An adaptive spatially constrained fuzzy c-means algorithm for multispectral remotely sensed imagery clustering

This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by incorporating accurate local spatial and grey-level information. In this algorithm, a novel weighted factor is introduced considering spatial distance a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of remote sensing Jg. 39; H. 8; S. 2207 - 2237
Hauptverfasser: Zhang, Hua, Shi, Wenzhong, Hao, Ming, Li, Zhenxuan, Wang, Yunjia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis 18.04.2018
Taylor & Francis Ltd
Schlagworte:
ISSN:0143-1161, 1366-5901, 1366-5901
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by incorporating accurate local spatial and grey-level information. In this algorithm, a novel weighted factor is introduced considering spatial distance and membership differences between the centred pixel and its neighbours simultaneously. This factor can adaptively estimate the accurate spatial constrains from neighbouring pixels. To further enhance its robustness to noise and outliers, a novel prior probability function is developed by integrating the mutual dependency information in the neighbourhood to obtain accurate spatial contextual information. The proposed algorithm is free of any experimentally adjusted parameters and totally adaptive to the local image content. Not only the neighbourhood but also the centred pixel terms of the objective function are all accurately estimated. Thus, the ASCFCM enhances the conventional fuzzy c-means (FCM) algorithm by producing homogeneous regions and reducing the edge blurring artefact simultaneously. Experimental results using a series of synthetic and real-world images show that the proposed ASCFCM outperforms the competing methodologies, and hence provides an effective unsupervised method for multispectral remotely sensed imagery clustering.
AbstractList This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by incorporating accurate local spatial and grey-level information. In this algorithm, a novel weighted factor is introduced considering spatial distance and membership differences between the centred pixel and its neighbours simultaneously. This factor can adaptively estimate the accurate spatial constrains from neighbouring pixels. To further enhance its robustness to noise and outliers, a novel prior probability function is developed by integrating the mutual dependency information in the neighbourhood to obtain accurate spatial contextual information. The proposed algorithm is free of any experimentally adjusted parameters and totally adaptive to the local image content. Not only the neighbourhood but also the centred pixel terms of the objective function are all accurately estimated. Thus, the ASCFCM enhances the conventional fuzzy c-means (FCM) algorithm by producing homogeneous regions and reducing the edge blurring artefact simultaneously. Experimental results using a series of synthetic and real-world images show that the proposed ASCFCM outperforms the competing methodologies, and hence provides an effective unsupervised method for multispectral remotely sensed imagery clustering.
Author Zhang, Hua
Shi, Wenzhong
Li, Zhenxuan
Wang, Yunjia
Hao, Ming
Author_xml – sequence: 1
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
  organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology
– sequence: 2
  givenname: Wenzhong
  surname: Shi
  fullname: Shi, Wenzhong
  email: lswzshi@polyu.edu.hk
  organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University
– sequence: 3
  givenname: Ming
  surname: Hao
  fullname: Hao, Ming
  organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology
– sequence: 4
  givenname: Zhenxuan
  surname: Li
  fullname: Li, Zhenxuan
  organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology
– sequence: 5
  givenname: Yunjia
  surname: Wang
  fullname: Wang, Yunjia
  organization: School of Environmental Science and Spatial Informatics, China University of Mining and Technology
BookMark eNqFkcFq3DAQhkVJoJtNHqFg6KUXb0aWZdn00hDSphDopTmLWXu8VZAlV5JbNk9fmU0vObQngfi-keb_L9iZ844Ye8dhx6GFa-C14Lzhuwq42vG6gk7Ub9iGi6YpZQf8jG1Wplyht-wixicAaJRUG-ZuXIEDzsn8oiLOmAxaeyx672IKaBwNxbg8P-ebciJ0sUB78MGkH1Mx-lBMi00mztRn2BaBJp8o65FczKaZ8EAhu3aJiYJxh0t2PqKNdPVybtnj57vvt_flw7cvX29vHspeKJ5KqmkPXO4JK6kGiUpJCQRdK_m-UpVCbGAv6oqPKBriSok-M23dVEM3yBbEln04zZ2D_7lQTHoysSdr0ZFfoq6grUHJ_FhG379Cn_wSXP6d5l0nOiWbnN2WyRPVBx9joFHPIa8XjpqDXlvQf1vQawv6pYXsfXzl9SbllL1b47X_tT-dbONy2hP-9sEOOuHR-jAGdL2JWvx7xB-k1aMA
CitedBy_id crossref_primary_10_1007_s12524_020_01148_x
crossref_primary_10_1080_01431161_2019_1685718
crossref_primary_10_1002_esp_5950
crossref_primary_10_1016_j_jvcir_2019_102739
crossref_primary_10_3233_JIFS_169765
crossref_primary_10_3233_JIFS_169744
crossref_primary_10_1088_1742_6596_1941_1_012041
crossref_primary_10_3390_w17162416
crossref_primary_10_1109_TFUZZ_2021_3063818
crossref_primary_10_1007_s40815_019_00706_x
Cites_doi 10.1109/LGRS.2009.2025059
10.1109/LGRS.2012.2231662
10.1109/TIP.2012.2219547
10.1016/j.patcog.2009.01.023
10.1007/s10044-015-0525-8
10.1016/j.datak.2014.07.008
10.1016/0034-4257(91)90048-B
10.1109/JSTARS.2014.2308531
10.1109/JSTARS.2014.2303634
10.1109/42.996338
10.1080/01969727308546046
10.1109/36.481897
10.1007/978-1-4757-0450-1
10.1109/TIP.2010.2040763
10.1006/cviu.2001.0951
10.1109/LGRS.2012.2194770
10.1109/LGRS.2010.2047711
10.1016/j.patrec.2004.11.022
10.1109/LGRS.2011.2145353
10.1109/JSTARS.2016.2516014
10.1109/TGRS.2015.2393357
10.1109/34.85677
10.1007/BF02339490
10.1080/01431160600746456
10.1016/0031-3203(92)90114-X
10.1109/TIP.2011.2170702
10.1109/TSMCB.2003.810951
10.1016/j.patcog.2006.07.011
10.5721/EuJRS20134617
10.1080/01969727308546047
10.1016/0167-8655(96)00026-8
10.1109/TSMCB.2004.831165
10.1016/j.patrec.2016.11.019
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2017.1420934
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 2237
ExternalDocumentID 10_1080_01431161_2017_1420934
1420934
Genre Article
GrantInformation_xml – fundername: the Fundamental Research Funds for the Central Universities
  grantid: 2015XKQY09
– fundername: the Natural Science Foundation of Jiangsu Province under Grant
  grantid: BK20160248
  funderid: 10.13039/501100004608
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-e4eb015bea257d5a77550e09851b2727aa60b3421fa36e1773ca778462d9d5803
IEDL.DBID TFW
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:31:22 EDT 2025
Wed Aug 13 02:58:22 EDT 2025
Tue Nov 18 21:42:17 EST 2025
Sat Nov 29 06:13:36 EST 2025
Mon Oct 20 23:48:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-e4eb015bea257d5a77550e09851b2727aa60b3421fa36e1773ca778462d9d5803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1993975614
PQPubID 2045515
PageCount 31
ParticipantIDs proquest_miscellaneous_2084075371
proquest_journals_1993975614
crossref_primary_10_1080_01431161_2017_1420934
crossref_citationtrail_10_1080_01431161_2017_1420934
informaworld_taylorfrancis_310_1080_01431161_2017_1420934
PublicationCentury 2000
PublicationDate 2018-04-18
PublicationDateYYYYMMDD 2018-04-18
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-18
  day: 18
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0033
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
CIT0019
Li S. (CIT0017) 2010
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1109/LGRS.2009.2025059
– ident: CIT0016
  doi: 10.1109/LGRS.2012.2231662
– ident: CIT0012
  doi: 10.1109/TIP.2012.2219547
– ident: CIT0028
  doi: 10.1016/j.patcog.2009.01.023
– ident: CIT0023
  doi: 10.1007/s10044-015-0525-8
– ident: CIT0035
  doi: 10.1016/j.datak.2014.07.008
– ident: CIT0008
  doi: 10.1016/0034-4257(91)90048-B
– ident: CIT0014
  doi: 10.1109/JSTARS.2014.2308531
– ident: CIT0037
  doi: 10.1109/JSTARS.2014.2303634
– ident: CIT0001
  doi: 10.1109/42.996338
– ident: CIT0010
  doi: 10.1080/01969727308546046
– ident: CIT0022
  doi: 10.1109/36.481897
– volume-title: Markov Random Field Modeling in Image Analysis
  year: 2010
  ident: CIT0017
– ident: CIT0004
  doi: 10.1007/978-1-4757-0450-1
– ident: CIT0015
  doi: 10.1109/TIP.2010.2040763
– ident: CIT0020
  doi: 10.1006/cviu.2001.0951
– ident: CIT0031
  doi: 10.1109/LGRS.2012.2194770
– ident: CIT0026
  doi: 10.1109/LGRS.2010.2047711
– ident: CIT0029
  doi: 10.1016/j.patrec.2004.11.022
– ident: CIT0034
  doi: 10.1109/LGRS.2011.2145353
– ident: CIT0021
  doi: 10.1109/JSTARS.2016.2516014
– ident: CIT0019
  doi: 10.1109/TGRS.2015.2393357
– ident: CIT0030
  doi: 10.1109/34.85677
– ident: CIT0003
  doi: 10.1007/BF02339490
– ident: CIT0018
  doi: 10.1080/01431160600746456
– ident: CIT0027
  doi: 10.1016/0031-3203(92)90114-X
– ident: CIT0013
  doi: 10.1109/TIP.2011.2170702
– ident: CIT0033
  doi: 10.1109/TSMCB.2003.810951
– ident: CIT0005
  doi: 10.1016/j.patcog.2006.07.011
– ident: CIT0032
  doi: 10.5721/EuJRS20134617
– ident: CIT0002
  doi: 10.1080/01969727308546047
– ident: CIT0009
  doi: 10.1016/0167-8655(96)00026-8
– ident: CIT0007
  doi: 10.1109/TSMCB.2004.831165
– ident: CIT0036
  doi: 10.1016/j.patrec.2016.11.019
SSID ssj0006757
Score 2.307746
Snippet This paper presents a novel adaptive spatially constrained fuzzy c-means (ASCFCM) algorithm for multispectral remotely sensed imagery clustering by...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2207
SubjectTerms Adaptive algorithms
Algorithms
Blurring
Clustering
Conditional probability
Imagery
Mathematical models
Objective function
Pixels
probability
Probability theory
Remote sensing
Title An adaptive spatially constrained fuzzy c-means algorithm for multispectral remotely sensed imagery clustering
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2017.1420934
https://www.proquest.com/docview/1993975614
https://www.proquest.com/docview/2084075371
Volume 39
WOSCitedRecordID wos000424236900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: TFW
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqVAkupaVU3QKVK_Wast5k18kRoa44IQ6gcov8GBekbBYlu0jw6_tN4qxAqOLQHvMYO37M-Jt4_I0Q322aTjMXKCFtQ5JRFhKb5yoJwQPwKjfV2nXJJvT5eX59XVzEaMI2hlWyDx16oojOVrNyG9sOEXHHTEmngFQ4MEtD1SfwypkRFMieg_ou5782thhwuD8wzUScEBnO8PytlGer0zPu0he2uluA5rv_4dPfi3cRfcqTfrp8EG-o3hPbMRH6zcNHUZ_U0nhzx0ZQthxtbarqQTpGkZxMgrwM68dH3EkWhFVOmur3srld3SwkGiG78MTu8GaDahrCPCCIt_CVIXm7YMIMyFZrpmfAorkvruY_L0_PkpiSIXGpVquEMrIAEJYMVN1PjdbwcGhcALfZCaCQMbOxTbOJCiadkdI6dXgHGGfiCz_Nx-knsVUva_ospOEMes6qYK3L4BvboL0GOPIwKzNPZiSyYShKF_nKuaVVqQZa09iZJXdmGTtzJH5sxO56wo7XBIqn41yuuj8loU9rUqavyB4Ok6KMut-WHBJZaGZYHYlvm8fQWt6KMTUt1y0KgWMNT1GrL_9Q_YHYwWXOm1sqPxRbq2ZNR-Ktu8dQN187TfgDFdkEzw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xWIm9wD5AWx67Xmmv2a2btE6OCFGBYHvqarlZfowBKU1R2iLBr2cmjwqEEAe4xhknfsz4G3v8DcAvG8f9xAWMUNkQJZiEyKapjELwBHil6yvlqmQTajRKLy6yx3dhOKySfehQE0VUtpqVmzej25C4P8xJJwmqcGSWIl3vkVuerMI6Z6djB2w8_L-0xgSI6yvTTMVJMu0tnpeqebI-PWEvfWatqyVouPUeP_8JNhsAKg7rGfMZVrD4AhtNLvSru69QHBbCeHPDdlDMOODa5PmdcAwkOZ8EehEW9_f0JJogLXTC5JfT8np-NRHUClFFKFb3N0v6TIk0FZDEZ-Quk-T1hDkzSDZfMEMDrZvb8G94PD46iZqsDJGLlZxHmKAlDGHRkLb7vlGKnBzsZgTdbI_QkDGDro2TngwmHqBUKnb0DsGcns98P-3GO7BWTAv8BsJwEj1nZbDWJeQe26C8InzkybIMPJoOJO1YaNdQlnNLcy1bZtOmMzV3pm46swO_l2I3NWfHawLZ44HW82qzJNSZTXT8iux-Oyt0o_4zzVGRmWKS1Q78XBaT4vJpjClwuphRJeRbk7Oo5O4bPv8DNk7Gf8_1-enobA8-UlHKZ10y3Ye1ebnAA_jgbmnYy--VWjwAg9sI8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQZQL76oLBYzENbDeJOvkWFFWINCqhyJ6s_wY00rZ7CrZrdT-emYSZ0WFqh7gGmfs-DHjb-LxNwDvbZrmmQuYoLIhyTALiS0KmYTgCfBKlyvlumQTaj4vTk_L4xhN2MawSvahQ08U0dlqVu6VD0NE3EempJOEVDgwS5GqT8grz-7CPYLOOS_sk9nPrTEmPNzfmGYmTpIZLvHcVM217ekaeelfxrrbgWaP_8O3P4FHEX6Kw369PIU7WD-D3ZgJ_ezyOdSHtTDerNgKipbDrU1VXQrHMJKzSaAXYXN1RU-SBdI2J0z1a9mcr88WgjohuvjE7vZmQ800SAsBSbwlZ5kkzxfMmEGy1Yb5GWjXfAE_Zp9PPn1JYk6GxKVKrhPM0BKCsGhI131ulCIXB8clATc7ISxkzHRs02wig0mnKJVKHb1DIGfiS58X43QPdupljfsgDKfQc1YGa11GzrENyitCR57sytSjGUE2TIV2kbCce1ppOfCaxsHUPJg6DuYIPmzFVj1jx20C5Z_zrNfdr5LQ5zXR6S2yB8Oi0FH5W80xkaViitURvNsWk9ryWYypcblpqRLyrMlVVPLlPzT_Fh4cH83096_zb6_gIZUUfNAliwPYWTcbfA333QXNevOmU4rfV7EHpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+spatially+constrained+fuzzy+c-means+algorithm+for+multispectral+remotely+sensed+imagery+clustering&rft.jtitle=International+journal+of+remote+sensing&rft.au=Zhang%2C+Hua&rft.au=Shi%2C+Wenzhong&rft.au=Hao%2C+Ming&rft.au=Li%2C+Zhenxuan&rft.date=2018-04-18&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=39&rft.issue=8&rft.spage=2207&rft.epage=2237&rft_id=info:doi/10.1080%2F01431161.2017.1420934&rft.externalDocID=1420934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon