A numerically stable least squares solution to the quadratic programming problem

The strictly convex quadratic programming problem is transformed to the least distance problem — finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transforma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of mathematics Jg. 6; H. 1; S. 171 - 178
1. Verfasser: Übi, E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg SP Versita 01.03.2008
Versita
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Schlagworte:
ISSN:1895-1074, 2391-5455, 1644-3616, 2391-5455
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The strictly convex quadratic programming problem is transformed to the least distance problem — finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transformations, which are memorized as products. Like in the revised simplex method, an auxiliary matrix is used for computations. Compared to the modified-simplex type methods, the presented dual algorithm QPLS requires less storage and solves ill-conditioned problems more precisely. The algorithm is illustrated by some difficult problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1895-1074
2391-5455
1644-3616
2391-5455
DOI:10.2478/s11533-008-0012-1