A Constrained Particle Swarm Optimization Algorithm with Oracle Penalty Method
To solve constrained optimization problems, an Oracle penalty method-based comprehensive learning particle swarm optimization (OBCLPSO) algorithm was proposed. First, original Oracle penalty was modified. Secondly, the modified Oracle penalty method was combine with comprehensive learning particle s...
Gespeichert in:
| Veröffentlicht in: | Applied Mechanics and Materials Jg. 303-306; S. 1519 - 1523 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Zurich
Trans Tech Publications Ltd
01.02.2013
|
| Schlagworte: | |
| ISBN: | 3037856521, 9783037856529 |
| ISSN: | 1660-9336, 1662-7482, 1662-7482 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | To solve constrained optimization problems, an Oracle penalty method-based comprehensive learning particle swarm optimization (OBCLPSO) algorithm was proposed. First, original Oracle penalty was modified. Secondly, the modified Oracle penalty method was combine with comprehensive learning particle swarm optimization algorithm. Finally, experimental results and comparisons were given to demonstrate the optimization performances of OBCLPSO. The results show that the proposed algorithm is a very competitive approach for constrained optimization problems. |
|---|---|
| Bibliographie: | Selected papers from the 2012 International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2012), December 26-27, 2012, Guilin, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISBN: | 3037856521 9783037856529 |
| ISSN: | 1660-9336 1662-7482 1662-7482 |
| DOI: | 10.4028/www.scientific.net/AMM.303-306.1519 |

