Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function

Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics Jg. 94; H. 4; S. 663 - 675
Hauptverfasser: Zhang, Tengfei, Ma, Fumin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 03.04.2017
Taylor & Francis Ltd
Schlagworte:
ISSN:0020-7160, 1029-0265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for a given dataset. However, the same weight was used for all the data objects in a lower or upper approximate set when computing the new centre for each cluster while the different impacts of the objects in a same approximation were ignored. An improved rough k-means clustering based on weighted distance measure with Gaussian function is proposed in this paper. The validity of this algorithm is demonstrated by simulation and experimental analysis.
AbstractList Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for a given dataset. However, the same weight was used for all the data objects in a lower or upper approximate set when computing the new centre for each cluster while the different impacts of the objects in a same approximation were ignored. An improved rough k-means clustering based on weighted distance measure with Gaussian function is proposed in this paper. The validity of this algorithm is demonstrated by simulation and experimental analysis.
Author Zhang, Tengfei
Ma, Fumin
Author_xml – sequence: 1
  givenname: Tengfei
  surname: Zhang
  fullname: Zhang, Tengfei
  email: tfzhang@126.com
  organization: College of Automation, Nanjing University of Posts and Telecommunications
– sequence: 2
  givenname: Fumin
  surname: Ma
  fullname: Ma, Fumin
  organization: College of Information Engineering, Nanjing University of Finance and Economics
BookMark eNqFkD1PHDEQQK2ISDlIfkIkS2lo9hh7P600RIgAEhJNUls-e3xnsmsT25vT_ft4ddBQQOUp3ht53ik58cEjIV8ZrBkMcAHAoWcdrDmwds0Yb0CID2TFgIsKeNeekNXCVAv0iZym9AgAg-i7FcG76SmGf2hoDPN2R_9UEyqfqB7nlDE6v6Vq3Ibo8m6iG5UKGDzdo9vucpmNS1l5jbRYaY5I9wWkN2pOySlP7ex1dsF_Jh-tGhN-eX7PyO-f17-ubqv7h5u7qx_3la57liujdM24RouGw2AsCqXMpu9sA9z02Da2HpDzVmwUNl05DC3vms3QCMPLpOszcn7cW276O2PKcnJJ4zgqj2FOkgloOON9PxT02yv0MczRl99JNnSCcda3C9UeKR1DShGtfIpuUvEgGcglvnyJL5f48jl-8b6_8rTLakmRo3Lju_bl0XbehjipfYijkVkdxhBtLL1dkvXbK_4DnpGgig
CitedBy_id crossref_primary_10_1016_j_knosys_2017_06_020
crossref_primary_10_1155_2020_6128697
crossref_primary_10_1016_j_asoc_2022_109492
crossref_primary_10_1007_s00521_018_3660_5
crossref_primary_10_1049_sfw2_12032
crossref_primary_10_1016_j_asoc_2018_07_031
crossref_primary_10_1109_TFUZZ_2019_2924402
crossref_primary_10_1007_s10257_018_0381_3
crossref_primary_10_1177_1729881420917277
crossref_primary_10_1016_j_asoc_2019_105536
crossref_primary_10_1080_00207160_2019_1613530
crossref_primary_10_1007_s10726_020_09720_z
crossref_primary_10_1016_j_jclepro_2020_123638
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1051_e3sconf_202125103076
crossref_primary_10_1088_1742_6596_1549_4_042005
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_4316_AECE_2019_01011
crossref_primary_10_1088_1757_899X_750_1_012215
crossref_primary_10_1002_ima_22888
crossref_primary_10_1016_j_jisa_2020_102634
crossref_primary_10_4316_AECE_2019_04009
crossref_primary_10_1007_s10723_019_09504_z
crossref_primary_10_1109_ACCESS_2019_2910406
crossref_primary_10_4316_AECE_2018_04003
crossref_primary_10_1155_2020_8848945
crossref_primary_10_3390_app8101869
crossref_primary_10_1007_s12559_021_09965_z
Cites_doi 10.1007/11908029_68
10.1002/widm.16
10.1109/TSMCB.2005.863371
10.1016/j.patcog.2006.02.002
10.1049/cp.2011.0488
10.1109/FUZZ.2002.1006647
10.1109/3477.623232
10.1007/11590316_113
10.1016/j.camwa.2009.04.017
10.1016/j.patrec.2004.05.007
10.1016/j.cageo.2011.12.017
10.1016/j.matcom.2010.02.007
10.1007/s10114-012-9734-x
10.1016/j.ins.2014.02.073
10.1007/978-3-642-02962-2_9
10.1016/j.ijar.2012.10.003
10.1016/j.eswa.2010.08.010
10.1023/B:JIIS.0000029668.88665.1a
10.1016/j.ins.2006.06.006
10.1007/978-3-642-36505-8_2
10.1016/j.ijar.2013.05.005
10.1016/j.engappai.2012.07.002
10.1109/TKDE.2008.236
10.1016/j.patcog.2009.09.029
10.1109/TSMCB.2007.906578
10.1016/j.asoc.2012.05.015
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2015.1124099
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 675
ExternalDocumentID 4315086721
10_1080_00207160_2015_1124099
1124099
Genre Article
Feature
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61105082,61403184
  funderid: 10.13039/501100001809
– fundername: Jiangsu Government Scholarship for Overseas Studies
  grantid: JS-2013-219,JS-2013-342
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK2012470
– fundername: '1311 Talent Plan' of Nanjing University of Posts and Communications
  grantid: NY2013
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3
IEDL.DBID TFW
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396792000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Thu Oct 02 11:43:25 EDT 2025
Wed Aug 13 09:50:06 EDT 2025
Sat Nov 29 02:21:37 EST 2025
Tue Nov 18 22:39:05 EST 2025
Mon Oct 20 23:46:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1869121758
PQPubID 52924
PageCount 13
ParticipantIDs proquest_journals_1869121758
informaworld_taylorfrancis_310_1080_00207160_2015_1124099
proquest_miscellaneous_1904212778
crossref_primary_10_1080_00207160_2015_1124099
crossref_citationtrail_10_1080_00207160_2015_1124099
PublicationCentury 2000
PublicationDate 2017-04-03
PublicationDateYYYYMMDD 2017-04-03
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0011
Mitra S. (CIT0020) 2007; 7
Han J.W. (CIT0004) 2011
Lingras P. (CIT0014) 2003; 2639
CIT0013
CIT0015
CIT0018
CIT0019
CIT0021
CIT0001
CIT0023
CIT0022
Maji P. (CIT0017) 2007; 80
Hu Q.H. (CIT0005) 2005; 3613
Liu B. (CIT0016) 2012; 40
CIT0025
CIT0002
CIT0024
CIT0027
CIT0026
Cheng X. (CIT0003) 2012; 8
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0029
  doi: 10.1007/11908029_68
– ident: CIT0012
  doi: 10.1002/widm.16
– ident: CIT0021
  doi: 10.1109/TSMCB.2005.863371
– volume-title: Data Mining, Concepts and Techniques
  year: 2011
  ident: CIT0004
– volume: 8
  start-page: 6009
  year: 2012
  ident: CIT0003
  publication-title: J. Comput. Inf. Syst.
– ident: CIT0026
  doi: 10.1016/j.patcog.2006.02.002
– ident: CIT0031
  doi: 10.1049/cp.2011.0488
– ident: CIT0009
  doi: 10.1109/FUZZ.2002.1006647
– ident: CIT0024
  doi: 10.1109/3477.623232
– volume: 3613
  start-page: 494
  year: 2005
  ident: CIT0005
  publication-title: Lect. Notes Artif. Intell.,
– ident: CIT0025
  doi: 10.1007/11590316_113
– ident: CIT0002
  doi: 10.1016/j.camwa.2009.04.017
– ident: CIT0019
  doi: 10.1016/j.patrec.2004.05.007
– ident: CIT0015
  doi: 10.1016/j.cageo.2011.12.017
– ident: CIT0032
  doi: 10.1016/j.matcom.2010.02.007
– volume: 40
  start-page: 371
  year: 2012
  ident: CIT0016
  publication-title: Acta Elect. Sin.
  doi: 10.1007/s10114-012-9734-x
– ident: CIT0027
  doi: 10.1016/j.ins.2014.02.073
– ident: CIT0010
  doi: 10.1007/978-3-642-02962-2_9
– volume: 7
  start-page: 151
  year: 2007
  ident: CIT0020
  publication-title: Trans. Rough Sets.
– ident: CIT0028
  doi: 10.1016/j.ijar.2012.10.003
– ident: CIT0001
  doi: 10.1016/j.eswa.2010.08.010
– ident: CIT0013
  doi: 10.1023/B:JIIS.0000029668.88665.1a
– ident: CIT0023
  doi: 10.1016/j.ins.2006.06.006
– volume: 2639
  start-page: 130
  year: 2003
  ident: CIT0014
  publication-title: Lect. Notes Artif. Intell.
– ident: CIT0007
  doi: 10.1007/978-3-642-36505-8_2
– ident: CIT0008
  doi: 10.1016/j.ijar.2013.05.005
– ident: CIT0006
  doi: 10.1016/j.engappai.2012.07.002
– ident: CIT0011
  doi: 10.1109/TKDE.2008.236
– ident: CIT0022
  doi: 10.1016/j.patcog.2009.09.029
– volume: 80
  start-page: 475
  year: 2007
  ident: CIT0017
  publication-title: Fund. Inform.
– ident: CIT0018
  doi: 10.1109/TSMCB.2007.906578
– ident: CIT0030
  doi: 10.1016/j.asoc.2012.05.015
SSID ssj0008976
Score 2.3319566
Snippet Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms Algorithms
Approximation
Cluster analysis
Clustering
Clustering algorithm
Clusters
Computer simulation
Gaussian function
Mathematical analysis
Mathematical models
rough k-means
rough set theory
Routing
Vector quantization
weighted distance measure
Title Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2015.1124099
https://www.proquest.com/docview/1869121758
https://www.proquest.com/docview/1904212778
Volume 94
WOSCitedRecordID wos000396792000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QxIEL4ykGAwWJa9Gytmt7RIjBaeIwxG5VmjgwsbVobeHvY7dpxYTQDnCL1DqtEjt-xPbH2JXwtZSREU7iy8TxhNCOpPt38ACEMACBkBXYRDCZhLNZ9GizCXObVkk-tKkbRVRnNQm3TPImI44quFExjgaUmOVTDQz6KFTCh5Y98fh0_NyexWFUwcsRhUMkTQ3Pb7Osaae13qU_zupKAY27__Dre2zXWp_8pmaXfbYF6QHrNsgO3Ar6IYM61gCaVyg-_M1ZAuo0rhYlNVZAdcfl4iVbzYvXJSdFqHmW8s8qzIpjTUYpTsSXdQSSU7SX38syp5JNTrqU-OGIPY3vprcPjgVkcJQbiMLRUrliqMCAHg5CbSCSUifByKATqgPwPeOGgAdElEjw0FPywaC9lYRepIc4Uu4x66RZCieMo9mk0PNDa4M62o38RIbCU0Jp18eXQfSY12xErGy3cgLNWMSibWpaL2VMSxnbpeyx65bsvW7XsYkg-r7LcVHFSUwNahK7G2j7DUvEVvLzmCC-BPp5fthjl-1jlFm6iJEpZCW-Ew3oIj4IwtM_fP6M7QzJxqA0IrfPOsWqhHO2rT6Keb66qOTgC4MJA9k
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED_xMQleBgOmdTAwEq-Z6iZu4keE6EBAnzrBm-XY5w2tTac2hX-fu3xUoAnxwN4sJedEtu_Td_cDOJHKW6uDjHJl8yiR0keW798xQZQyIKbSVmAT6XCY3d3p57UwnFbJPnSoG0VUspqZm4PRbUocl3CTZux3OTNLcREMOSl6FdYV6VpO6xsNbpfSONMVwByTREzTVvG8Ns0L_fSie-k_0rpSQYOt__Hz2_CxMUDFaX1iPsEKFjuw1YI7iIbXdwHrcAN6UQH5iD_RBEmtCTdecG8F0njCjn9NZ_fl74lgXejFtBCPVaSVxp7tUppITOogpOCAr_hhF3Ou2hSsTvlI7MHPwfno7CJqMBkiF6eyjLx1sew5DOh73cwH1Nb6PO0H8kN9iioJcYYkI3RuMSFnSWEgkyvPEu17NHLxZ1grpgV-AUGWkyPnjwwObmrXV7nNZOKk87Gil1F2IGl3wrimYTnjZoyNXPY1rZfS8FKaZik78H1J9rfu2PEWgX6-zaasQiWhxjUx8Ru0B-2ZMA3zzw2jfEly9VTWgePlY2JbvouxBU4X9I7u8l18mmZf3_H5I9i4GN1cm-vL4dU-bPbY5OCsovgA1srZAr_BB_dQ3s9nhxVTPAHdYwf6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-NDyFexue0AhtG4jWobpImfpzGuk1DFQ8geLMc-wyINkVtOv597pykGkITD_BmKTknsu98H777HcCxTJ0xysuoSE0RJVK6yPD9OyaIUnrETJrQbCIbDvPra3XeZBPOmrRK9qF9DRQRzmoW7gfn24w4ruAmxdjvcmJWyjUw5KOoJVgJ4FjE0heDq8VhnKvQX45JIqZpi3j-N80z9fQMvPTFYR000GDjHf59Ez425qf4VvPLFnzAchs22tYOopH0HcA62IBOhDY-4j4aIyk1YUdzRlYgfSfM6GYyvatux4I1oROTUjyGOCuNHVulNJEY1yFIweFe8dPMZ1yzKViZMkPswuXgx8X3X1HTkSGycSaryBkby55Fj67XzZ1HZYwrsr4nL9RlmCY-zpFOCFUYTMhVStGTwVXkiXI9Gtn4EyyXkxI_gyC7yZLrR-YGQ9r108LkMrHSujill1F2IGk3QtsGrpy7Zoy0XKCa1kupeSl1s5QdOFmQPdR4Ha8RqH93WVchUOLrriY6foX2oGUJ3Yj-THOPL0mOXpp34GjxmISWb2JMiZM5vaO6fBOfZfneGz5_CGvnpwN99nv4Zx_We2xvcEpRfADL1XSOX2DV_q3uZtOvQSSeAIhkBp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+rough+k-means+clustering+algorithm+based+on+weighted+distance+measure+with+Gaussian+function&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Zhang%2C+Tengfei&rft.au=Ma%2C+Fumin&rft.date=2017-04-03&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=94&rft.issue=4&rft.spage=663&rft.epage=675&rft_id=info:doi/10.1080%2F00207160.2015.1124099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon