Learning Laplacian Matrix in Smooth Graph Signal Representations

The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 64; H. 23; S. 6160 - 6173
Hauptverfasser: Xiaowen Dong, Thanou, Dorina, Frossard, Pascal, Vandergheynst, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2016
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain. In particular, it is often desirable in graph signal processing applications that a graph is chosen such that the data admit certain regularity or smoothness on the graph. In this paper, we address the problem of learning graph Laplacians, which is equivalent to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. To this end, we adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these signals. We show that the Gaussian prior leads to an efficient representation that favors the smoothness property of the graph signals. We then propose an algorithm for learning graphs that enforces such property and is based on minimizing the variations of the signals on the learned graph. Experiments on both synthetic and real world data demonstrate that the proposed graph learning framework can efficiently infer meaningful graph topologies from signal observations under the smoothness prior.
AbstractList The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain. In particular, it is often desirable in graph signal processing applications that a graph is chosen such that the data admit certain regularity or smoothness on the graph. In this paper, we address the problem of learning graph Laplacians, which is equivalent to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. To this end, we adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these signals. We show that the Gaussian prior leads to an efficient representation that favors the smoothness property of the graph signals. We then propose an algorithm for learning graphs that enforces such property and is based on minimizing the variations of the signals on the learned graph. Experiments on both synthetic and real world data demonstrate that the proposed graph learning framework can efficiently infer meaningful graph topologies from signal observations under the smoothness prior.
Author Thanou, Dorina
Xiaowen Dong
Vandergheynst, Pierre
Frossard, Pascal
Author_xml – sequence: 1
  surname: Xiaowen Dong
  fullname: Xiaowen Dong
  email: xdong@mit.edu
  organization: MIT Media Lab., Cambridge, MA, USA
– sequence: 2
  givenname: Dorina
  surname: Thanou
  fullname: Thanou, Dorina
  email: dorina.thanou@epfl.ch
  organization: Signal Process. Labs., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Pascal
  surname: Frossard
  fullname: Frossard, Pascal
  email: pascal.frossard@epfl.ch
  organization: Signal Process. Labs., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 4
  givenname: Pierre
  surname: Vandergheynst
  fullname: Vandergheynst, Pierre
  email: pierre.vandergheynst@epfl.ch
  organization: Signal Process. Labs., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
BookMark eNp9kE1Lw0AQhhepYFu9C172D6TO7FeSm1K0ChHFVvAWtptNu5Juwm4O-u-b0uLBg6cZhnleXp4JGfnWW0KuEWaIkN-ulm8zBqhmTAHLID8jY8wFJiBSNRp2kDyRWfp5QSYxfgGgELkak7vC6uCd39BCd402Tnv6ovvgvqnzdLlr235LF0F3W7p0G68b-m67YKP1ve5d6-MlOa91E-3VaU7Jx-PDav6UFK-L5_l9kRieYp8Yo7iouarBWIGMpYhZKtZcGECO-RorXtV1Jvlwr6yUmawMt6o2a6ZVxSSfEnXMNaGNMdi6NO5YoQ_aNSVCefBQDh7Kg4fy5GEA4Q_YBbfT4ec_5OaIOGvt73sqJZM58D30XWpp
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_LSP_2019_2936665
crossref_primary_10_1016_j_specom_2020_12_010
crossref_primary_10_1109_TSP_2022_3184455
crossref_primary_10_1109_ACCESS_2021_3120994
crossref_primary_10_1016_j_dsp_2020_102782
crossref_primary_10_1016_j_sigpro_2020_107931
crossref_primary_10_1109_TIFS_2023_3302508
crossref_primary_10_1007_s00041_025_10177_4
crossref_primary_10_1007_s10115_025_02406_5
crossref_primary_10_1109_MSP_2023_3262906
crossref_primary_10_1109_TNNLS_2022_3190420
crossref_primary_10_1016_j_sigpro_2018_02_017
crossref_primary_10_1109_LCOMM_2022_3149814
crossref_primary_10_1016_j_dsp_2021_103360
crossref_primary_10_1109_JIOT_2021_3067717
crossref_primary_10_1016_j_sigpro_2022_108574
crossref_primary_10_1109_JPROC_2018_2820126
crossref_primary_10_1109_LSP_2019_2896435
crossref_primary_10_1109_JSEN_2022_3156152
crossref_primary_10_1109_TSIPN_2022_3202035
crossref_primary_10_1109_TSP_2024_3392348
crossref_primary_10_3390_math12121820
crossref_primary_10_1109_LSP_2025_3553064
crossref_primary_10_1109_TSP_2020_2993780
crossref_primary_10_1109_JSTSP_2017_2726975
crossref_primary_10_1016_j_sigpro_2024_109663
crossref_primary_10_1109_TSP_2024_3361712
crossref_primary_10_1109_TSP_2019_2903025
crossref_primary_10_1016_j_neuroimage_2021_118289
crossref_primary_10_1016_j_crhy_2019_08_003
crossref_primary_10_1016_j_jneumeth_2020_108649
crossref_primary_10_1109_TSIPN_2016_2613687
crossref_primary_10_1109_LSP_2021_3093872
crossref_primary_10_1109_TSIPN_2025_3572698
crossref_primary_10_1016_j_ifacol_2020_12_2684
crossref_primary_10_1016_j_jnca_2022_103434
crossref_primary_10_1007_s11042_022_13904_x
crossref_primary_10_1109_ACCESS_2019_2934490
crossref_primary_10_1109_JBHI_2023_3267789
crossref_primary_10_1109_TII_2018_2868364
crossref_primary_10_1109_TSP_2023_3340009
crossref_primary_10_1016_j_neucom_2023_02_007
crossref_primary_10_1109_TIT_2024_3413534
crossref_primary_10_1109_TSP_2025_3588173
crossref_primary_10_1109_TSP_2021_3057258
crossref_primary_10_1109_TSP_2023_3303639
crossref_primary_10_1016_j_jnca_2025_104116
crossref_primary_10_1007_s11634_023_00565_3
crossref_primary_10_1016_j_neucom_2020_12_015
crossref_primary_10_3390_app14104094
crossref_primary_10_1109_TSP_2022_3167525
crossref_primary_10_1007_s41109_021_00438_8
crossref_primary_10_1109_LSP_2021_3123459
crossref_primary_10_1109_TSIPN_2023_3345142
crossref_primary_10_1007_s12530_020_09348_z
crossref_primary_10_1109_TSP_2022_3205474
crossref_primary_10_1109_TCSII_2021_3109339
crossref_primary_10_1109_TNSE_2022_3169220
crossref_primary_10_1016_j_sigpro_2022_108708
crossref_primary_10_1109_TSIPN_2020_2984499
crossref_primary_10_1109_LSP_2025_3568370
crossref_primary_10_1016_j_dsp_2021_103270
crossref_primary_10_1109_MSP_2018_2887284
crossref_primary_10_1080_10556788_2023_2269594
crossref_primary_10_1007_s11571_020_09662_x
crossref_primary_10_1109_JIOT_2022_3196154
crossref_primary_10_1016_j_sigpro_2021_108149
crossref_primary_10_1109_TSP_2024_3514091
crossref_primary_10_1109_TIP_2020_3042088
crossref_primary_10_1016_j_sigpro_2025_109995
crossref_primary_10_1109_TSP_2025_3553915
crossref_primary_10_1109_TSP_2022_3149134
crossref_primary_10_1016_j_jneuroling_2020_100936
crossref_primary_10_1109_MSP_2020_3014590
crossref_primary_10_1109_TPWRD_2021_3135075
crossref_primary_10_1109_MCS_2021_3092810
crossref_primary_10_1109_TKDE_2023_3264971
crossref_primary_10_1109_TKDE_2023_3264970
crossref_primary_10_1109_TSIPN_2021_3107628
crossref_primary_10_3390_e21010022
crossref_primary_10_1109_TSP_2022_3160277
crossref_primary_10_1016_j_dsp_2024_104914
crossref_primary_10_1016_j_neuroimage_2022_119037
crossref_primary_10_3390_electronics11213462
crossref_primary_10_1109_TSP_2019_2899822
crossref_primary_10_1109_LSP_2017_2712141
crossref_primary_10_1109_TSP_2023_3347646
crossref_primary_10_1109_TSIPN_2021_3100302
crossref_primary_10_3390_a13090228
crossref_primary_10_1109_TSIPN_2017_2742940
crossref_primary_10_1002_hbm_25410
crossref_primary_10_1109_TSIPN_2022_3169632
crossref_primary_10_1109_LSP_2020_3023587
crossref_primary_10_1016_j_eswa_2020_113587
crossref_primary_10_1109_TSP_2020_3009645
crossref_primary_10_1109_TSP_2022_3159393
crossref_primary_10_1016_j_iot_2024_101284
crossref_primary_10_1016_j_bspc_2023_105537
crossref_primary_10_1109_LSP_2022_3165468
crossref_primary_10_1109_TSIPN_2020_2983139
crossref_primary_10_1109_TSP_2019_2896229
crossref_primary_10_1109_TSP_2023_3263675
crossref_primary_10_1109_TSIPN_2025_3540701
crossref_primary_10_1109_TPAMI_2022_3225572
crossref_primary_10_1109_TSIPN_2025_3527888
crossref_primary_10_1109_TSP_2023_3238272
crossref_primary_10_1016_j_jneuroling_2025_101285
crossref_primary_10_3390_s20216001
crossref_primary_10_1109_TSP_2024_3436524
crossref_primary_10_1109_TSIPN_2022_3183498
crossref_primary_10_1109_TSP_2019_2925602
crossref_primary_10_1109_TSP_2019_2904922
crossref_primary_10_1186_s13634_024_01201_8
crossref_primary_10_1109_TSP_2024_3446453
crossref_primary_10_1016_j_imu_2021_100662
crossref_primary_10_1109_TSP_2018_2870386
crossref_primary_10_1109_ACCESS_2022_3167055
crossref_primary_10_1007_s10898_024_01401_4
crossref_primary_10_1016_j_jfranklin_2025_107793
crossref_primary_10_1109_LSP_2023_3298280
crossref_primary_10_1109_TSIPN_2025_3599780
crossref_primary_10_1016_j_sigpro_2019_107381
crossref_primary_10_1016_j_chaos_2023_113977
crossref_primary_10_1016_j_neuri_2022_100091
crossref_primary_10_1109_TSIPN_2017_2731164
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_1016_j_jfranklin_2023_04_030
crossref_primary_10_1109_ACCESS_2020_2983590
crossref_primary_10_1016_j_sigpro_2021_108101
crossref_primary_10_1109_TIP_2022_3145242
crossref_primary_10_1016_j_bspc_2023_104952
crossref_primary_10_1016_j_sigpro_2022_108744
crossref_primary_10_3390_bioengineering11070671
crossref_primary_10_1016_j_dsp_2024_104565
crossref_primary_10_3390_info9060143
crossref_primary_10_1080_00401706_2023_2197471
crossref_primary_10_1016_j_neucom_2020_12_061
crossref_primary_10_1109_TSP_2021_3060619
crossref_primary_10_1109_TSP_2024_3419182
crossref_primary_10_1109_TPAMI_2020_3013433
crossref_primary_10_1109_TSP_2023_3267990
crossref_primary_10_1109_TSIPN_2024_3352236
crossref_primary_10_1109_TSIPN_2025_3589719
crossref_primary_10_1109_TSIPN_2017_2731051
crossref_primary_10_1016_j_jmva_2023_105209
crossref_primary_10_1109_TBME_2020_3022335
crossref_primary_10_1109_TSIPN_2022_3170652
crossref_primary_10_1109_TAI_2021_3076021
crossref_primary_10_1186_s12859_023_05250_y
crossref_primary_10_1007_s43926_021_00011_w
crossref_primary_10_1109_TIP_2016_2627807
crossref_primary_10_1109_TPWRD_2023_3266302
crossref_primary_10_1080_01431161_2020_1782507
crossref_primary_10_1109_TSP_2017_2752689
crossref_primary_10_1109_TSP_2023_3300632
crossref_primary_10_1109_LSP_2025_3531218
crossref_primary_10_1109_TCSII_2020_3045217
crossref_primary_10_1109_RBME_2021_3122522
crossref_primary_10_1109_JSEN_2023_3337519
crossref_primary_10_1016_j_knosys_2022_110159
crossref_primary_10_1109_TSP_2025_3526287
crossref_primary_10_1016_j_bspc_2024_106954
crossref_primary_10_1016_j_sigpro_2024_109732
crossref_primary_10_1109_TSP_2019_2952055
crossref_primary_10_3390_ijgi11010018
crossref_primary_10_1186_s13634_025_01211_0
crossref_primary_10_1109_TCAD_2022_3198513
crossref_primary_10_1016_j_dsp_2020_102728
crossref_primary_10_1155_2019_3208569
crossref_primary_10_1109_OJSP_2025_3588447
crossref_primary_10_1109_TSP_2022_3167145
crossref_primary_10_1109_TSIPN_2018_2872157
crossref_primary_10_1109_JIOT_2024_3416525
crossref_primary_10_1186_s13634_024_01128_0
crossref_primary_10_3390_e21080759
crossref_primary_10_1109_TSP_2022_3229950
crossref_primary_10_1016_j_sigpro_2021_108256
crossref_primary_10_1109_TSIPN_2022_3206578
crossref_primary_10_1016_j_sigpro_2023_109308
crossref_primary_10_1016_j_cmpb_2024_108479
crossref_primary_10_1109_ACCESS_2020_3018151
crossref_primary_10_1109_LSP_2017_2763154
crossref_primary_10_1109_TSP_2020_3016494
crossref_primary_10_1109_TSP_2024_3354572
crossref_primary_10_1109_JPROC_2018_2799702
crossref_primary_10_3390_app13127130
crossref_primary_10_1109_LSP_2020_3005053
crossref_primary_10_1109_TAC_2021_3056362
crossref_primary_10_1109_JSEN_2021_3106656
crossref_primary_10_1016_j_compeleceng_2025_110200
crossref_primary_10_1016_j_neucom_2024_128210
crossref_primary_10_1109_LSP_2024_3501273
crossref_primary_10_1109_TSIPN_2020_3046217
crossref_primary_10_1109_TSP_2024_3349788
crossref_primary_10_1016_j_dsp_2022_103792
crossref_primary_10_1109_TSIPN_2020_2964249
crossref_primary_10_1016_j_sigpro_2024_109519
crossref_primary_10_1109_ACCESS_2021_3119569
crossref_primary_10_1109_TSIPN_2020_3015341
crossref_primary_10_1016_j_sigpro_2023_109230
crossref_primary_10_1109_TSP_2020_3039880
crossref_primary_10_1016_j_neunet_2023_05_016
crossref_primary_10_1016_j_jat_2021_105620
crossref_primary_10_1109_TSIPN_2023_3295770
crossref_primary_10_3390_jlpea13020039
crossref_primary_10_1109_TSP_2024_3439554
crossref_primary_10_1109_TCNS_2024_3371548
crossref_primary_10_1016_j_cmpb_2024_108290
crossref_primary_10_1016_j_yofte_2022_103006
crossref_primary_10_1109_TIP_2019_2932853
crossref_primary_10_1145_3339823
crossref_primary_10_1109_ACCESS_2019_2916567
crossref_primary_10_1109_TSIPN_2020_2975393
crossref_primary_10_1109_TSIPN_2023_3240893
crossref_primary_10_1016_j_sigpro_2023_108950
crossref_primary_10_1093_comnet_cnz031
crossref_primary_10_1109_TSP_2024_3381071
crossref_primary_10_1109_TIM_2024_3373062
crossref_primary_10_1109_TSIPN_2021_3059995
crossref_primary_10_1137_19M1285469
crossref_primary_10_1016_j_sigpro_2023_109120
crossref_primary_10_1109_TSP_2019_2929471
crossref_primary_10_1109_TAI_2025_3545800
crossref_primary_10_1109_TSP_2019_2961296
crossref_primary_10_1109_TSIPN_2024_3485532
crossref_primary_10_1109_TSIPN_2020_2988572
crossref_primary_10_1109_TSIPN_2017_2749976
crossref_primary_10_1016_j_sigpro_2023_108927
crossref_primary_10_1007_s11760_023_02492_4
crossref_primary_10_1109_TSIPN_2022_3161079
crossref_primary_10_1109_TIP_2019_2906554
crossref_primary_10_1109_TSP_2020_3042940
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1109_JPROC_2018_2804318
crossref_primary_10_1109_TSIPN_2019_2936361
crossref_primary_10_1016_j_asr_2021_01_058
crossref_primary_10_1109_TSIPN_2025_3594003
crossref_primary_10_1109_TSP_2021_3115947
crossref_primary_10_1109_ACCESS_2021_3126675
crossref_primary_10_1109_LSP_2019_2922952
crossref_primary_10_7554_eLife_61927
crossref_primary_10_1109_MSP_2018_2890143
crossref_primary_10_3390_math9020168
crossref_primary_10_1109_TSIPN_2020_3038475
crossref_primary_10_1016_j_jag_2022_103150
crossref_primary_10_1109_TSP_2020_2982325
crossref_primary_10_1109_TSIPN_2020_2995515
crossref_primary_10_1109_TSP_2023_3348202
crossref_primary_10_1109_JSEN_2021_3124818
crossref_primary_10_1016_j_sigpro_2021_108335
crossref_primary_10_1016_j_dsp_2022_103762
crossref_primary_10_1109_TSIPN_2019_2936358
crossref_primary_10_1049_ell2_12459
crossref_primary_10_1007_s00041_021_09850_1
crossref_primary_10_1007_s10915_025_02922_0
crossref_primary_10_1109_TSIPN_2023_3279513
crossref_primary_10_1103_PhysRevResearch_5_033129
crossref_primary_10_1109_TSP_2017_2733489
crossref_primary_10_1109_TSP_2021_3093765
crossref_primary_10_1016_j_patrec_2018_06_006
crossref_primary_10_1186_s13636_023_00272_z
Cites_doi 10.1093/biostatistics/kxm045
10.1002/9780470316894
10.1109/TSP.2012.2212886
10.1007/978-3-642-15939-8_17
10.1109/TSP.2014.2345355
10.1145/1273496.1273520
10.1109/PCS.2010.5702565
10.1109/TSP.2013.2238935
10.1109/MSP.2012.2235192
10.1109/TSP.2014.2332441
10.1016/j.acha.2010.04.005
10.1109/ICASSP.2015.7178669
10.1093/biomet/asm018
10.1109/ISBI.2011.5872835
10.1109/ICASSP.2013.6638232
10.1214/13-AOS1162
10.1109/TSP.2012.2188718
10.1007/978-3-540-45167-9_12
10.1109/TSP.2011.2107908
10.1016/j.neuroimage.2013.07.019
10.1109/ISBI.2013.6556550
10.1016/j.jcss.2007.08.006
10.1007/s11222-007-9033-z
10.1017/CBO9780511810800
10.1109/TSP.2015.2424203
10.1201/9780203492024
10.1126/science.286.5439.509
10.1109/SSP.2012.6319640
10.1002/9781119970583
10.1007/978-3-642-38868-2_1
10.1109/TPAMI.2013.50
10.1109/ICASSP.2012.6288775
10.1016/j.acha.2006.04.004
10.1017/CBO9780511809071
10.1109/ICASSP.2012.6288639
10.1016/j.acha.2006.03.004
10.1214/009053606000000281
10.1109/TIT.2013.2252233
10.1109/LSP.2012.2230165
10.1007/11503415_32
10.1214/08-EJS176
10.1111/j.1467-9868.2005.00503.x
10.1111/1467-9868.00196
10.1017/CBO9780511804441
10.1109/TSP.2011.2158428
10.1561/2200000016
10.1016/j.acha.2015.02.005
10.1145/1553374.1553400
10.1007/978-1-84800-155-8_7
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2016.2602809
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 6173
ExternalDocumentID 10_1109_TSP_2016_2602809
7552590
Genre orig-research
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 200021_135493
  funderid: 10.13039/501100001711
– fundername: Swiss National Science Foundation
  funderid: 10.13039/501100001711
– fundername: Hasler Foundation, Switzerland
  funderid: 10.13039/501100003475
– fundername: LOGAN
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
ID FETCH-LOGICAL-c371t-cc634f36f0ce4122711874b34c01319b1d3dff853118de5585dc3e6fcb2a6d253
IEDL.DBID RIE
ISICitedReferencesCount 446
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386232300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 29 04:10:41 EST 2025
Tue Nov 18 22:18:35 EST 2025
Tue Aug 26 16:43:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-cc634f36f0ce4122711874b34c01319b1d3dff853118de5585dc3e6fcb2a6d253
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/105002
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TSP_2016_2602809
crossref_primary_10_1109_TSP_2016_2602809
ieee_primary_7552590
PublicationCentury 2000
PublicationDate 2016-Dec.1,
2016-12-00
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.1,
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref56
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
grant (ref57) 2013
banerjee (ref38) 2008; 9
ref17
ref16
zhu (ref59) 2003
ref19
ref18
zhou (ref4) 0
ng (ref63) 0
ref51
(ref64) 0
ref46
ref48
(ref65) 0
ref47
ref44
ref43
barabási (ref61) 1999; 286
ref49
ref7
ref9
ref3
ref6
ref5
ref40
roweis (ref50) 1997
ref35
ref34
ref37
ref36
(ref66) 0
ref31
ref30
ravikumar (ref41) 0
ref32
grant (ref58) 2008
ref2
ref1
ref39
erd?s (ref60) 1960; 5
hsieh (ref42) 0
(ref62) 0
argyriou (ref33) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
lake (ref8) 0
chung (ref45) 1997
ref28
ref27
ref29
gavish (ref12) 0
References_xml – start-page: 367
  year: 0
  ident: ref12
  article-title: Multiscale wavelets on trees, graphs and high dimensional data: Theory and applications to semi supervised learning
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref39
  doi: 10.1093/biostatistics/kxm045
– start-page: 67
  year: 0
  ident: ref33
  article-title: Combining graph Laplacians for semi-supervised learning
  publication-title: Proc Adv Neural Inf Process Syst 18
– start-page: 2330
  year: 0
  ident: ref42
  article-title: Sparse inverse covariance matrix estimation using quadratic approximation
  publication-title: Proc Adv Neural Inf Process Syst 24
– volume: 9
  start-page: 485
  year: 2008
  ident: ref38
  article-title: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
  publication-title: J Mach Learn Res
– ident: ref47
  doi: 10.1002/9780470316894
– start-page: 849
  year: 0
  ident: ref63
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst 14
– ident: ref5
  doi: 10.1109/TSP.2012.2212886
– ident: ref35
  doi: 10.1007/978-3-642-15939-8_17
– ident: ref24
  doi: 10.1109/TSP.2014.2345355
– start-page: 778
  year: 0
  ident: ref8
  article-title: Discovering structure by learning sparse graph
  publication-title: Proc 32nd Annu Meeting Cogn Sci Soc
– start-page: 1329
  year: 0
  ident: ref41
  article-title: Model selection in Gaussian graphical models: High-dimensional consistency of $\ell _1$ -regularized MLE
  publication-title: Proc Adv Neural Inf Process Syst 21
– ident: ref34
  doi: 10.1145/1273496.1273520
– ident: ref21
  doi: 10.1109/PCS.2010.5702565
– ident: ref2
  doi: 10.1109/TSP.2013.2238935
– ident: ref1
  doi: 10.1109/MSP.2012.2235192
– year: 1997
  ident: ref50
  article-title: EM algorithms for PCA and sensible PCA
– ident: ref18
  doi: 10.1109/TSP.2014.2332441
– ident: ref13
  doi: 10.1016/j.acha.2010.04.005
– ident: ref6
  doi: 10.1109/ICASSP.2015.7178669
– ident: ref37
  doi: 10.1093/biomet/asm018
– ident: ref31
  doi: 10.1109/ISBI.2011.5872835
– ident: ref23
  doi: 10.1109/ICASSP.2013.6638232
– ident: ref43
  doi: 10.1214/13-AOS1162
– ident: ref15
  doi: 10.1109/TSP.2012.2188718
– ident: ref3
  doi: 10.1007/978-3-540-45167-9_12
– ident: ref51
  doi: 10.1109/TSP.2011.2107908
– ident: ref32
  doi: 10.1016/j.neuroimage.2013.07.019
– ident: ref29
  doi: 10.1109/ISBI.2013.6556550
– ident: ref27
  doi: 10.1016/j.jcss.2007.08.006
– ident: ref49
  doi: 10.1007/s11222-007-9033-z
– ident: ref53
  doi: 10.1017/CBO9780511810800
– ident: ref16
  doi: 10.1109/TSP.2015.2424203
– ident: ref44
  doi: 10.1201/9780203492024
– volume: 286
  start-page: 509
  year: 1999
  ident: ref61
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– year: 2013
  ident: ref57
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– ident: ref9
  doi: 10.1109/SSP.2012.6319640
– ident: ref46
  doi: 10.1002/9781119970583
– year: 0
  ident: ref66
– ident: ref22
  doi: 10.1007/978-3-642-38868-2_1
– ident: ref7
  doi: 10.1109/TPAMI.2013.50
– ident: ref10
  doi: 10.1109/ICASSP.2012.6288775
– year: 0
  ident: ref65
– ident: ref11
  doi: 10.1016/j.acha.2006.04.004
– ident: ref56
  doi: 10.1017/CBO9780511809071
– ident: ref17
  doi: 10.1109/ICASSP.2012.6288639
– year: 0
  ident: ref64
– ident: ref26
  doi: 10.1016/j.acha.2006.03.004
– year: 0
  ident: ref62
– ident: ref36
  doi: 10.1214/009053606000000281
– ident: ref20
  doi: 10.1109/TIT.2013.2252233
– ident: ref28
  doi: 10.1109/LSP.2012.2230165
– ident: ref25
  doi: 10.1007/11503415_32
– ident: ref40
  doi: 10.1214/08-EJS176
– year: 2003
  ident: ref59
  article-title: Semi-supervised learning: From Gaussian fields to Gaussian processes
– ident: ref52
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref48
  doi: 10.1111/1467-9868.00196
– ident: ref54
  doi: 10.1017/CBO9780511804441
– ident: ref14
  doi: 10.1109/TSP.2011.2158428
– volume: 5
  start-page: 17
  year: 1960
  ident: ref60
  article-title: On the evolution of random graphs
  publication-title: Publ Math Inst Hung Acad Sci
– ident: ref55
  doi: 10.1561/2200000016
– ident: ref19
  doi: 10.1016/j.acha.2015.02.005
– ident: ref30
  doi: 10.1145/1553374.1553400
– year: 1997
  ident: ref45
  publication-title: Spectral Graph Theory
– start-page: 95
  year: 2008
  ident: ref58
  article-title: Graph implementations for nonsmooth convex programs
  publication-title: Recent Advances in Learning and Control (Lecture Notes in Control and Information Sciences)
  doi: 10.1007/978-1-84800-155-8_7
– start-page: 132
  year: 0
  ident: ref4
  article-title: A regularization framework for learning from graph data
  publication-title: Proc ICML Workshop Statistical Relational Learning
SSID ssj0014496
Score 2.6776571
Snippet The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 6160
SubjectTerms Analytical models
factor analysis
Gaussian prior
graph signal processing
Kernel
Laplace equations
Laplacian matrix learning
representation theory
Signal processing
Signal processing algorithms
Signal representation
Topology
Title Learning Laplacian Matrix in Smooth Graph Signal Representations
URI https://ieeexplore.ieee.org/document/7552590
Volume 64
WOSCitedRecordID wos000386232300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCDX1OcX-TgRbBb16RNelPE6WGO4SbsVtqXZAy0k32If755aVd2EMFbCUko76W895rf-_0IuRY8S7Gf0gtEGHpcao2Ut8xDqrpAREZKcKolPdHvy_E4HtTIbdULo7V24DPdwkd3l69msMJfZW27nc3WbYG-JYQoerWqGwPOnRaXTReYF0oxXl9J-nF7NBwghitq2dw9kAg93AhBG5oqLqR09__3Mgdkr0wd6X3h60NS0_kR2d0gFGyQu5IudUJ7KaKtrO_pC5Lwf9NpTocfM-sX-oQc1XQ4neBurw4JWzYg5Ytj8tZ9HD08e6VGggdMdJYeQMS4YZHxQfNOEAiUD-cZ44BEOnHWUUwZY2OyHVc6tMWBAqYjA1mQRioI2Qmp57NcnxKqwH6-GTe-ShU3GqQfGqyGpAAb50E0SXtttgRKAnHUsXhPXCHhx4k1dIKGTkpDN8lNteKzIM_4Y24DbVzNK8179vvwOdnBxQWu5ILUl_OVviTb8LWcLuZX7mT8AIvltKg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KFdSDryrW5x68CKZNdjfZ5KaItWJaiq3QW0j2UQqaSh_iz3dnm4YeRPAWls0QZhJmJvvN9yF0zVmWwjylQ7jvOyxUCihvqQNUdYQHOgyFVS2JebcbDodRr4Juy1kYpZQFn6kGXNqzfDkRC_hV1jTmTLVuGvQNnzHiLae1yjMDxqwalykYqOOHfLg6lHSj5qDfAxRX0DDVOwkBfLiWhNZUVWxSae3973H20W5RPOL7ZbQPUEXlh2hnjVKwhu4KwtQRjlPAW5no4w7Q8H_jcY77HxMTGfwELNW4Px6BtVeLhS1GkPLZEXprPQ4e2k6hkuAIyr25I0RAmaaBdoViHiEcBMRZRpkAKp0o8ySVWpusbNal8k17IAVVgRYZSQNJfHqMqvkkVycIS2E-4IxpV6aSaSVC19fQD4VcmEwveB01V25LREEhDkoW74ltJdwoMY5OwNFJ4eg6uinv-FzSZ_yxtwY-LvcV7j39ffkKbbUHnTiJn7svZ2gbDC1RJueoOp8u1AXaFF_z8Wx6ad-SHyAJt-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Laplacian+Matrix+in+Smooth+Graph+Signal+Representations&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Xiaowen+Dong&rft.au=Thanou%2C+Dorina&rft.au=Frossard%2C+Pascal&rft.au=Vandergheynst%2C+Pierre&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=64&rft.issue=23&rft.spage=6160&rft.epage=6173&rft_id=info:doi/10.1109%2FTSP.2016.2602809&rft.externalDocID=7552590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon