0951 10.1109/LGRS.2012.2194770 10.1109/LGRS.2010.2047711 10.1016/j.patrec.2004.11.022 10.1109/LGRS.2011.2145353 10.1109/JSTARS.2016.2516014 10.1109/TGRS.2015.2393357 10.1109/34.85677 10.1007/BF02339490 10.1080/01431160600746456 10.1016/0031-3203(92)90114-X 10.1109/TIP.2011.2170702 10.1109/TSMCB.2003.810951 10.1016/j.patcog.2006.07.011 10.5721/EuJRS20134617 10.1080/01969727308546047 10.1016/0167-8655(96)00026-8 10.1109/TSMCB.2004.831165 10.1016/j.patrec.2016.11.019 |
| ContentType | Journal Article |
| Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2017.1420934 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 2237 |
| ExternalDocumentID | 10_1080_01431161_2017_1420934 1420934 |
| Genre | Article |
| GrantInformation_xml | – fundername: the Fundamental Research Funds for the Central Universities grantid: 2015XKQY09 – fundername: the Natural Science Foundation of Jiangsu Province under Grant grantid: BK20160248 funderid: 10.13039/501100004608 |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-e4eb015bea257d5a77550e09851b2727aa60b3421fa36e1773ca778462d9d5803 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:31:22 EDT 2025 Wed Aug 13 02:58:22 EDT 2025 Tue Nov 18 21:42:17 EST 2025 Sat Nov 29 06:13:36 EST 2025 Mon Oct 20 23:48:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-e4eb015bea257d5a77550e09851b2727aa60b3421fa36e1773ca778462d9d5803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1993975614 |
| PQPubID | 2045515 |
| PageCount | 31 |
| ParticipantIDs | proquest_miscellaneous_2084075371 proquest_journals_1993975614 crossref_primary_10_1080_01431161_2017_1420934 crossref_citationtrail_10_1080_01431161_2017_1420934 informaworld_taylorfrancis_310_1080_01431161_2017_1420934 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-18 |
| PublicationDateYYYYMMDD | 2018-04-18 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2018 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 CIT0019 Li S. (CIT0017) 2010 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0002 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0006 doi: 10.1109/LGRS.2009.2025059 – ident: CIT0016 doi: 10.1109/LGRS.2012.2231662 – ident: CIT0012 doi: 10.1109/TIP.2012.2219547 – ident: CIT0028 doi: 10.1016/j.patcog.2009.01.023 – ident: CIT0023 doi: 10.1007/s10044-015-0525-8 – ident: CIT0035 doi: 10.1016/j.datak.2014.07.008 – ident: CIT0008 doi: 10.1016/0034-4257(91)90048-B – ident: CIT0014 doi: 10.1109/JSTARS.2014.2308531 – ident: CIT0037 doi: 10.1109/JSTARS.2014.2303634 – ident: CIT0001 doi: 10.1109/42.996338 – ident: CIT0010 doi: 10.1080/01969727308546046 – ident: CIT0022 doi: 10.1109/36.481897 – volume-title: Markov Random Field Modeling in Image Analysis year: 2010 ident: CIT0017 – ident: CIT0004 doi: 10.1007/978-1-4757-0450-1 – ident: CIT0015 doi: 10.1109/TIP.2010.2040763 – ident: CIT0020 doi: 10.1006/cviu.2001.0951 – ident: CIT0031 doi: 10.1109/LGRS.2012.2194770 – ident: CIT0026 doi: 10.1109/LGRS.2010.2047711 – ident: CIT0029 doi: 10.1016/j.patrec.2004.11.022 – ident: CIT0034 doi: 10.1109/LGRS.2011.2145353 – ident: CIT0021 doi: 10.1109/JSTARS.2016.2516014 – ident: CIT0019 doi: 10.1109/TGRS.2015.2393357 – ident: CIT0030 doi: 10.1109/34.85677 – ident: CIT0003 doi: 10.1007/BF02339490 – ident: CIT0018 doi: 10.1080/01431160600746456 – ident: CIT0027 doi: 10.1016/0031-3203(92)90114-X – ident: CIT0013 doi: 10.1109/TIP.2011.2170702 – ident: CIT0033 doi: 10.1109/TSMCB.2003.810951 – ident: CIT0005 doi: 10.1016/j.patcog.2006.07.011 – ident: CIT0032 doi: 10.5721/EuJRS20134617 – ident: CIT0002 doi: 10.1080/01969727308546047 – ident: CIT0009 doi: 10.1016/0167-8655(96)00026-8 – ident: CIT0007 doi: 10.1109/TSMCB.2004.831165 – ident: CIT0036 doi: 10.1016/j.patrec.2016.11.019 |
| SSID | ssj0006757 |
| Score | 2.307746 |
| Snippet | This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2207 |
| SubjectTerms | Adaptive algorithms Algorithms Blurring Clustering Conditional probability Imagery Mathematical models Objective function Pixels probability Probability theory Remote sensing |
| Title | An adaptive spatially constrained fuzzy c-means algorithm for multispectral remotely sensed imagery clustering |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2017.1420934 https://www.proquest.com/docview/1993975614 https://www.proquest.com/docview/2084075371 |
| Volume | 39 |
| WOSCitedRecordID | wos000424236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: TFW dateStart: 19800101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqVAkupaVU3QKVK_Wast5k18kRoa44IQ6gcov8GBekbBYlu0jw6_tN4qxAqOLQHvMYO37M-Jt4_I0Q322aTjMXKCFtQ5JRFhKb5yoJwQPwKjfV2nXJJvT5eX59XVzEaMI2hlWyDx16oojOVrNyG9sOEXHHTEmngFQ4MEtD1SfwypkRFMieg_ou5782thhwuD8wzUScEBnO8PytlGer0zPu0he2uluA5rv_4dPfi3cRfcqTfrp8EG-o3hPbMRH6zcNHUZ_U0nhzx0ZQthxtbarqQTpGkZxMgrwM68dH3EkWhFVOmur3srld3SwkGiG78MTu8GaDahrCPCCIt_CVIXm7YMIMyFZrpmfAorkvruY_L0_PkpiSIXGpVquEMrIAEJYMVN1PjdbwcGhcALfZCaCQMbOxTbOJCiadkdI6dXgHGGfiCz_Nx-knsVUva_ospOEMes6qYK3L4BvboL0GOPIwKzNPZiSyYShKF_nKuaVVqQZa09iZJXdmGTtzJH5sxO56wo7XBIqn41yuuj8loU9rUqavyB4Ok6KMut-WHBJZaGZYHYlvm8fQWt6KMTUt1y0KgWMNT1GrL_9Q_YHYwWXOm1sqPxRbq2ZNR-Ktu8dQN187TfgDFdkEzw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xWIm9wD5AWx67Xmmv2a2btE6OCFGBYHvqarlZfowBKU1R2iLBr2cmjwqEEAe4xhknfsz4G3v8DcAvG8f9xAWMUNkQJZiEyKapjELwBHil6yvlqmQTajRKLy6yx3dhOKySfehQE0VUtpqVmzej25C4P8xJJwmqcGSWIl3vkVuerMI6Z6djB2w8_L-0xgSI6yvTTMVJMu0tnpeqebI-PWEvfWatqyVouPUeP_8JNhsAKg7rGfMZVrD4AhtNLvSru69QHBbCeHPDdlDMOODa5PmdcAwkOZ8EehEW9_f0JJogLXTC5JfT8np-NRHUClFFKFb3N0v6TIk0FZDEZ-Quk-T1hDkzSDZfMEMDrZvb8G94PD46iZqsDJGLlZxHmKAlDGHRkLb7vlGKnBzsZgTdbI_QkDGDro2TngwmHqBUKnb0DsGcns98P-3GO7BWTAv8BsJwEj1nZbDWJeQe26C8InzkybIMPJoOJO1YaNdQlnNLcy1bZtOmMzV3pm46swO_l2I3NWfHawLZ44HW82qzJNSZTXT8iux-Oyt0o_4zzVGRmWKS1Q78XBaT4vJpjClwuphRJeRbk7Oo5O4bPv8DNk7Gf8_1-enobA8-UlHKZ10y3Ye1ebnAA_jgbmnYy--VWjwAg9sI8g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQZQL76oLBYzENbDeJOvkWFFWINCqhyJ6s_wY00rZ7CrZrdT-emYSZ0WFqh7gGmfs-DHjb-LxNwDvbZrmmQuYoLIhyTALiS0KmYTgCfBKlyvlumQTaj4vTk_L4xhN2MawSvahQ08U0dlqVu6VD0NE3EempJOEVDgwS5GqT8grz-7CPYLOOS_sk9nPrTEmPNzfmGYmTpIZLvHcVM217ekaeelfxrrbgWaP_8O3P4FHEX6Kw369PIU7WD-D3ZgJ_ezyOdSHtTDerNgKipbDrU1VXQrHMJKzSaAXYXN1RU-SBdI2J0z1a9mcr88WgjohuvjE7vZmQ800SAsBSbwlZ5kkzxfMmEGy1Yb5GWjXfAE_Zp9PPn1JYk6GxKVKrhPM0BKCsGhI131ulCIXB8clATc7ISxkzHRs02wig0mnKJVKHb1DIGfiS58X43QPdupljfsgDKfQc1YGa11GzrENyitCR57sytSjGUE2TIV2kbCce1ppOfCaxsHUPJg6DuYIPmzFVj1jx20C5Z_zrNfdr5LQ5zXR6S2yB8Oi0FH5W80xkaViitURvNsWk9ryWYypcblpqRLyrMlVVPLlPzT_Fh4cH83096_zb6_gIZUUfNAliwPYWTcbfA333QXNevOmU4rfV7EHpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+spatially+constrained+fuzzy+c-means+algorithm+for+multispectral+remotely+sensed+imagery+clustering&rft.jtitle=International+journal+of+remote+sensing&rft.au=Zhang%2C+Hua&rft.au=Shi%2C+Wenzhong&rft.au=Hao%2C+Ming&rft.au=Li%2C+Zhenxuan&rft.date=2018-04-18&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=39&rft.issue=8&rft.spage=2207&rft.epage=2237&rft_id=info:doi/10.1080%2F01431161.2017.1420934&rft.externalDocID=1420934 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |